URNAL

de Théorie des Nombres

e BORDEAUX

anciennement Seminaire de Theorie des Nombres de Bordeaux

HMID et Hanane ZERDOUM

On the Harborth constant of C3 @ Cj3,,
Tome 31, n°3 (2019), p. 613-633.

<http://jtnb.centre-mersenne.org/item?id=JTNB_2019__31_3_613_0>

© Société Arithmétique de Bordeaux, 2019, tous droits réservés.

L’acces aux articles de la revue « Journal de Théorie des Nom-
bres de Bordeaux » (http://jtnb.centre-mersenne.org/), implique
I’accord avec les conditions générales d’utilisation (http://jtnb.
centre-mersenne.org/legal /). Toute reproduction en tout ou partie
de cet article sous quelque forme que ce soit pour tout usage autre
que D'utilisation a fin strictement personnelle du copiste est con-
stitutive d’une infraction pénale. Toute copie ou impression de ce
fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques
http://www.centre-mersenne.org/


http://jtnb.centre-mersenne.org/item?id=JTNB_2019__31_3_613_0
http://jtnb.centre-mersenne.org/
http://jtnb.centre-mersenne.org/legal/
http://jtnb.centre-mersenne.org/legal/
http://www.centre-mersenne.org/
http://www.centre-mersenne.org/

Journal de Théorie des Nombres
de Bordeaux 31 (2019), 613-633

On the Harborth constant of Cs @ Cj,

par PHILIPPE GUILLOT, Luz E. MARCHAN, OscArR ORDAZ,
WOLFGANG A. SCHMID et HANANE ZERDOUM

RESUME. Soit (G, +,0) un groupe abélien fini. La constante de Harborth de
G, notée g(@G), est le plus petit entier k tel que toute suite d’éléments deux &
deux distincts de G de longueur k, de maniére équivalente tout sous-ensemble
de G de cardinal au moins k, admet une sous-suite de longueur exp(G) dont
la somme soit 0. Dans cet article, il est démontré que g(Cs & Csp,) = 3p + 3
pour tout nombre premier p # 3 et que g(Cs @ Cy) = 13.

ABSTRACT. For a finite abelian group (G, +,0) the Harborth constant g(G)
is the smallest integer k such that each squarefree sequence over G of length
k, equivalently each subset of G of cardinality at least k, has a subsequence
of length exp(G) whose sum is 0. In this paper, it is established that g(Cs &
C3p,) = 3p + 3 for prime p # 3 and g(Cs @ Cy) = 13.

1. Introduction

For (G,+,0) a finite abelian group, a zero-sum constant of G is often
defined as the smallest integer k such that each set (or sequence, resp.)
of elements of G of cardinality (or length, resp.) at least k has a subset
(or subsequence, resp.) whose elements sum to 0, the neutral element of
the group, and that possibly fulfills some additional condition (typically
on its size). We refer to the survey article [6] for an overview of zero-sum
constants of this and related forms. It is technically advantageous to work
with squarefree sequences, that is, sequences where all terms are distinct,
instead of sets.

Harborth [11] considered the constants that arise, for sequences and for
squarefree sequences, when the additional condition on the subsequence is
that its length is equal to the exponent of the group. His original motivation
was a problem on lattice points. Considering these constants can be seen
as an extension of the problem settled in the Theorem of Erd6s—Ginzburg—
Ziv [5] from cyclic groups to general finite abelian groups.

The constant nowadays called the Harborth constant of G, denoted g(G),
is the constant that arises when considering squarefree sequences in the
above mentioned problem. That is, g(G) is the smallest integer k such that
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every squarefree sequences over G of length at least k£ has a subsequence of
length exp(G) that sums to 0. The exact value of g(G) is only known for a
few types of groups. We refer to the monograph by Bajnok [1], in particular
Chapter F.3, for a detailed exposition. We recall some known results that
are relevant for our current investigations.

1.1. Some known results. For G an elementary 2-group, that is, the
exponent of the group is 2, the problem admits a direct solution: there
are no squarefree sequences of length 2 that sum to 0, and it follows that
g(G) = |G|+1 as there are no squarefree sequences of length strictly greater
than the cardinality of G and therefore the condition is vacuously true for
these sequences. For elementary 3-groups the problem of determining g(G)
is particularly popular as it is equivalent to several other well-investigated
problems such as cap-sets and sets without 3-term arithmetic progressions.
Nevertheless, the exact value for elementary 3-groups is only known up to
rank 6 (see [3] for a detailed overview and [15] for the result for rank 6);
recently Ellenberg and Gijswijt [4], building on the work of Croot, Lev, and
Pach [2], obtained a major improvement on asymptotic upper bounds for
elementary 3-groups.

If G is a cyclic group, then the problem again admits a direct solution:
the only squarefree sequence of length exponent is the one containing each
element of the group G and it suffices to check whether the sum of all
elements of G is 0 or not. More concretely, for n a strictly positive integer
and C), a cyclic group of order n, one has:

n if n is odd
g(Cn) = {

n+1 if nis even.

For groups of rank two the problem of determining g(G) is wide open. It
is known that g(C,®C),) = 2p—1 for prime p > 47 and for p € {3,5,7}. The
latter is due to Kemnitz [12], the former due to Gao and Thangadurai [8],
with an additional minor improvement from the original p > 67 to p > 47
in [7]. Furthermore, Gao and Thangadurai [8] determined g(Cy & Cy) =9
and then made the following conjecture:

2n —1 if nis odd
2n+1 if n is even.

g(Cr®Cp) = {

Moreover, Ramos and some of the present authors [14] determined the
value for groups of the form Co & Cyy:

2n+3 if nis odd
2n+ 2 if n is even.

g(Co @ Cyp) = {
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Finally, Kiefer [13] (also see [1, Proposition F.104]) showed that g(Cs &
Cs3p) > 3n+ 3 for n > 2, which for n odd, is larger by one then what might
be expected (we refer to Section 3.1 for further details).

1.2. Main result. In the current paper, we determine g(Cs & C3,) when
p is a prime number. It turns out that the bound by Kiefer is usually sharp,
yet there is one exception, namely p = 3. Specifically, we will show:

3p+3 if 3 is prime
g(CgEBCgp):{ D p#3isp

3p+4 ifp=3.

The proof makes use of various addition theorems, namely the Theorems
of Cauchy—Davenport, Dias da Silva-Hamidoune, and Vosper. These are
applied to ‘projections’ of the set to the subgroup C, of C3 @& Cs,. This
is a reason why our investigations are limited to groups where p is prime.
We also obtain some results by computational means. In particular, we
confirm the conjecture by Gao and Thangadurai that we mentioned above
for Cg @ Cg.

2. Preliminaries

The notation used in this paper follows [9]. We recall some key notions
and results. For a,b € R the interval of integers is denoted by [a, b], that is,
[a,b] ={z € Z: a < z < b}. A cyclic group of order n is denoted by C,,.

Let G be a finite abelian group; we use additive notation. There are
uniquely determined non-negative integers r and 1 < nj | --- |n, such that
G = Cy ®---®Cy,. The integer r is called the rank of G. Moreover, if
|G| > 1, then n, is the exponent of G, denoted exp(G); for the sake of
completeness, we recall that for a group of cardinality 1 the exponent is 1.

A sequence over G is an element of the free abelian monoid over G.
Multiplicative notation is used for this monoid and its neutral element, the
empty sequence, is denoted by 1. That is, for .S a sequence over G, for each
g € G there exists a unique non-negative integer vy such that S = [[ e 9;
we call v, the multiplicity of g in S. For each sequence S over G there
exist not necessarily distinct gi,...,g¢ in G such that S = g1... gs; these
elements are determined uniquely up to ordering. The sequence S is called
squarefree if v, <1 for each g € G, equivalently, all the g; are distinct.

The length of S is £ = 37 vy; it is denoted by |S|. The sum of S is
Zle gi = 2 4eG Vgg; it is denoted by o (S). The support of the sequence S,
denoted supp(.9), is the set of elements appearing in S, that is, supp(S) =
{9 € G: vy > 0}. A subsequence of S is a sequence T' that divides S in
the monoid of sequences, that is 7' = [];c; ¢g; for some I C [1,¢]. Moreover,
TS denotes the sequence fulfilling (T~15)T = S.

Let G and G’ be two groups and let f be a map from G to G'. We denote
by f also the homomorphic extension of f to the monoid of sequences,
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that is, if S = g1...g¢ is a sequence over G, then f(S) = f(g1)...f(ge)
is a sequence over G'. Note that |S| = [f(S)| always holds, even if the
map f is not injective. This highlights a difference between working with
sequences and working with sets. The image of a squarefree sequence might
not be squarefree anymore, but it always has the same length as the original
sequence. By contrast, for A C G a subset f(A) = {f(a): a € A} can have
a cardinality strictly smaller than A.

If f is a group homomorphism, then o(f(S)) = f(c(S)). In particular, if
f is an isomorphism, then S has a zero-sum subsequence of length k if and
only if f(S) has a zero-sum subsequence of length k. Moreover, for g € G
and S =g ...g, the sequence (g+g1)...(9+gr) is denoted by g+ S. Note
that S has a zero-sum subsequence of length exp(G) if and only if g + S
has a zero-sum subsequence of length exp(G).

The set X(S) = {o(T): 1 # T'|S} is the set of (nonempty) subsums
of S. A sequence is called zero-sum free if 0 ¢ 3(5). Moreover, for a non-
negative integer h, let ¥, (S) = {o(T): T'| S with |T| = h} denote the set of
h-term subsums. These notations are also used for sets with the analogous
meaning.

Using this notation the definition of the Harborth constant can be stated
as follows: g(G) is the smallest integer k£ such that for each squarefree
sequence S over G with length |S| > k one has 0 € Y (S). We also need
the Davenport constant D(G), which is defined as the smallest integer k
such that for each sequence S over G with length |S| > k one has 0 € 3(S).

Let A and B be subsets of G. Then A+ B denotes the set {a+b: a € A,
b € B}, called the sumset of A and B.

We recall some well-known results on set-addition in cyclic groups of
prime order. We start with the classical Theorem of Cauchy—-Davenport
(see for example [10, Theorem 6.2]).

Theorem 2.1 (Cauchy—Davenport). Let p be a prime number and let
A, B C C), be non-empty sets, then:

A+ B = min{p, || + |B| - 1}.

This yields immediately that for non-empty sets Ai,..., A, C C), one
has:

h
|Ai 4+ Ayl > min{p,Z|Ai| — (h— 1)}
i=1

The associated inverse problem, that is, the characterization of sets where
the bound is sharp, is solved by the Theorem of Vosper (see for example [10,
Theorem 8.1]).
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Theorem 2.2 (Vosper). Let p be a prime number and let A,B C C,.
Suppose that |A|,|B| > 2 and |A+ B| = |A| + |B| — 1.
o If|A+ B| < p—2, then A and B are arithmetic progressions with
common difference, that is there is some d € C, and there are
a,b € Cp such that A = {a+id: i € [0,|A|—1]} and B = {b+id: i €
[0, B[ —1]}.
o If|A+B|=p—1, then A={c—a:a € C,\ B} for some c € Cp.

We also need the analogue of the Theorem of Cauchy—Davenport for
restricted set addition. It is called the Theorem of Dias da Silva—Hamidoune
(see for example [10, Theorem 22.5]).

Theorem 2.3 (Dias da Silva-Hamidoune). Let p be a prime number. Let
A C C) be a non-empty subset and let h € [1,|A|]. Then:

|Zn(A)] = min{p, h(|A] = h) + 1}.

We end this section with two technical lemmas. The first asserts that,
except for some corner-cases, the difference of an arithmetic progression
in a cyclic group of prime order is, up to sign, uniquely determined. We
include a proof as we could not find a suitable reference.

Lemma 2.4. Let p > 5 be a prime number and let A C C, be a set such
that |A| = k with2 < k < p—2. Assume that A is an arithmetic progression,
that is, there are some r,a € Cp, such that A = {a+ir:i € [0,k—1]}. The
difference r is determined uniquely up to sign, that is, if there are some

s,b e Cp such that A={b+is:i€[0,k—1]}, then s € {r,—r}.

Proof. Since A is an arithmetic progression with difference r if and only if
the complement of A in C), is an arithmetic progression with difference r,
we can assume that |A] < pT_l. Let e be some non-zero element of C),.

As the problem is invariant under affine transformations, we can assume
without loss of generality that A = {0,e,2e,...,(k — 1)e}. Suppose for a
contradiction that A = {a+ir: i € [0,k—1]} witha,r € Cp and r ¢ {e, —e}.
Without loss of generality we can assume that r = r’e with ' € [2, %]

As
p_l vl oo

9 + 5 i b,
it follows that (kK — 1)e +r ¢ A. It follows that (k — 1)e is also the last
element of the arithmetic progression A when represented with respect to
the difference r. That is, (k — 1)e = a + (k — 1)r.

The same reasoning shows that, when removing the element (k—1)e from
A then (k — 2)e is the last element of arithmetic progression A\ {(k —1)e}
both with respect to the difference r and e. Consequently, (kK — 2)e +r =

(k —1)e. Thus, r =e. O

k—1<k—-14¢<—
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When trying to establish the existence of zero-sum subsequences whose
length is close to that of the full sequence, it can be advantageous to work
instead with the few elements of the sequence not contained in the putative
subsequence. We formulate the exact link in the lemma below.

Lemma 2.5. Let G be a finite abelian group. Let 0 < r < k. The following
statements are equivalent.

e Fvery squarefree sequence S over G of length k has a subsequence
R of length r with o(S) = o(R).

e Fvery squarefree sequence S over G of length k has a zero-sum
subsequence T of length k — r.

Proof. Let S be a squarefree sequence of length k. Now, let R be a subse-
quence of length r with o(R) = o(S). Then the sequence T = R~'S is a
sequence of length k — r with sum o(S) — o(R) = 0. Conversely, let T be
a zero-sum subsequence of length k& — r. Then the sequence R = T-'S is a
sequence of length k— (k—r) = r with sum o(R) = 0(S)—0o(T) = o(S). O

3. Main result

As mentioned in the introduction our main result is the exact value of
the Harborth constant for groups of the form C3 & C3, where p is prime.

Theorem 3.1. Let p be a prime number. Then

3p+3 forp#3

C38 05, =
g(Cs @ 3p) {3p+4 for p=3.

We start by establishing that those values are lower bounds for the
Harborth constant. Then, we establish the existence of the zero-sum sub-
sequences that we need under several additional assumptions on the se-
quences. Finally, we combine all these results.

3.1. Lower bounds. In this section we establish lower bounds for the
Harborth constant. We start with a general lemma. An interesting aspect
of this lemma is that it mixes constants for squarefree sequences and se-
quences; it improves the result [14, Lemma 3.2], where instead of the Dav-
enport constant the Olson constant was used.

Lemma 3.2. Let G1,Gy be finite abelian groups with exp(G2) | exp(G1).
Then

g(G1 ® G2) > g(G1) + D(Gz) — 1.
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Proof. Let S; be a squarefree sequence over GG of length g(G1) — 1 that
has no zero-sum subsequence of length exp(G7). Let S5 be a sequence over
G2 of length D(G3) — 1 that has no zero-sum subsequence. Suppose S =
[l ec, g% Since S5 is zero-sumfree vy, < exp(G2) < exp(G1) for each g €
Ga. Let {hi, ..., hexp(ay)—1} be distinct elements in G'1, and let

Vg
o= 10 (Ta+ ).
geGa \i=1
Then, S is a squarefree zero-sum free sequence over G; & Go. Note that
5155 also is a squarefree sequence over G1PG4. To show our claim, it suffices
to show that 5152 has no zero-sum subsequence of length exp(G1 @ G3).
Assume to the contrary that 7'| 515 is a zero-sum subsequence of length
exp(G1 @ Go). Let T = Th Ty with T;|S;. Since exp(G1 @ G2) = exp(Gy),
it follows that T is not a subsequence of S, that is, T5 is not the empty
sequence. Let m : G — (G5 be the projection map of G on GG with respect
to the decomposition G = G1 ® Gs. Since o(w(T1)) = 0, it follows that
o(m(T)) = 0. Yet this is a contradiction, as 7(7T%) is a non-empty zero-sum
subsequence of S5, while by assumption S5 has no non-empty zero-sum
subsequence. O

Using this lemma in combination with the result for cyclic groups, yields
the following bound, which is given in [1, Proposition F.102].

Lemma 3.3. Let ni,ng be strictly positive integers with ny | no. Then

n1+ng—1 ifng is odd

n1 + na if ng is even.

g(onl D an) > {

In particular,
3n+2 ifn is odd
3n+3 ifn is even.

g(CS S C?m) Z {

Proof. By Lemma 3.2 we have g(C, & C,) > g(Ch,) + D(Cy,) — 1. The
claim follows using that

N9 if ng is odd

ng +1 if ng is even

g(CTLQ) = {

and D(Cy,) = n1 (see, e.g., [10, Theorem 10.2]). The claim for Cs @ Cs,, is
a direct consequence. O

The bound for g(C3 @ Cs,,) can be improved for odd n. This was ini-
tially done by Kiefer [13] (also see [1, Proposition F.104]). We include the
argument, as our construction is slightly different.
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Lemma 3.4. Let G = C3®Cs,, with an integer n > 2. Then g(G) > 3n+3.

Proof. For even n the claim is known by Lemma 3.3. Thus, we assume that
n is odd. To prove this lemma, it suffices to give an example of a squarefree
sequence of length 3n + 2 that does not admit a zero-sum subsequence of
length exp(G) = 3n. Let G = (e1) ®(e2) with ord(e;) = 3 and ord(e2) = 3n.
Let m; and 72 denote the projection maps 71 : G = (e1) @ (e2) — (e1) and
mo 1 G = (e1) ® (e2) — (e2).

Further, let

I = H (e1+9)
g€(e2)\{0,—e2,e2}

and To = 0(e2)(2e2)(3e2)(—6e2). Then T' = ThT5 is a squarefree sequence
and [T| =3n—34+5=3n+2.

To obtain the claimed bound, it suffices to assert that 1" does not have
a zero-sum subsequence of length 3n. Assume for a contradiction that T’
has a zero-sum subsequence R of length 3n. Clearly, one has o(7(R)) =
o(ma(R)) = 0. Let R = Ry Ry with Ry|T} and Ry|T». Note that o(m1(R)) =
o(m(Ry)) = |Ri|e;. Consequently, as o(m1(R)) = 0 it is necessary that 3
divides |R1|. Moreover to obtain |R| = 3n it is necessary that 3n — 5 <
|R1| < 3n—3. It follows that |Ry| = 3n — 3, that is, Ry = T;. Consequently
| Ro| = 3.

Now, o(m1(R1)) = |Ri|e; = 0. Furthermore

U(T(‘Q(Rl)) = Z h: ( Z h) — (—€2+€2+0),

he(e2)\{—e2,e2,0} he{e2)

which is also equal to 0, since the sum of all elements of the cyclic group
(e2) is 0 (here it is used that 3n is odd). Thus, o(Ry) = 0, and it follows
that: o(R) = 0 if and only if o0(R2) = 0. However, T, has no subsequence of
length 3 with sum 0. Thus 7" has no zero-sum subsequence of length 3n. [

It turns out that for p = 3, there is a better construction.
Lemma 3.5. One has g(C3 & Cy) > 13.

Proof. To prove this lemma, as exp(G) = 9, it suffices to give an example
of a squarefree sequence T of length 12 over GG that does not admit any
zero-sum subsequence T} of length 9. Let G = (e1) @ (e2) with ord(e;) = 3,
and ord(ez) = 9.

Let us consider the following sequence:

T = R(e1 + R)(e2 + R)(e1 + e2 + R), with R = 0(3e2)(6e2).

This is a squarefree sequence of length 12 that satisfies o(7) = 0+ 0 +
3eg + 3eg = 6ey. By Lemma 2.5 with £ = 12 and r» = 9, the sequence T'
has a zero-sum subsequence of length 9 if and only if 7" has a subsequence
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Ty with [T3| = 3 = 12 — 9 and o(T") = o(12) = 6ea. For a contradiction
let us assume such a subsequence Ty exists. Let H = {0, 3e2,6e2} and let
7 : G — G/H be the standard epimorphism. One has G/H = C3& Cs, and
this group is generated by f1 = m(e1) and fo = w(e2).

Since o (1) = 6ea, one has that 7(71%) is a zero-sum subsequence of 7(7T")
and m(o(T)) = m(6ez) = 0.

But, note that the only subsequences of m(T) = 03f1%f23(f1 + f2)® of
length 3 which have sum zero are 03, f1°, fo and (f1 + f2)®. It remains to
check if any of the corresponding subsequences of 7" has sum 6eo. This is not
the case. Concretely, we have o(R) = 0, o(e1+R) = 0, o(e2+ R) = 3es, and
o((e1+e2)+ R) = 3ea. Thus, the sequence T' does not have any subsequence
of length 3 with sum 6es. This establishes the claimed bound. O

3.2. Establishing the existence of zero-sum subsequence of length
exp(G) under various assumptions. Let us fix some notation that will
be used throughout the subsection. Let G = C3 @ C3, with p # 3 a prime
number. We note that G = H; @ Hy where Hy = O2 is the subgroup of
elements of order dividing 3 and Hy = (), is the subgroup of elements of
order dividing p. For i € {1,2}, let m; : G — H; the projection from G to
H; with respect to the decomposition G = H| @ Hs.

For a sequence S over G there exists a unique decomposition § =
[1hen, S where Sj, is the subsequence of elements of S with m1(g) = h. If
S is squarefree then for each h € Hp the sequence mo(S}y) is a squarefree
sequence over Ho.

To establish the bound g(G) < 3p+3 we need to show that every square-
free sequence S of length 3p+3 over GG has a zero-sum subsequence of length
3p. By Lemma 2.5 this is equivalent to establishing that every squarefree
sequence S of length 3p 4+ 3 over G has a subsequence R of length 3 with
the same sum as S.

To obtain such a sequence of length 3 we typically first restrict our con-
siderations to finding a subsequence for which m1(c(S)) = 71 (0(R)); this
condition can be established via explicit arguments, as the group H; is
fixed and small. Then, using tools from additive combinatorics recalled in
Section 2, we show that among the sequences with m1(c(S)) = 71 (0(R))
there is one for which we also have m3(c(S)) = m2(0(R)) and thus satisfy
0(S) = o(R) as needed.

We formulate a technical lemma that is a key tool in our argument. Note
that for the proof of this lemma it is crucial that p is prime. Later on, for
example in Proposition 3.8, the case of small primes creates extra difficulty
in the proof. Since we can deal with the case p = 2 by computational means,
we exclude this one right away to avoid considering corner cases.
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Lemma 3.6. Let p > 5 be a prime and let S be a squarefree sequence
of length 3p + 3 over G = C3 & Csp. Let S = [[pcpy, Sn where Sy, is the
subsequence of elements of S with w1 (g) = h.

(1) If there exist distinct x,y,z € Hy with x +y + z = m(0(S)) such
that Sz, Sy, S, are all non-empty and |Sy|+|Sy|+|S:| —2 > p, then
S has a zero-sum subsequence of length 3p.

(2) If there exist distinct x,y € Hy with 2z +y = m1(0(95)) such that
|Sz| > 2 and |Sy| > 1 and 2|S;|+|Sy|—4 > p, then S has a zero-sum
subsequence of length 3p.

(3) If there exist x € Hy with 3z = m1(0(S)) such that |Sz| > 3 and
3|S.| — 8 > p, then S has a zero-sum subsequence of length 3p.

We use and combine the theorems of Cauchy—Davenport and Dias da
Silva—Hamidoune.

Proof. In each case we show that under the assumptions of the lemma, S
has a subsequence R of length 3 with the same sum. By Lemma 2.5 with
k = 3p+ 3 and r = 3 this establishes our claim.

(1). Let x,y,z € Hy be distinct with x +y+ 2z = m1(0(5)). If 92,94,9- € G
are such that g, divides S, g, divides Sy and g, divides S, then g,g,g. is
a subsequence of S and 71(0(929y9-)) =z +y + 2z = w1 (a(9)).

Thus, to show that S has a subsequence R of length 3 it suffices to show
that there exist elements g,, g, and g, in G such that g, divides S, gy
divides S, and g, divides S, with m2(0(929y9-)) = m2(c(5)).

Let € denote the set of all sequence g,gyg. of length 3 with g, | Sz, gy | Sy,
g: | S.. We note that

{m2(o(R)): R € Q} = supp(m2(Sz)) + supp(m2(Sy)) + supp(ma(S:)).
From Theorem 2.1, the Theorem of Cauchy—Davenport,

|supp(m2(Sz)) + supp(m2(Sy)) + supp(m2(S2))|
> min{p, [supp(m2(Sz))| + [supp(m2(Sy))| + |supp(m2(S:))| — 2}

As the sequence S is squarefree, for each h € Hj, the sequence mo(Sp)
is squarefree as well. Consequently, |[supp(m2(Sp))| = |Sk|. Thus, if | S| +
Syl +[Sz| =2 = p, then supp(m2(Sz)) + supp(m2(Sy)) + supp(m2(S:)) must
be equal to the full group Hs. In particular, there exits a sequence R € 2
with ma(0(R)) = m2(0(S)), and the proof is complete.

(2). The argument is similar to the one in the first part, yet we need to
use the Theorem of Dias da Silva—Hamidoune in addition. Let z,y € H;
be distinct with 2z + y = m1(0(95)). If g.9, | Sz and g, | Sy, then g,q,g, is
a subsequence of S and 71 (0(g29L,9y)) = 2z +y = m1(0(9)).
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Let © denote the set of all sequence g,¢.g, with g,g}, divides S, and
gy divides S,. We note that {m(c(R)): R € Q} = Xa(supp(m2(Sz))) +
supp(m2(Sy))-

By the Theorems of Dias da Silva-Hamidoune and Cauchy—Davenport
(see Theorems 2.1 and 2.3) we get that, as p is assumed to be prime,

|Xg (supp(ma(Se))) + supp(ma(S,))|
> min{p, 2[supp(m2(Sz))| + [supp(m2(Sy))| — 4}

As in (1), if 2|S;| + |Sy| —4 > p, then there exists some R €  with
mo(0(R)) = m2(0(S)), and the proof is complete.

(3). In this part we consider x € H; with 3z = 7;(0(5)). The remainder of
the argument is similar to the preceding parts, and we skip the details. [

In the present context there exists essentially two types of sequences S
over G of length 3p + 3: those for which 71 (0(S)) equals zero and those
for which it is non-zero. It is clear that this property is preserved under
automorphisms of the group, and when the length of the sequence is a
multiple of 3 it is also preserved under translations. We treat these two types
of sequences separately. In either case, it will be relevant to understand
subsequences of lengths three of m1(S) that have sum m(o(S)). In the
former case, the sequence is formed by the three elements from a coset of
H; or it contains only a unique element with multiplicity three.

The latter type is treated in Proposition 3.10. For the former type, two
cases are distinguished: the case where the support of 71 (.5) is the full group
H, (see Proposition 3.7) and the cases where it is not (see Proposition 3.8).

Proposition 3.7. Let p > 5 be a prime and let S be a squarefree sequence
of length 3p+3 over G = C3®C3y,. If o(m1(S)) = 0 and supp(m1(5)) = Hi,

then S has a zero-sum subsequence of length 3p.

Proof. To simplify the subsequent considerations, we note that we can as-
sume that o(m2(S)) = 0 (and thus o(S) = 0). Indeed, it suffices to note
that if, for any h € G, the shifted sequence h+ S contains a zero-sum subse-
quence of length 3p, then the sequence S contains a zero-sum subsequence
of length 3p. There is some h' € Hy such that (3p+3)h' = —o(m2(S)); note
that as p and 3p + 3 are co-prime, the multiplication h +— (3p + 3)h is an
isomorphism on Hy. Now, one can consider b’ + S instead of S provided
the additional condition o (71 (S)) = 0 is not altered. Since o (7 (h' +5)) =
|S|h + o(71(S)) and since |S|h' = (3p + 3)h’ = 0, this is indeed true and
supp(mi (k' 4+ S)) = H; still holds.

Let H] be a nontrivial cyclic subgroup of H; and let ¢ € Hj, and
{z,y,2} = g+ Hj a coset. Since x +y + z = 0 = o(m(9)), it follows
that if |S;5,5;| —2 > p, then from Lemma 3.6 (1), the result holds.



624 P. GuiLror, L. E. MARCHAN, O. OrDAZ, W. A. SCHMID, H. ZERDOUM

It remains to consider the case where for each coset of H; of cardinality
three, denoted {z,y, z}, one has |S;5,S.| < p + 1. We note that this is
only possible if for every coset {z,y, 2}, one has [5,5,5;| = p+ 1. Indeed,
H; can be partitioned as the disjoint union of three such cosets, say, H; =
{z1,y1, 21} U{22, 92, 220} U{x3, 3, 23}. Then, on the one hand

|2, 5y, 5z| <p+1, for each i € [1,3]

yet on the other hand Sy, Sy, Sz, |+ [S20 Sy Szo | 41525 Sys Sz | = |S| = 3p+3.
Therefore it is necessary that for each i € [1, 3] one has|S,,S,,S.,| =p + 1.

Next we assert that this is only possible if each of the 9 sequences has the
same length. Let Hy = {q1,q2,...,qo} such that |Sq, | > [Sg,| > -+ > |Sg|-
Let v; = |Sg|- There is a some j € [3,9] such that {qi,¢2,q;} is a coset
and there is some i € [1,7] such that {gs,q9,¢} is a coset. Then one has
vi+ve+v;=p+1and vg+vg+v; =p+ 1

It follows that (vi —wvg) + (v2 —vg) + (v; —v;) = 0, and hence (v —vg) +
(v2 — vg) = v; —vj. Yet, as (v1 — vg) > (v; — vj) we get that vo —vg = 0.
Consequently, one has vo = vg and further vo = vg3 = --- = vg = v. This
common value needs to be %. It remains to show that v1 = v and v9 = v.
There exists a coset of Hy of cardinality 3 that contains gg and that does
not contain ¢, so vg + 2v = p + 1 and thus vg = pgil. In the same way we
get that vy = v.

We now reconsider, for a coset {z,y, z}, the cardinality of the set

supp(m2(Sz)) + supp(m2(Sy)) + supp(mz(S-:)).
By Theorem 2.1, the Theorem of Cauchy-Davenport, one has
|supp(m2(5z)) + supp(ma(Sy)) + supp(ma(S:))|

> min{p, [supp(m2(S;)) + supp(m2(Sy))| + |[supp(m2(S;))| — 1}
> min{p, min{p, [supp(m2(Sz))|+ [supp(m2(S,))| —1} + |supp(m2(S.))| —1}.

This simplifies to
min{p, [supp(m2(5z))| + [supp(m2(Sy))| + [supp(m2(S:))| — 2}
= min{p, [S| + [Sy| +|5:| =2} =p— L.
If one has |supp(m2(Sz)) + supp(m2(Sy)) + supp(m2(S:))| > p, then
supp(m2(Sz)) + supp(m2(Sy)) + supp(m2(S2)) = Ha,

and we can conclude as in Lemma 3.6.
Thus, it remains to consider the case that |[supp(ma(Sg))+supp(m2(Sy))+
supp(m2(Sz))| = p — 1. Now, this is only possible when

[supp(ma(Sz)) + supp(ma(Sy))| = [supp(m2(Sz))| + [supp(m2(Sy))| — 1,
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as otherwise the second inequality in the displayed equation above would
be strict. In the same way, we get that |supp(m2(Sz)) + supp(m2(S:))| =
[supp(m2(Sz))| + [supp(m2(S:))| — 1.

The Theorem of Vosper, see Theorem 2.2, yields that supp(m2(Sz)) and
supp(m2(Sy)) are arithmetic progressions with a common difference, and
the sets supp(m2(Sz)) and supp(m2(S;)) are arithmetic progressions with a
common difference. From Lemma, 2.4, it follows that there is a common dif-
ference for all three progressions supp(m2(Sz)), supp(m2(Sy)), supp(m2(S>)).
Indeed, one has this for any pair of the 9 sets, as the argument can be
applied for any coset. Thus, all 9 sets are arithmetic progressions with a
common difference. Let us denote this difference by e; of course, this is a
generating element of Hos.

If there is some h € Hj such that m2(S) has a zero-sum subsequence
of length 3, then in fact Sj, has a zero-sum sequence of length 3. Since
we assumed at the start that o(S) = 0, invoking Lemma 2.5 our claim is
complete.

