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Biases in prime factorizations and Liouville
functions for arithmetic progressions

par PETER HUMPHRIES, SNEHAL M. SHEKATKAR et TIAN AN
WONG

RESUME. Nous introduisons un raffinement de la fonction classique de Liou-
ville pour les nombres premiers en progressions arithmétiques. En utilisant
ces fonctions, nous montrons que ’apparition de nombres premiers dans la
factorisation des entiers dépend de la progression arithmétique a laquelle
ces nombres premiers appartiennent. Encouragés par des explorations numé-
riques, nous sommes amenés a considérer des analogues de la conjecture de
Polya et a prouver des résultats liés aux changements de signe des fonctions
de sommation associées.

ABSTRACT. We introduce a refinement of the classical Liouville function to
primes in arithmetic progressions. Using this, we show that the occurrence of
primes in the prime factorizations of integers depends on the arithmetic pro-
gressions to which the given primes belong. Supported by numerical tests, we
are led to consider analogues of Pélya’s conjecture, and prove results related
to the sign changes of the associated summatory functions.

1. Introduction

1.1. The Liouville function. The classical Liouville function is the com-
pletely multiplicative function defined by A(p) = —1 for any prime p. It can
be expressed as A(n) = (—1)*") where Q(n) is the total number of prime
factors of n. One sees that it is —1 if n has an odd number of prime factors,
and 1 otherwise. By its relation to the Riemann zeta function

> An 2s
Z() ¢(2s)
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n=1
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the Riemann hypothesis is known to be equivalent to the statement that

(1.2) L(z) ==Y A(n) = O(a*/*)

n<x

for any € > 0 (see, for example, [10, