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On eigenvalues of the kernel 1
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xy
c − 1

xy

par Nigel WATT

Résumé. Nous montrons que le noyau K(x, y) = 1
2 +b 1

xy c−
1

xy (0 < x, y ≤ 1)
possède une infinité de valeurs propres positives et une infinité de valeurs
propres négatives. Notre intérêt pour ce noyau est motivé par l’apparition de
la forme quadratique

∑N
m=1 µ(m)

∑N
n=1 µ(n)K(m/N, n/N) dans une identité

pour la fonction de Mertens.

Abstract. We show that the kernel K(x, y) = 1
2 + b 1

xy c −
1

xy (0 < x, y ≤ 1)
has infinitely many positive eigenvalues and infinitely many negative eigen-
values. Our interest in this kernel is motivated by the appearance of the qua-
dratic form

∑N
m=1 µ(m)

∑N
n=1 µ(n)K(m/N, n/N) in an identity involving the

Mertens function.

1. Introduction
For 0 < x, y ≤ 1, put

K(x, y) = 1
2 −

{ 1
xy

}
,

where {t} ∈ [0, 1) denotes the fractional part of t ∈ R (i.e. {t} = t − btc,
where btc = max{m ∈ Z : m ≤ t}). When 0 ≤ x, y ≤ 1 and xy =
0, put K(x, y) = 0. The function K thus defined on [0, 1] × [0, 1] is (in
the terminology of [3]) a symmetric, non-null L2-kernel. It is shown in [3,
Section 3.8] that every such kernel has at least one eigenvalue λ. That is,
there exists a number λ 6= 0, and an associated “eigenfunction” φ(x) (with
∞ >

∫ 1
0 |φ(x)|2dx > 0), satisfying

(1.1) φ(x) = λ

∫ 1

0
K(x, y)φ(y)dy

almost everywhere, with respect to the Lebesgue measure, in [0, 1].
Since K is symmetric (i.e. satisfies K(x, y) = K(y, x)), all eigenvalues of

K are real, and so there is no essential loss of generality in considering just
those eigenfunctions of K that are real valued (i.e. at least one of the pair
of real functions Re(φ), Im(φ) may be substituted for φ in (1.1)).

Manuscrit reçu le 7 novembre 2018, révisé le 12 avril 2019, accepté le 28 septembre 2019.
2010 Mathematics Subject Classification. 11A25, 45C05, 11A07.
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In this paper we have the option of working only with eigenfunctions
φ : [0, 1]→ R that satisfy (1.1) for all x ∈ [0, 1] (when λ ∈ R\{0} is the ap-
propriate eigenvalue). Choosing to do so would not be overly restrictive, for
if φ(x) is any eigenfunction of K, with associated eigenvalue λ, then (1.1)
holds almost everywhere in [0, 1], and the term λ

∫ 1
0 K(x, y)φ(y)dy (occur-

ring in (1.1)) is an eigenfunction of K that has the required property (the
last part of this following, via the Cauchy–Schwarz inequality, from the ob-
servation that, for all x ∈ [0, 1], the integral

∫ 1
0 (K(x, y))2dy exists, and is

finite). Although this is an option that is of no consequence with regard to
the proof of our main result (Theorem 1.1, below), we shall find it helpful
when discussing certain incidental matters.

By the general theory set out in [3, Section 3.8], the set

S(K) = {λ : λ is an eigenvalue of K}

is countable (in the sense that does not preclude its being finite). It is not
hard to see that S(K) cannot be a finite set (for a sketch of a proof of this,
see our Remark 2.3, following Lemma 2.1 below). This paper is devoted to
proving the following stronger result.

Theorem 1.1. The sets S(K) ∩ (−∞, 0) and S(K) ∩ (0,∞) are infinite.

We prove this theorem in Section 3, after some necessary preliminaries.
Our particular interest in the kernel K(x, y) is motivated by a connec-

tion with the Möbius function µ(n) and its associated summatory function
M(x) =

∑
m≤x µ(n) (known as the Mertens function). This connection is

apparent in our recent joint work [1] with Huxley, where it is (in effect)
noted that for each positive integer N one has

(1.2) M
(
N2)
N2 + 1

N2

N∑
m=1

N∑
n=1

K

(
m

N
,
n

N

)
µ(m)µ(n)

= M(N) (M(N) + 4)
2N2 −

(
N∑
m=1

µ(m)
m

)2

(this following directly from [1, Equations (3)–(5) and (37)]). In the
preprint [4] it is shown that the sum over m and n on the left-hand
side of (1.2) may be approximated, reasonably well, by sums involving
the numbers µ(1), . . . , µ(N), certain of the (smaller) eigenvalues of K and
the values that the corresponding eigenfunctions have at the points x = m

N
(m = 1, . . . , N).