Thus, we assume that for no h € Hy the sequence 72(S}y,) has a zero-sum
subsequence of length 3. In particular m2(Sy) does not have (—e)e0, as a
sh—i—%
J=5h
some integer s with 0 < sp, < sp, + % < p—1. It is easy to see that:

Y3(ma(Sh)) = {je: j € [3sp +3,3s, — 3+ (p— 2)]}.

For this set not to contain 0, we need 3s;, —3 4+ (p — 2) < p. So 3s;, < 5,
that is s5, € {0, 1}.

If there is a coset {z,y, 2} such that s, = s, = s, = 0, then clearly
mo(Sz)+m2(Sy)+m2(S,) contains 0. Yet if there is no coset {z, y, 2} such that
Sy = 8y = s, = 0, then there is a coset {a’, v/, 2’} such that s, +s,+s. > 2;
indeed, it suffices to note that by the former condition there must be at
least two elements h, h’ € Hy with s, > 1 and s, > 1. However, this gives
that m2(Sy) +m2(Sy ) +m2(S,/) will contain (2-1%1 + %)e = pe = 0. Thus,
the argument is complete. O

subsequence. Thus, for each h € H; one has ma(Sy) = [ (je) for

For the next result, we keep the condition that o(71(S)) = 0, yet consider
the case supp(m1(S)) # H; instead.

Proposition 3.8. Let p > 5 be a prime and let S be a squarefree sequence
of length 3p+3 over G = C3®Cs,,. If o(m1(S)) = 0 and supp(m1(S)) # Hi,
then S has a zero-sum subsequence of length 3p.

Proof. Let h € Hy such that |S,| = 0; such an element exists by assump-
tion. Now, as recalled in Section 2, the sequence S contains a zero-sum
subsequence T of length 3p then the sequence S — h contains T' — h as
a zero-sum subsequence of length 3p. Since supp(mi(—h + S§)) = —h +
supp(m1(S)) it follows from h ¢ supp(m1(S)) that 0 ¢ supp(mi(—h + 5)).
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Since (71 (—h+S)) = |S|(—h)+o(m1(5)) and since |S|h = (3p+3)h = 0, we
can consider —h + S instead of S, as the additional condition o(m(S)) =0
is not altered. Thus, by translation, it can be assumed without loss of gen-
erality that |Sp| = 0.

Now, we distinguish cases according to the cardinality of supp(mi(5)).
By assumption it is strictly less than |H;| = 9.

Suppose that |supp(m1(S))| = 8. We note that H; has exactly 8 cosets of
cardinality 3 that do not contain 0. Each non-zero element is contained in
exactly 3 of them. Thus there exists as coset {z,y, z} such that |S;S,S.| >
318 = @. The existence of the required subsequence now follows from
Lemma 3.6(1) as (9p+9)/8 > p+ 1.

Suppose that |supp(m1(S))| = 7. Let —z € H; be the non-zero element
such that |S_;| = 0. We note that there are 4 cosets of cardinality 3 that
contain x, and 3 of those contain neither —z nor 0. It thus follows that there
exists a coset {z,y,z} such that such that [S;59,5.| > [S.| + 3(|S71S]) =

p+1)+ @ > p + 1. Using Lemma 3.6 (1) again, the existence of the

required subsequence follows.

Suppose that [supp(71(S))| = 6. Let g,h € H; be the two non-zero
elements such that |Sy| = |Sy| = 0. If g = —h, then there is a coset {z,y, 2}
with respect to the subgroup {0, g, —g} such that |S;S,5.| > 3|S| = 3;2;3 >
p + 1 (note that the two cosets other than {0,g,—g} itself cover the 6
remaining elements of Hp). Again, from Lemma 3.6(1) the argument is
complete.

If g # —h, then for {z,y,2} = {—g9,—g + h,—g — h} or for {z,y,z} =
{=h,—h+g,—h— g}, we have |S;5,S.| > [S_g_n|+ 3|(Sg+nS—g—n) LS| =
(3p + 3 — |Sg4n| + [S—g—1r])/2; note that both sets are cosets that contain
—g— h and the union of the two cosets contains all element of Hy \ {0, g, h}
except for g + h. Since |Sg44| < p, it follows that |S,5,S.| > p+ 1 and
again from Lemma 3.6 (1) the argument is complete.

Suppose that |supp(71(S))| < 5. In this case there exists some h € H;
such that |Sp| > %|S| = %. If p > 5, by applying Lemma 3.6(3) to Sp,
then we can complete the proof; for p > 11 this is direct and for p = 7 we
observe that one has |Sy,| > 5. It remains to consider the special case p = 5.
Lemma 3.6 (3) can be applied if there exists some h € H; with |Sy| = 5.
Thus assume that |Sy| < 4 for all h € Hy. This implies |[supp(m1(S))| =5
since otherwise there would exist some h € H; with |Sp,| > 18/4 > 4.

Let {hi,...,hs} C Hp such that |Sp,| # 0 for each i € [1,5]. Since
g(C3) = 5, as recalled in the Introduction, there exist distinct i, j, k € [1, 5]
such that h; + hj + h, = 0. Now, |Sp;Sh;Sh,| = [S| — 2max{|Sy|: h €
Hy} > 18 —2-4 =10. Again we can apply Lemma 3.6 (1) to complete the
argument. Il
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Remark 3.9. For p sufficiently large a shorter argument is available.
There exists some h € Hy such that |S,| > £]S| = %. We can apply
Lemma 3.6 (3) if 3|S,| — 8 > p. This is true provided that 3 - % —8>p,
which is equivalent to % — %5 > 0. Hence for p > 55 we can complete the
argument in this way.

We now turn to the case o(m1(S)) # 0.

Proposition 3.10. Let p > 5 be a prime and let S be a squarefree sequence
of length 3p+3 over G = C3®C3y,. If o(m1(S)) # 0, then S has a zero-sum
subsequence of length 3p.

Proof. Let ¢ = o(m1(S)). Without loss of generality, one can assume that
|Sc| is maximal among all |Sy,| for h € Hy. The argument is the same as in
the proof of Proposition 3.8.

Notice that % = % = % and thus |S.| > 2tL. Let us show that

3
|Se| > %. If for each h € H; one has |Sy| = %, then o(m1(S)) =
1%1 >her, b Yet 3, b =0, which contradicts o(m1(S)) = ¢ # 0. Thus
|Sh| # p;r—l for some h € Hy, and thus |S,| > 1%1.

The strategy of the proof is again to apply Lemma 3.6. To this end we
need to find a subsequence of 71 (5) of length 3 that has sum c.

One possibility is to consider such a subsequence formed by elements
from the cyclic subgroup of C' = {—¢,0, ¢} only. Thus the subsequences of
this subgroup of length 3 which have sum c are: 0?c and (—¢)?0 and c?(—c).
This approach works if sufficiently many elements from the sequence S are
contained in this subgroup. This is detailed in case 1 below.

