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A measure of transcendence
for singular points on conics

par Damien ROY

Résumé. Un point d’une conique définie sur Q est dit singulier s’il est trans-
cendant et admet de très bonnes approximations rationnelles, uniformément
en termes de la hauteur. Les nombres extrémaux et les fractions continues
sturmiennes sont les abscisses de tels points sur la parabole y = x2. Nous
établissons ici une mesure de transcendance de points singuliers sur les co-
niques définies sur Q qui, dans ces deux cas, améliore la mesure obtenue pré-
cédemment par Adamczewski et Bugeaud. L’outil principal est une version
quantitative du théorème du sous-espace de Schmidt due à Evertse.

Abstract. A singular point on a plane conic defined over Q is a transcen-
dental point of the curve which admits very good rational approximations,
uniformly in terms of the height. Extremal numbers and Sturmian continued
fractions are abscissa of such points on the parabola y = x2. In this paper we
provide a measure of transcendence for singular points on conics defined over
Q which, in these two cases, improves on the measure obtained by Adam-
czewski and Bugeaud. The main tool is a quantitative version of Schmidt
subspace theorem due to Evertse.

1. Introduction

In [1, §5.2], Adamczewski and Bugeaud established a measure of tran-
scendence for the extremal numbers from [9] as well as for the Sturmian
continued fractions from [3] (see also [2, §4]). The goal of this paper is
to prove the following sharper measure which applies to a larger class of
numbers.

Theorem 1. Let (ξ, η) ∈ R2. Suppose that 1, ξ, η are linearly independent
over Q, and that f(ξ, η) = 0 for some irreducible polynomial f(x, y) of
Q[x, y] of degree 2, not in Q[x]. Suppose furthermore that there exists a real
number λ > 1/2 such that the inequalities
(1.1) |x0| ≤ X, |x0ξ − x1| ≤ X−λ, |x0η − x2| ≤ X−λ
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have a non-zero solution (x0, x1, x2) ∈ Z3 for each large enough real number
X ≥ 1. Then ξ is transcendental over Q and there exists a computable
constant c > 0 such that, for each pair of integers d ≥ 3 and H ≥ 2 and
each algebraic number α of degree d(α) ≤ d and naive height H0(α) ≤ H,
we have
(1.2) |ξ − α| ≥ H−w(d) where w(d) = exp

(
c(log d)(log log d)

)
.

By the naive height H0(α) of an algebraic number α, we mean the largest
absolute value of the coefficients of its irreducible polynomial Pα in Z[x],
while its degree d(α) is the degree of Pα.

Fix (ξ, η) ∈ R2 and, for each X ≥ 1, define ∆(X) to be the minimum of
the quantities

δ(x) := max{|x0ξ − x1|, |x0η − x2|}
as x = (x0, x1, x2) runs through the points of Z3 with 1 ≤ x0 ≤ X. Then
the condition that (1.1) has a non-zero integer solution for a given X ≥ 1
is equivalent to asking that ∆(X) ≤ X−λ. By Minkowski convex body
theorem, we have ∆(X) ≤ X−1/2 for each X ≥ 1. We even have ∆(X) ≤
cX−1 with a constant c > 0 that is independent of X if 1, ξ, η are linearly
dependent over Q. However, if ξ and η are algebraic over Q and if 1, ξ, η are
linearly independent over Q, then Schmidt subspace theorem [11, Ch. VI,
Theorem 1B] implies that, for any given λ > 1/2, the inequality

|x0|2λ |x0ξ − x1| |x0η − x2| ≤ 1
has only finitely many solutions (x0, x1, x2) ∈ Z3 with x0 6= 0. This in turn
implies that ∆(X) ≥ cλX

−λ for each X ≥ 1 with a constant cλ > 0. Thus
any point (ξ, η) satisfying the hypotheses of the theorem has at least one
transcendental coordinate. However, if ξ is algebraic over Q, then f(ξ, y)
is a non-zero polynomial of degree at most two in y (because f(x, y) is
irreducible and depends on y), and therefore η is also algebraic, a con-
tradiction. So, ξ must be transcendental. This proves the first part in the
conclusion of the theorem. To establish the measure of transcendence (1.2),
we follow Adamczewski and Bugeaud in [1] by using a quantitative version
of Schmidt subspace theorem, namely that of Evertse from [6]. We recall
the latter result in Section 2 and postpone the proof of the theorem to
Sections 3 and 4.

Let γ = (1 +
√

5)/2 ' 1.618 denote the golden ratio. In [1], Adam-
czewski and Bugeaud consider the case where (ξ, η) = (ξ, ξ2) is a point
on the parabola y = x2. For such a point, the condition that 1, ξ, η are
linearly independent over Q amounts to asking that ξ is not rational nor
quadratic over Q. In that case, Davenport and Schmidt [5] showed the ex-
istence of a constant c > 0 such that ∆(X) ≥ cX−1/γ for arbitrarily large
values of X. In [9], we proved that, conversely, there exist transcendental
real numbers ξ, called extremal numbers, for which the pair (ξ, η) = (ξ, ξ2)
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satisfies ∆(X) ≤ c′X−1/γ for each X ≥ 1, with another constant c′ > 0.
Such pairs thus satisfy the hypotheses of the theorem for any choice of λ in
(1/2, 1/γ). Examples of extremal numbers include all real numbers whose
continued fraction expansion is the Fibonacci word on two distinct positive
integers [8]. In [3], Bugeaud and Laurent consider more generally the real
numbers ξ whose continued fraction expansion is a characteristic Sturmian
word on two distinct positive integers. When the slope of such a word has
itself bounded partial quotients (like the slope 1/γ of the Fibonacci word),
they determine an explicit and best possible value λ̂ > 1/2 such that the
pair (ξ, ξ2) satisfies the hypotheses of the theorem for each λ ∈ (1/2, λ̂). For
all extremal numbers ξ and all of the above characteristic Sturmian con-
tinued fractions ξ, Adamczewski and Bugeaud [1, §5.2] establish a measure
of transcendence of the form

|ξ − α| ≥ H−w(d) where w(d) = exp
(
c(log d)2 · (log log d)2) .

In [2, §4], they refine this measure for characteristic Sturmian continued
fractions ξ to w(d) = exp(c(log d)2 · log log d). Here we further remove the
square on the term log d. However this is still not enough to conclude that
those numbers ξ are S-numbers in the sense of Mahler, as one could expect,
since this requires a measure of the form |ξ − α| ≥ H−cd.

The numbers of Sturmian type introduced by A. Poëls in [7] include
all of the above-mentioned numbers, and provide further examples of real
numbers ξ for which the point (ξ, ξ2) satisfies the hypotheses of our theorem.
So, our measure (1.2) applies to these numbers as well.

In general, if a polynomial f ∈ Q[x, y] of degree 2 admits at least one
zero (ξ, η) with 1, ξ, η linearly independent over Q then f is irreducible over
Q and its gradient does not vanish at the point (ξ, η). Thus the equation
f(x, y) = 0 defines a conic in R2 with infinitely many points. In [10, Theo-
rem 1.2], we show that there are points (ξ, η) on that curve which satisfy the
hypotheses of the theorem for any choice of λ in (1/2, 1/γ) (and none for
any λ > 1/γ). So, if f /∈ Q[x], then ξ is transcendental and satisfies (1.2).

We do not know if the theorem applies to irreducible polynomials f of
Q[x, y] of degree deg(f) > 2. We do not even know if such a polynomial
could have a zero (ξ, η) which fulfills the hypotheses of the theorem. In
particular, we wonder if there are such “singular” points on the plane cubic
y = x3 and if so, what is the supremum of the corresponding values of λ.

2. The quantitative subspace theorem

To state the notion of height used by Evertse in [6], let Q̄ denote the
algebraic closure of Q in C, let K ⊂ Q̄ be a subfield of finite degree d over
Q, and let n ≥ 2 be an integer. For each place v of K, we denote by Kv the
completion of K at v, by dv = [Kv : Qv] the local degree of K at v, and
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by | · |v the absolute value on Kv which extends the usual absolute value
on Q if v is archimedean or the usual p-adic absolute value on Q (with
|p|v = p−1) if v lies above a prime number p. Then the absolute Weil height
of a non-zero point a = (a1, . . . , an) ∈ Kn is

H(a) =
∏
v|∞

(|a1|2v + · · ·+ |an|2v)dv/(2d) ∏
v-∞

max{|a1|v, . . . , |an|v}dv/d

where the first product runs over the archimedean places of K and the
second one over all remaining places of K. This height is called absolute
because, for a given non-zero a ∈ Q̄n, it is independent of the choice of a
number field K ⊂ Q̄ such that a ∈ Kn. Moreover it is projective in the
sense that H(a) = H(ca) for any c ∈ Q̄ \ {0}.

For any non-zero linear form `(x) = a1x1 + · · ·+anxn ∈ Q̄x1 + · · ·+Q̄xn,
we define the degree of ` to be the degree of the extension of Q generated by
all quotients ai/aj with aj 6= 0, and its height to be H(a1, . . . , an). Then [6,
Corollary] reads as follows.

Theorem 2 (Evertse, 1996). Let n ≥ 2 be an integer, let `1, . . . , `n be n
linearly independent linear forms in n variables with coefficients in Q̄, let
D be an upper bound for their degrees, and let H be an upper bound for
their heights. Then, for every δ with 0 < δ < 1, there are proper linear
subspaces T1, . . . , Tt of Qn with

t ≤ 260n2
δ−7n log(4D) · log log(4D)

such that every non-zero point x ∈ Zn with H(x) ≥ H satisfying

(2.1) |`1(x) · · · `n(x)| ≤ |det(`1, . . . , `n)|H(x)−δ

lies in T1 ∪ · · · ∪ Tt.

Note that the precise statement of [6, Corollary] deals only with primitive
points x ∈ Zn, namely non-zero integer points whose coordinates are rela-
tively prime as a set. However if a non-zero point x ∈ Zn satisfies (2.1), then
the primitive points y of which it is an integer multiple are also solutions
of (2.1), and so that restriction is not necessary.

3. A sequence of minimal points

Let the notation and the hypotheses be as in the statement of the theo-
rem. The function ∆: [1,∞) → R attached to the pair (ξ, η) is monotone
decreasing to zero, and constant in each interval between two consecutive
integers. Let X1 = 1 < X2 < X3 < · · · be its points of discontinuity
listed in increasing order, together with 1. For each index i ≥ 1, we set
∆i = ∆(Xi) and choose a non-zero point xi = (xi,0, xi,1, xi,2) ∈ Z3 such
that

xi,0 = Xi and δ(xi) = ∆i.
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Following Davenport and Schmidt in [4, 5], we say that (xi)i≥1 is a se-
quence of minimal points for (ξ, η). In this section, we establish some of its
properties starting with the most fundamental one.

Since ∆ is constant on [Xi, Xi+1) with ∆(X) ≤ X−λ for each large
enough value of X, there exists i0 ≥ 2 such that
(3.1) ∆i ≤ X−λi+1 for each i ≥ i0.

Lemma 3. For each i ≥ 1, the subspace Wi = 〈xi,xi+1〉Q of Q3 spanned
by xi and xi+1 has dimension 2 and {xi,xi+1} forms a basis of Wi ∩ Z3.
Proof. The points xi and xi+1 are primitive with xi+1 6= ±xi. So they span
a subspace of Q3 of dimension 2. For the second assertion, it suffices to
adapt the argument in the proof of [4, Lemma 2]. �

For any basis {x,y} of Wi ∩ Z3, the cross product x ∧ y is a primitive
element of Z3 which, by the lemma, is equal to ±xi ∧ xi+1. Upon defining
the height H(Wi) of Wi as the Euclidean norm of that vector, we obtain
(3.2) H(Wi) = ‖xi ∧ xi+1‖2 � Xi+1∆i � X1−λ

i+1

with implied constants that do not depend on i.
Lemma 4. Let I denote the set of indices i ≥ 2 such that xi−1, xi and
xi+1 are linearly independent over Q. Then I is an infinite set. For any
pair of consecutive elements i < j of I (in the natural ordering inherited
from N), we have Wi 6= Wj and Xj ≤ H(Wi)H(Wj).
Proof. The argument of [5, Lemma 5] shows that I is infinite. Let i < j be
consecutive elements of I. We have Wi−1 6= Wi = · · · = Wj−1 6= Wj , thus
Wi 6= Wj . Moreover the points xi ∧xi+1 = ±xj−1 ∧xj and xj ∧xj+1 being
orthogonal to xj and not parallel, their cross product is a non-zero integer
multiple of xj , and thus

Xj ≤ ‖xj‖2 ≤ ‖xi ∧ xi+1‖2 ‖xj ∧ xj+1‖2 = H(Wi)H(Wj). �

Lemma 5. For each i ≥ 1, we have Xλ
i+1 � Xi.

Proof. Let ϕ ∈ Q[x0, x1, x2] be the homogeneous quadratic form for which
f(x, y) = ϕ(1, x, y). We claim that ϕ(xi) 6= 0 for each sufficiently large i.
If we take it for granted then, for each of those i, we have 1/c ≤ |ϕ(xi)|
where c is a common denominator of the coefficients of ϕ. As ϕ(1, ξ, η) = 0,
we also have |ϕ(xi)| � ‖xi‖2∆i � XiX

−λ
i+1. Combining the two estimates

yields Xλ
i+1 � Xi.

The claim is clear if f has at most one zero in Q2. Otherwise, [10,
Lemma 2.4] shows that there exist µ ∈ Q× and T ∈ GL3(Q) such that
µ(ϕ ◦ T )(x0, x1, x2) = x0x2 − x2

1. Then T−1(1, ξ, η) is proportional to Θ =
(1, θ, θ2) for some θ ∈ R and, for each i ≥ 1, the point T−1(xi) is propor-
tional to a primitive integral point yi = (yi,0, yi,1, yi,2) with ‖yi‖2 � Xi
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and ‖yi ∧ Θ‖2 � ∆i. We now argue as Davenport and Schmidt in the
proof of [5, Lemma 2], omitting details. If ϕ(xi) = 0 for some i, then
yi = ±(m2,mn, n2) for some coprime integers m,n with |m| � X

1/2
i and

|mθ − n| � X−λi+1X
−1/2
i . However, if i ≥ 2, then yi−1 is not proportional

to yi and so we have myi−1,j+1 6= nyi−1,j for some j ∈ {0, 1}. For that j,
we find that 1 ≤ |myi−1,j+1 − nyi−1,j | � X

1/2−λ
i and so i is bounded from

above. �

Lemma 6. Let θ > (1−λ)/(2λ− 1). Then, there exists an element i1 of I
with i1 ≥ i0 such that, for any pair of consecutive elements i < j of I with
i ≥ i1, we have H(Wi) < H(Wj) and Xj+1 < Xθ

i+1.

Proof. Let i < j be consecutive elements of I with i ≥ i0. In the situation
where H(Wj) ≤ H(Wi), Lemma 4 together with (3.2) yields

Xi+1 ≤ Xj ≤ H(Wi)H(Wj) ≤ H(Wi)2 � X
2(1−λ)
i+1 .

Since 2(1 − λ) < 1, this cannot hold when i is large enough. For such i,
we thus have H(Wi) < H(Wj). Combining Lemmas 4 and 5 with (3.2), we
also find

Xλ
j+1 � Xj ≤ H(Wi)H(Wj)� X1−λ

i+1 X
1−λ
j+1 ,

thus X2λ−1
j+1 � X1−λ

i+1 and so Xj+1 < Xθ
i+1 if i is large enough. �

4. Proof of the main theorem

In continuation with the preceding section, we suppose that ξ, η, f(x, y)
and λ are as in the statement of the theorem. We choose θ and i1 as in
Lemma 4, and list in increasing order i1 < i2 < i3 < · · · the elements of I
that follow i1. Then, Wi1 ,Wi2 ,Wi3 , . . . are subspaces of Q3 of dimension 2
with strictly increasing heights and so they are pairwise distinct. This will
be important in what follows. We also choose δ ∈ (0, 1/2) such that
(4.1) 6δ < 2λ− 1.
All constants C1, C2, . . . that appear below depend only, in a simple way,
on these data.

Since f(x, y) has degree 2 and ∂f/∂y 6= 0, we deduce from the linear
independence of 1, ξ, η over Q that |∂f/∂y(ξ, η)| 6= 0. Thus, by the implicit
function theorem, there exist C1 > 0 and C2 ≥ 1 such that, for any α ∈ C
with |ξ − α| ≤ C1, we can find β ∈ C satisfying
(4.2) f(α, β) = 0 and |η − β| ≤ C2|ξ − α|.

Fix integers d ≥ 3 and H ≥ 2 and an algebraic number α with degree
d(α) ≤ d and naive height H0(α) ≤ H. We need to provide a lower bound
for
(4.3) ε := |ξ − α|.
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Suppose first that ε ≤ C1 and choose β ∈ C as in (4.2). Since f(x, y) is
irreducible over Q and depends on y, it is relatively prime to the irreducible
polynomial Pα(x) of α and so β is a root of their resultant in x. Thus β is
an algebraic number with

(4.4) d(β) ≤ 2d and H0(β) ≤ Cd3H2.

Consider the linear forms with algebraic coefficients

(4.5) `1 = x0, `2 = x0α− x1 and `3 = x0β − x2.

By the above they have degree at most 2d. To estimate their heights, we
note that, for any algebraic number γ, we have

H(1, γ) ≤
√

2M(γ)1/d(γ) ≤ C4H0(γ)1/d(γ) ≤ C4H0(γ),

where M(γ) denotes the Mahler measure of γ. Using this crude estimate
together with (4.4), we find that the linear forms (4.5) have heights at most

max{H(1, α), H(1, β)} ≤ C4 max{H,Cd3H2} ≤ HC5d,

where the last inequality uses H ≥ 2. By Theorem 2 of Evertse, there exist
proper linear subspaces T1, . . . , Tt of Q3 with

(4.6) t ≤ 2540δ−21 log(8d) · log log(8d) ≤ C6(log d)(log log d)

such that every non-zero point x = (x0, x1, x2) ∈ Z3 with H(x) ≥ HC5d

satisfying
|x0| |x0α− x1| |x0β − x2| ≤ H(x)−δ

lies in T1 ∪ · · · ∪ Tt.
Let ` ≥ 1 be the smallest integer such that

(4.7) Xi`+1 ≥ max{HC5d, (t+ 1)1/δ, 41/δC7} where C7 = 3 + |ξ|+ |η|.