The author is indebted to the anonymous referee for pointing out that
F. Mertens himself showed (in 1897) that, for all positive integers n, one
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has
M(n) = 2M

(√
n
)
−
∑∑
r,s≤
√
n

µ(r)µ(s)
⌊
n

rs

⌋
.

The proof of this appeared in [2, Section 3]. This result of Mertens contains
the “principal case” of [1, Equations (3)–(5)], from which we have derived
the equation (1.2), and is equivalent to that subcase of the “principal case”
of [1, Theorem 1] in which one has d = 2 and N1 = N2 = b

√
Kc (with

K = n).

Acknowledgement. The author wishes to thank the anonymous referee
for pointing out the relevance of the work [2] of Mertens, and for several
other comments that have helped to improve this paper.

2. Notation and some Hilbert–Schmidt Theory
We denote by L2([0, 1]) the semimetric space of functions f : [0, 1]→ R

that are measurable (in the sense of Lebesgue) and satisfy the condition∫ 1
0 (f(x))2dx <∞.
For each eigenvalue λ ∈ S(K), the corresponding set of eigenfunctions

satisfying (1.1) for all x ∈ [0, 1] spans a finite dimensional subspace of
L2([0, 1]): we follow [3] in referring to the dimension of this subspace, rλ
(say), as the “index” of λ. We put ω =

∑
λ∈S(K) rλ, so that ω ∈ N if

S(K) is finite, while ω = ∞ otherwise. Since K is symmetric, any two
eigenfunctions of K corresponding to eigenvalues λ, µ (say) with λ 6= µ are
an orthogonal pair with respect to the (semi-definite) inner product

(2.1) 〈f, g〉 =
∫ 1

0
f(x)g(x)dx (f, g ∈ L2([0, 1])).

See [3, Sections 2.3 and 3.1] regarding this matter. In [3, Section 3.8] it is
shown that there exists a system φj (j ∈ N and j ≤ ω) of eigenfunctions
of K that is orthonormal, so that one has

〈φj , φk〉 :=
∫ 1

0
φj(x)φk(x)dx =

{
1 if j = k,

0 otherwise,

whenever j, k ∈ N satisfy j, k ≤ ω, and that is (at the same time) maximal,
so that the corresponding sequence λj (j ∈ N and j ≤ ω) of eigenvalues of
K is such that one has |{j ∈ N : j ≤ ω and λj = λ}| = rλ for all λ ∈ S(K).

By [3, Section 3.10, (8)], we have

(2.2)
∑
j∈N
j≤ω

1
λ2
j

=
∫ 1

0

∫ 1

0
(K(x, y))2 dxdy < 1

4 .

It follows that either S(K) is finite, or else one has |λj | → ∞ as j →
∞. Therefore, as in [3, Section 3.8], we may assume that the φj ’s (and
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associated λj ’s) are numbered in such a way that the absolute values of
the associated eigenvalues form a sequence, |λj | (j ∈ N and j ≤ ω), that is
monotonic increasing.

We now develop some notation in which there is a clear distinction be-
tween positive and negative eigenvalues (and between the corresponding
eigenfunctions). Let ω+ (resp. ω−) be the number of positive (resp. neg-
ative) terms in the sequence λj (j ∈ N and j ≤ ω), so that ω+, ω− ∈
N ∪ {0,∞} and ω+ + ω− = ω. If all of the negative eigenvalues are re-
moved from the sequence λj (j ∈ N and j ≤ ω) then what remains is
some monotonic increasing subsequence λmk (k ∈ N and k ≤ ω+) in which
each positive eigenvalue of K appears. If one instead removes the positive
eigenvalues then what remains is some monotonic decreasing subsequence
λnk (k ∈ N and k ≤ ω−) in which each negative eigenvalue of K ap-
pears. For k ∈ N satisfying k ≤ ω+ (resp. k ≤ ω−) we put λ+

k = λmk
and φ+

k = φmk (resp. λ−k = λnk and φ−k = φnk): note this has the con-
sequence that (1.1) holds when λ and φ are λ+

k and φ+
k (resp. λ−k and

φ−k ), respectively. As every eigenvalue of K is real and non-zero (and so
either positive or negative), it is clear that the sets {φj : j ∈ N} and
{φ+

k : k ∈ N and k ≤ ω+} ∪ {φ−k : k ∈ N and k ≤ ω−} are equal, and so we
know (in particular) that the elements of the latter set form an orthonormal
system.