Another possibility is to consider subsequences of the form ch(—h) with
h ¢ C. While not phrased explicitly in this form, the distinction of subcases
in Case 2 corresponds to the number (counted without multiplicity) of
distinct subsequences of this form in 7 (5).

Let vo = |S0Sc5—¢.

Case 1: vo > p+3. If |S_¢| = 0, then |Sg| + |Sc| = ve > p + 3. Thus, as
S| < p, we have |Sg| > 3. Thus |Sc|+2|So| = |Se|+|So|+[So| > p+3+2 =
p + 5. Since |S¢| > pgil > 2, from Lemma 3.6 (2) applied with z = 0 and
y = ¢, the claim follows.

If |Sp| < 1, then |S_| > 2 and thus 2-[S¢|+|S—c| > ve —1+|S:| > p+4.
The claim follows from Lemma 3.6 (2), applied with z = ¢ and y = —c.

If |S_c| > 1 and |Sp| > 2, and one of |S.|+2[Sp| > p+4 or 2|S¢|+|S—¢| >
p + 4 are true, then the claim follows from Lemma 3.6(2); notice that
¢c+2-0=cand 2c+ (—c¢) = c¢. Thus, assume |Sc| + 2|Sy| < p + 3 and
2[Se| +|S—c| < p+3.

Summing the two inequalities, it follows that 3|S.|+2|So|+|S-| < 2p+6.
Since ve = |S¢| + |So| + [S—¢| > p + 3, it follows that vo = p + 3 and
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|Se| = [S—¢|. Since |S.| > =& p+3 , which is not an integer, it follows that
in fact |Sc| > %. Yet, then 2|Sc| —i— |S_¢| = 3|Sc| > p+ 4, and the claim
follows again.

Case 2: vo < p+2. The set H; \ C, can be partitioned into three subsets
of size two, each containing an element and its opposite, say H; \ C =
{91,—91, 92, —92, 93, —g3}. Possibly exchanging the role of g; and —g;, one
can assume that for each i € [1,3] one has |Sg,| > |S_g,|. In addition, by
renumbering if necessary, one can assume that |S_g, | > [S_g,| > [S_g,]-
Adopting this convention we get that [S_g,| > 0 implies that in fact all
six sequence Sy, for h € H; \ C are non-empty. However, note that we do
not know if, say, |Sg,| > [Sg,|; we only know [Sy,| > [S_g,| > [S_g,| and
Sual > 1S,

Case 2.1: |S_g,| > 0. Let 7 € [1,3] such that |S,,S_g,| is maximal among
‘Sglsfg1|v |S92S*92|’ and |S93S*93|' Thus |ng‘5*9i’ 2 W%UC
Hence

3p+3—vo

1Sel + 15] + 15— > =

18 = o+ 1+ (I8 - L)
Thus, |Sc| +[Sg,| +15-¢,| > p+1 with equality if and only if |S.| = °¢ and
1Sg,| + 15—g:| = ?W’%. If equality does not hold, then the claim follows
from Lemma 3.6 (1) as one has |S¢| + [Sg,| +|S—g,| > p+ 1.

Thus assume that one has equality, that is, assume |S.| = % and |Sg, |+
1S_g,| = W%. The latter implies that in fact Sy, | + |S_gj| = 3”“’%
for each j € [1, 3], while the former implies that |S.| = |S_c| = |So|.

Since |S¢| > p;rQ (recall the argument at the very beginning of the proof)
while ve < p + 2 (this is the assumption of Case 2) we get that in fact
ve = p+ 2, and thus |S.| = %. Furthermore, we can now infer that
1S, | +1S-g;| = 2p+1 for each j € [1,3]. Yet since |Sy;| < |S|, this is only
possible if |5y | = p+2 and [S_g;| = gl. Therefore, one has

c=o(m(9))

+2 —1
:p3 (c+(=c)+0+a +92+93)+L(—91—g2—93)

3
=g1+ g2 + gs3.

Now, we can apply Lemma 3.6 (1) with g1, g2, g3; note that Sy, | + |Sg,| +
|Sgs| = 3 % = p+ 2. (In fact it can be seen that g1 + g2 + g3 = ¢ is
impossible. To assert this would be another way to conclude the argument.)
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Case 2.2: |S_g,] > 0 and |S_g4;| = 0. One has Sy, S_4,54,5_4,| =3p+3—
¢ —1Sg5] > 3p+3—vc—|Se|. Let i € {1,2} such that |Sg,S_g,| is maximal
among |Sy, S_g, | and [Sg,S_g,|. Then,

3p+3—vec—|S +1—vo+|S

Now, since ve < p+ 2 and |S;| > pJg—Z > 2, it follows that |S¢| + |Sg,| +
|S_g,| > p+ 2 and one can apply Lemma 3.6 (1) with ¢, g;, —g;.

Case 2.3:|S_g,| > 0 and |S—_4,| = |S—g;| = 0. One has Sy, S_4,| = 3p+3—
Uc—|SgZSg3’ > 3p+3—vc—2-]S.|. Thus, |SC|+‘SQ1|+‘S_91’ > 3p+3—vc—
|Se|. Since ve < p+ 2 and |S¢| < p, it follow that [S¢| + [Sg,| +|S—g.| > p
with equality if and only if vo = p + 2 and |S.| = p. If equality does
not hold, the claim follows from Lemma 3.6 (1) with ¢, g1, —g¢1. Thus, we
assume vo = p + 2 and |Sc| = p. As 2|S.| + |S_c| > 2p > p+ 4, we have
that if |S_.| # 0, then the claim follows from Lemma 3.6(2) with x = ¢
and y = —c. If |S_.| = 0, then |Sy| = vc — |S¢| = 2 and the claim follows
from Lemma 3.6 (2) with z = 0 and y = ¢ as 2|Sp| + |Sc| = p + 4 and we
are done again.

Case 2.4:|S_g,| = [S—g,| = |S—gs| = 0. One has |Sg,S¢,5¢,;| = 3p+3—vc >
2p + 1 If |S.| = p, then we can assume vc < p+ 1 (see the argument at
the end of the preceding case). Thus, in this case |Sg,Sg,54,| > 2p + 2. It
follows that for each i € [1,3], one has |Sy,| > 2, and thus 2|S,| + |Sy,| >
24 (2p+2 — p) = p + 4, for each choice of distinct 7,5 € [1,3].

If [Se| < p—1, then it follows that for each ¢ € [1,3], one has|S,,| >
2p+1-2(p—1) = 3, and thus 2|Sy,[+[Sy,| > 3+(2p+1—(p—1)) = p+5,
for each choice of distinct 7,5 € [1, 3].