The subspaces Wi` , . . . ,Wi`+t
of Q3 being all distinct, there is at least one

index j among {i`, . . . , i`+t} for which Wj /∈ {T1, . . . , Tt}. Fix such a choice
of j. Since Wj has dimension 2, it is not contained in any Ti. Now, consider
the points x = axj + xj+1 with a ∈ Z. Since any two of them span Wj ,
each Ti contains at most of one these points. Thus there is at least one
choice of a with 0 ≤ a ≤ t for which x /∈ T1 ∪ · · · ∪ Tt. Fix such a choice
of a and denote by (x0, x1, x2) the coordinates of the corresponding point
x = axj + xj+1. Since {xj ,xj+1} is a basis of Wj ∩Z3 (see Lemma 3), this
point x is primitive and so H(x) = ‖x‖2 is its Euclidean norm. This yields
H(x) ≥ x0 ≥ Xj+1 ≥ Xi`+1 ≥ HC5d and thus, by the result of Evertse, we
must have

(4.8) |x0| |x0α− x1| |x0β − x2| > ‖x‖−δ2 .
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Using (3.1), we find

|x0| = x0 ≤ Xj + tXj+1 ≤ (t+ 1)Xj+1

max{|x0ξ − x1|, |x0η − x2|} ≤ ∆j + t∆j+1 ≤ (t+ 1)∆j ≤ (t+ 1)X−λj+1.

By (4.7), we also have t+ 1 ≤ Xδ
i`+1 ≤ Xδ

j+1, thus these inequalities imply

|x0| ≤ X1+δ
j+1 and max{|x0ξ − x1|, |x0η − x2|} ≤ X−λ+δ

j+1 .

Since δ < 1/2 < λ, this yields

‖x‖2 ≤ |x0|+ |x1|+ |x2| ≤ C7|x0| ≤ C7X
2
j+1,

where C7 is as in (4.7). Using (4.2) and (4.3), we also deduce that

max{|x0α− x1|, |x0β − x2|} ≤ |x0|max{|ξ − α|, |η − β|}+X−λ+δ
j+1

≤ C2X
1+δ
j+1 ε+X−λ+δ

j+1

≤ 2 max
{
C2X

1+δ
j+1 ε, X

−λ+δ
j+1

}
.

Substituting these estimates into (4.8), we obtain

(4.9) 4X1+δ
j+1 max

{
C2X

1+δ
j+1 ε, X

−λ+δ
j+1

}2 ≥ C−δ7 X−2δ
j+1 .

Suppose first that C2X
1+δ
j+1 ε < X−λ+δ

j+1 . Then, after simplifications, we ob-
tain, by virtue of the choice of δ in (4.1),

4Cδ7 ≥ X2λ−1−5δ
j+1 > Xδ

j+1 ≥ Xδ
i`+1,

in contradiction with (4.7). So, the inequality (4.9) implies that

(4.10) ε ≥ 2−1C−1
2 C

−δ/2
7 X

−(3+5δ)/2
j+1 ≥ X−C8

j+1 .

We now use Lemma 6 to estimate Xj+1 from above. Since j ∈ {i`, . . . , i`+t},
we obtain

Xj+1 ≤ Xi`+t+1 ≤ Xθt

i`+1.

If ` = 1, then (4.10) yields

ε ≥ X−C8θt

i1+1 ≥ 2−C9θt ≥ H−C9θt
.

Otherwise, by the choice of ` in (4.7), we have

Xi`−1+1 < max{HC5d, (t+ 1)1/δ, 41/δC7} ≤ HC10d.

Since Xi`+1 ≤ Xθ
i`−1+1, a similar computation then gives

ε ≥ X−C8θt+1

i`−1+1 ≥ H−C8C10dθt+1
.

So, in both cases, we obtain |ξ − α| = ε ≥ H−w(d) where

w(d) = C11d θ
t ≤ exp

(
C12(log d)(log log d)

)
,
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using the upper bound for t in (4.6). Finally, in the case where ε ≥ C1,
this remains true at the expense of replacing C12 by a larger constant if
necessary.
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