Lemma 2.1. Let φ, ψ ∈ L2([0, 1]) and put

J = J(φ, ψ) =
∫ 1

0

∫ 1

0
K(x, y)φ(x)ψ(y)dxdy.

Then

J =
∑
j∈N
j≤ω

〈φ, φj〉〈φj , ψ〉
λj

=
∑
k∈N
k≤ω+

〈φ, φ+
k 〉〈φ

+
k , ψ〉

λ+
k

+
∑
k∈N
k≤ω−

〈φ, φ−k 〉〈φ
−
k , ψ〉

λ−k
.

Proof. See [3, Section 3.11], where this result is proved in greater generality
(i.e. for an arbitrary symmetric L2-kernel) by applying a theorem of Hilbert
and Schmidt (for which see [3, Section 3.10]). �

Remark 2.2. The proof supplied in [3] shows that each sum over j, or
k, in Lemma 2.1 is absolutely convergent (when not finite or empty). This
may also be deduced directly from Bessel’s inequality, since, for j ∈ N with
j ≤ ω, one has |λj | ≥ |λ1| > 0 and so, by the inequality of arithmetic and
geometric means, |〈φ, φj〉〈φj , ψ〉/λj | ≤

(
|〈φ, φj〉|2 + |〈φj , ψ〉|2

)
/(2|λ1|).

Remark 2.3. Given what was noted in the third paragraph of Section 1,
the eigenfunctions φj (j ∈ N and j ≤ ω) can be chosen in such a way
that each has φj(x) = λj

∫ 1
0 K(x, y)φj(y)dy for all x ∈ [0, 1]. Assume that
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such a choice has been made. One can show that it follows that each φj is
continuous on the interval (0, 1]: we leave the proof of this as an exercise
for the reader, and remark that the eigenfunctions in question can also be
shown to be continuous at the point x = 0 (this last fact, however, is not
relevant to our main concern here). Therefore if ω 6= ∞ (so that ω ∈ N)
then, by applying Lemma 2.1 for suitably chosen functions φ(x) and ψ(y)
that are supported in intervals [a − ε, a] and [b − ε, b] (respectively), we
find (letting ε → 0+, and using the right-continuity of the real function
t 7→ {t}) that K(a, b) =

∑ω
j=1 φj(a)φj(b)/λj when one has 0 < a, b ≤ 1.

This last identity would imply that K(x, y) is continuous on (0, 1]× (0, 1],
whereas one has (for example) limx→( 1

2)+K(x, x) = −1
2 , but K(1

2 ,
1
2) = 1

2 .
By this reductio ad absurdum we may conclude that ω =∞. It follows that
S(K) is not a finite set.

3. Negative (resp. positive) eigenvalues of K

In this section we prove Theorem 1.1 by showing that ω+ = ω− = ∞.
In doing so we shall make use of both Lemma 2.1 and the following purely
number-theoretic result.

Lemma 3.1. Let u ∈ {1,−1}, let Q ∈ [5,∞) and let N be a non-negative
integer. Then there exist N + 1 distinct primes p1, . . . , pN+1, all greater
than Q, and an integer n satisfying
(3.1) 3n2 ≡ mj (mod p2

j ) (j = 1, . . . , N + 1),
where mj denotes the least positive integer satisfying both
(3.2) 2mj ≡ 3 (mod pj) and mj ≡ u (mod 3).
One has here
(3.3) 0 < mj < 3pj (j = 1, . . . , N + 1),
and the integer n may be chosen so as to satisfy
(3.4) P 2 < n < 2P 2,

where P is the product of the primes p1, . . . , pN+1.