Thus, if there is a choice of 4, j such that 2g; + g; = ¢, applying Lem-
ma 3.6 (2), yields the claimed result as 2|.Sy,| + [Sg,| > p + 4.

By inspection we can see that indeed there always is such a choice. To
wit, for d an element in H; such that H; = (¢) @ (d) we note that

{{91, _91}7 {927 _92}7 {937 _93}} - {{d, —d}, {C+d7 —C—d}, {C—d, _C+d}}'

There are eight possibilities for the set {g1, g2, g3} (note that the order of
the elements is not relevant), and for each of these eight choices we find
a relation of the form 2-¢g; +1-¢; +0- g; = ¢ with {i,j,k} = {1,2,3}.
Specifically:

‘SC‘ + ‘ng| + |S_gi| Z

©e2-d+1-(c+d)+0-(c—d)=c
e1-d+0-(c+d)+2- ( c+d)=c

e 0-d+1-(—c—d)+2-(c—d)=c
e1-d+0-(—c—d)+2-(—c+d)=c
©2-(—=d)+0-(c+d)+1-(c—d)=c
¢ 0-(—d)+2-(c+d)+1:-(—c+d)=c
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ol - (—d)+2-(—c—d)+0-(c—d)=c
ol - (—d)+2-(—c—d)+0-(—c+d)=c
The claim is established. O

3.3. Proof of Theorem 3.1. To establish our main result we combine
the partial results obtained thus far.

By Lemmas 3.3 and 3.4 we know that g(Cs & Cs,) > 3n + 3 for each
n > 2.

Now, assume that p > 5 is prime. We want to show that g(C3 & Cs,) <
3p + 3. Let S be a squarefree sequence of length 3p + 3 over C3 @ C3,. We
need to show that S has a zero-sum subsequence of length 3p. We continue
to use the maps 7 and s introduce in the preceding subsection.

If o(m1(S)) # 0, then S has a zero-sum subsequence by Proposition 3.10.
If o(m1(S)) = 0, then S has a zero-sum subsequence either by Proposi-
tion 3.7 or by Proposition 3.8.

Thus, in any case, S has a zero-sum subsequence of length 3p and there-
fore g(C3 & C3p,) < 3p+3. In combination with the lower bound this implies
that indeed g(C3 & Csp) = 3p + 3 for each prime p > 5.

It remains to determine the value of g(Cs & Cg) and of g(Cs & Cy). We
know by Lemmas 3.3 and 3.5 that the respective values are lower bounds.
To show that these values are the exact values of the Harborth constant we
used an algorithm for determining the Harborth constant that we discuss
in the last section.

4. An algorithm for determining the Harborth constant and
some computational results

For the description of the algorithm we use the language of sets rather
than that of sequences, as the description feels slightly more natural. To
determine the Harborth constant of G means to find the smallest k& such
that each subset of G of cardinality k has a subset of cardinality exp(G)
with sum 0. We outline the algorithm we used below.

In the first step, all subsets of G of cardinality exp(G) with sum 0 are
constructed (see the discussion at the end of the section for some details
on this). If the subsets of cardinality exp(G) with sum 0 happen to be all
the subsets of G of cardinality exp(G), then this means that the Harborth
constant is exp(G). If not, then we consider all subsets of G that are direct
successors of a set of cardinality equal to exp(G) with sum 0; in other words,
we extend each subset of cardinality exp(G) with sum 0 in all possible ways
to a subset of cardinality exp(G) + 1. Thus, we obtain all subsets of G of
cardinality exp(G)+ 1 that contain a subset of cardinality exp(G) with sum
0. If the subsets of G obtained in this way are all subsets of G of cardinality
exp(G) + 1, then we have established that the Harborth constant of G is
exp(G) + 1. If not, then we continue as above until for some k the set of
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subsets of cardinality k obtained in this way coincides with the set of all
subsets of cardinality k of G.

Below we detail the steps of the algorithm a bit more. However, a more
complete investigation of the algorithmic problem will be presented else-
where, and we gloss over more technical aspects here. The source code is
available at https://github.com/Zerdoum/Harborth_constant.

4.1. The steps of the algorithm.

Input: A finite abelian group G of order n and exponent e.

[Initialization]: Let Z(e) denote the collection of all subsets of
G of cardinality e that have sum 0. Set k = e.

[Check]: If |Z(k)| = (}), then return g(G) = k and end. Else, incre-
ment k to k + 1.

[Extend] : Let Z(k) denote the collection of all subsets of cardinality
k of G that have subset that is in Z(k — 1). Go to [Check].

Output: g(G), the Harborth constant of the group G.

We add some further explanations and remarks.

e The group intervenes only in the step [Initialization]. (The rest
of the algorithm operates merely with subsets of a given ambient
set.) To find all subsets of cardinality e with sum 0, we browse all
subsets of cardinality e — 1. For each of these sets, we check if the
inverse of the e — 1 elements belongs to the set; if it does not, we
add it to the set to obtain a set of cardinality e and sum 0. For this
step the subsets of G are represented by a bitmap.

e For the latter parts of the algorithm in addition to the represen-
tations as bitmaps a judiciously chosen numbering of the subsets
of GG is used. In particular, the numbering is chosen in such a way
that for every subset its cardinal is at least as large as the cardinal
of all its predecessors. This is useful as in this way at each step,
our search can be efficiently limited to the (}) subsets of a given
cardinal k instead of having to consider all 2" subsets at each step.

e The subsets of cardinality k that are not in Z(k) are all the subsets
of G of cardinality k£ that have no zero-sum subset of e elements.
Thus, in the final step before the algorithm terminates we effectively
have all the subsets of G of cardinality g(G) — 1 that have no zero-
sum subset of e elements. That is, the algorithm can be immediately
modified to solve the inverse problem associated to g(G) as well.

e The algorithm is valid for any finite abelian group. With the hard-
ware at our disposal it is possible to compute the Harborth constant
for finite abelian groups of order up to about 45. The main limiting
factor is memory. In order to increase the size of accessible groups,
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we are currently working on a more efficient subset-representation
based on data compression.

e The fact that e is equal to the exponent of the group is not relevant
for the algorithm. It can be directly modified to compute related
constants.

We end by mentioning two further computational results.

Proposition 4.1.

(1) g(Cs @ Cs) = 13.
(2) g(Cg P 012) =15.

The former confirms the conjecture by Gao and Thangadurai, mentioned
in the introduction, g(C,, ® C,,) = 2n + 1 for even n in case n = 6. The
latter shows that g(Cs @ Cs,,) = 3n+ 3 also holds for n = 4, which supports
the idea that g(Cs @ Cs,,) = 3n + 3 might hold for n that are not prime as
well.
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