Proof. It is a corollary of Dirichlet’s theorem on primes in arithmetic pro-
gressions that the set {p : p is prime, p ≡ ±1 (mod 8) and p > Q} is
infinite: we take p1, . . . , pN+1 to be any N + 1 distinct elements of this
set. As Q > 3, and as distinct positive primes are coprime to one an-
other, we have (pj , 2) = (pj , 3) = 1 (j = 1, . . . , N + 1), and (pj , pk) = 1
(1 ≤ j < k ≤ N + 1). It therefore follows by the Chinese Remainder The-
orem that, for j = 1, . . . , N + 1, the simultaneous congruences in (3.2) are
soluble (for the integer mj): since (u, 3) = (±1, 3) = 1 = (3, pj), the set
of all integer solutions of these congruences is one of the residue classes
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mod 3pj that are prime to 3pj , and so there is a least positive integer solu-
tion mj , and this solution must satisfy both mj ≤ 3pj (by its minimality)
and mj 6= 3pj (as (mj , 3pj) = 1), so that the inequalities in (3.3) will be
satisfied.

Since the numbers p1, . . . , pN+1 are pairwise coprime, the Chinese Re-
mainder Theorem shows also that a solution n ∈ Z for the simultaneous
congruences in (3.1) may be found, provided only that each one of those
congruences is soluble (for n). Given any j ∈ {1, . . . , N+1}, we note that, as
(pj , 3) = (pj ,mj) = 1, the congruence 3n2 ≡ mj (mod p2

j ) is soluble (for n)
if and only if 3mj is a quadratic residue mod p2

j . Since pj is an odd prime,
this last condition on 3mj will be satisfied if and only if 3mj is a quadratic
residue mod pj . By the first congruence in (3.2), we do have 6mj ≡ 32

(mod pj), so that 6mj = (2)(3mj) is a quadratic residue mod pj . We de-
duce that the congruence 3n2 ≡ mj (mod p2

j ) is soluble if and only if 2 is
a quadratic residue mod pj . Given that pj ≡ ±1 (mod 8), the solubility of
the congruence 3n2 ≡ mj (mod p2

j ) therefore follows as a consequence of
the well-known fact that, for all odd primes p, the Legendre symbol (2

p)
equals (−1)(p2−1)/8 (and so equals 1 when p ≡ ±1 (mod 8)). This com-
pletes the proof of the solubility of the simultaneous congruences in (3.1):
as (mj , pj) = 1 (j = 1, . . . , N + 1), it follows that the set of all integers n
satisfying these simultaneous congruences contains a residue class mod P 2

that is prime to P 2, and so must contain at least one element n that lies
strictly between P 2 and P 2 + P 2, as in (3.4). �

Proof of Theorem 1.1. As was mentioned earlier, each eigenvalue of K has
a finite index (this is, for example, a corollary of the relations in (2.2)). It
follows directly from this fact that ω+ will be some non-negative integer if
the set S(K) ∩ (0,∞) is not infinite. Similarly, if the set S(K) ∩ (−∞, 0)
is not infinite, then ω− is a non-negative integer (and so not equal to ∞).
Therefore Theorem 1.1 will follow if we can show that ω+ = ω− =∞. We
shall achieve this through “proof by contradiction”.

Suppose it is not the case that ω+ = ω− =∞. Then either ω+ ∈ N∪{0},
or else ω+ =∞ and ω− ∈ N ∪ {0}. In the former case we put N = ω+ and
u = −1; in the latter case we put N = ω− and u = 1.

Appealing to Lemma 3.1, we put Q = 5(N +1)1/2, and choose N +1 dis-
tinct primes p1, . . . , pN+1 > Q ≥ 5, with associated integers m1, . . . ,mN+1
and n, in such a way that the conditions (3.1)–(3.4) are all satisfied. We
then put

xj = pj
n

(j = 1, . . . , N + 1).

By (3.4), we have {x1, . . . , xN+1} ⊂ (0, P/P 2) ⊆ (0, 1/p1) ⊆ (0, 1/7).
We observe now that, as p2

j ≡ 1 (mod 3), for j = 1, . . . , N + 1, the
congruences (3.1) and (3.2) imply that we have 3n2 = mj + (3vj −u)p2

j , for
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j = 1, . . . , N + 1, where each vj is integer valued. By this, we obtain:

K (xj , xj) = 1
2 −

{
n2

p2
j

}

= 1
2 −

{
mj

3p2
j

− u

3

}
= −

(
u

6 + mj

3p2
j

)
(j = 1, . . . , N + 1),

with the final equality following due to our having 0 < mj/(3p2
j ) < 1/pj ≤

1/7 < 1/3 (as a consequence of (3.3)) and u ∈ {−1, 1}.
We may note also that (3.1) and (3.2) imply that one has 6n2 ≡ 2mj ≡ 3

(mod pj), and so 2n2 ≡ 1 (mod pj), for j = 1, . . . , N + 1. It follows that,
when j, k ∈ {1, . . . , N + 1} and j 6= k (so that (pj , pk) = 1), one will have
2n2 ≡ 1 (mod pjpk), and so 2n2 = 1 + (1 + 2wjk)pjpk, where wjk is some
integer. We may therefore deduce that

K (xj , xk) = 1
2 −

{
n2

pjpk

}

= 1
2 −

{
1

2pjpk
+ 1

2

}
= − 1

2pjpk
(1 ≤ j, k ≤ N + 1, j 6= k),

since we have 0 < 1/(2pjpk) ≤ 1/154 < 1/2 here.
Let now

∆ = log
(

t

1− e−t
)

and δ = t−∆,

where t > 0 is to be specified at a later point in this proof. By this we have

(3.5) e∆ − e−δ = t = ∆ + δ.

Note that

et >
tet

et − 1 = t

1− e−t = (t/2)et/2

sinh(t/2) >
(t/2) cosh(t/2)

sinh(t/2) > 1,

so that
0 < ∆, δ < t.

For j = 1, . . . , N + 1 and 0 ≤ x ≤ 1, we define ψj(x) by:

ψj(x) =
{

1/√txj if e−δ < x/xj < e∆,

0 otherwise.

The functions ψ1(x), . . . , ψN+1(x) so defined are elements of the space
L2([0, 1]). Assuming that

(3.6) t ≤ 2
max {p1, . . . , pN+1}

,
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we have∣∣∣∣∣log
(
xk
xj

)∣∣∣∣∣ =
∣∣∣∣∣log

(
pk
pj

)∣∣∣∣∣
>

|pk − pj |
max {pk, pj}

≥ t = ∆ + δ (1 ≤ j, k ≤ N + 1, j 6= k),

so that, by virtue of the pairwise disjointness of the sets that are their
supports, the functions ψ1, . . . , ψN+1 are pairwise orthogonal with respect
to the inner product (2.1). By (3.4) and (3.6), we have also e∆xj < etpj/n <

p−1
j exp(2/pj) ≤ (1/7) exp(2/7) < 1, for j = 1, . . . , N + 1, and so it follows

(using (3.5)) that {ψ1, . . . , ψN+1} is an orthonormal subset of L2([0, 1]).
Let ψ ∈ L2([0, 1]) be defined by

ψ(x) =
N+1∑
j=1

αjψj(x) (0 ≤ x ≤ 1),

where α1, . . . , αN+1 denote certain real constants that we shall choose later.
Then, as a consequence of Lemma 2.1 (combined with the fact that the
square of any real number is real and non-negative), we find that

uJ(ψ,ψ) = u

∫ 1

0

∫ 1

0
K(x, y)ψ(x)ψ(y)dxdy ≥ −

∑
1≤j≤N

〈ψ, φ±j 〉2∣∣λ±j ∣∣ ,

where each ambiguous sign “±” is such that one has ±u = −1. We therefore
will have

(3.7) uJ(ψ,ψ) ≥ 0

if (when the sign “±” is as above) one has 〈ψ, φ±j 〉 = 0 for each positive
integer j ≤ N . This last condition on ψ holds subject to a certain set of N
homogeneous linear equations in variables z1, . . . , zN+1 (say) being satisfied
when, for j = 1, . . . , N + 1, one has zj = αj . If N 6= 0 then the coefficients
of this set of equations form an N × (N + 1) real matrix, the columns
of which are (necessarily) linearly dependent. We therefore have (3.7) for
some choice of α1, . . . , αN+1 ∈ R that is distinct from the “trivial solution”
(α1, . . . , αN+1) = (0, . . . , 0). We assume such a choice of α1, . . . , αN+1 in
what follows. Thus (3.7) holds.

By our definitions of ψ1, . . . , ψN+1 and ψ, we find that

J(ψ,ψ) =
N+1∑
j=1

N+1∑
k=1

Ψj,kαjαk,
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where

Ψj,k =
∫ 1

0

∫ 1

0
K(x, y)ψj(x)ψk(y)dxdy

= 1
t
√
xjxk

∫ xje
∆

xj/eδ

(∫ xke
∆

xk/eδ
K(x, y)dy

)
dx.

Within the last double integral we have always

(3.8)
∣∣∣∣∣ 1
xy
− 1
xjxk

∣∣∣∣∣ < e2t − 1
xjxk

=
(
e2t − 1

)
n2

pjpk
≤
(
e2t − 1

)
n2

49 .

On the other hand, our earlier calculations of K(xj , xk) (including that in
the case k = j) make it plain that we have

1
3 <

{
1

xjxk

}
= 1

2 −K (xj , xk) <
2
3 + 1

7 = 17
21 (1 ≤ j, k ≤ N + 1).

Therefore, provided that we choose t > 0 so small as to satisfy

(3.9) e2t − 1 ≤ 28
3n2 ,

it will then be the case that (3.8) implies the continuity of the kernel K at
the point (x, y). Therefore, given the particulars of the definition ofK(x, y),
we may deduce (subject to (3.9)) that

(3.10) Ψj,k = 1
t
√
xjxk

∫ xje
∆

xj/eδ

(∫ xke
∆

xk/eδ

(
K (xj , xk) + 1

xjxk
− 1
xy

)
dy
)

dx,

for 1 ≤ j, k ≤ N+1. Note that (3.9) implies t ≤ 14/(3n2), and so (by (3.4)),
it is certainly a stronger condition on t than that in (3.6).

By (3.5), our result in (3.10) simplifies to:

Ψj,k = t
√
xjxkK (xj , xk) (1 ≤ j, k ≤ N + 1).

By this, together with our earlier calculations of K(xj , xk) (including that
in the case j = k), we find that

J(ψ,ψ) = t
N+1∑
j=1

N+1∑
k=1

K (xj , xk)
(
αj
√
xj
)

(αk
√
xk)

= (−t)
N+1∑
j=1

(
u

6 + mj

3p2
j

)
α2
jxj + (−t)

∑∑
1≤j<k≤N+1

αjαk
√
xjxk

pjpk
,

and so

uJ(ψ,ψ) = − t
n

N+1∑
j=1

(
pj
6 + umj

3pj

)
α2
j + u

∑∑
1≤j<k≤N+1

αjαk√
pjpk

 .
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Using the inequality |αjαk/
√
pjpk| ≤

(
α2
jp
−1
j +α2

kp
−1
k

)
/2, together with the

triangle inequality, one can show that the sum over j and k occurring in
the last equation has absolute value less than or equal to 1

2N
∑N+1
j=1 α2

jp
−1
j .

By this and (3.3), one obtains the upper bound

(3.11) uJ(ψ,ψ) ≤ − t
n

N+1∑
j=1

(
pj
6 −

(
1 + N

2pj

))
α2
j .

We have min{p1, . . . , pN+1} > Q ≥ 5 max{1,
√
N}. Therefore

1/
(
pj
6

)
= 6
pj
≤ 6

7 and
(
N

2pj

)
/

(
pj
6

)
= 3N

p2
j

≤ 3N
Q2 ≤

3
25 <

1
8 ,

for j = 1, . . . , N + 1, and so it follows from (3.11) and the “non-triviality”
of (α1, . . . , αN+1) ∈ RN+1 that we have

uJ(ψ,ψ) ≤ − t
n

N+1∑
j=1

pjα
2
j

336 ≤ −
t

48n

N+1∑
j=1

α2
j < 0.

Since the last of these inequalities is strict, we find that (3.7) is contradicted,
and so complete our “proof by contradiction” that ω+ = ω− =∞. �

Remark 3.2. The idea for the above proof came after reading some of
H. Weyl’s paper [5]: in particular, his proof of “Satz 1” there.

Remark 3.3. By elaborating upon the above proof one can obtain lower
bounds for the terms in the sequence (λ−k ), and upper bounds for the terms
in the sequence (λ+

k ). These bounds are, however, extremely weak: the most
that I have been able to show, in respect of positive eigenvalues of K, is
that one has

λ+
k ≤ 2772

(
918(k + 1) log(k + 1)

)6(k+1) (k ∈ N).
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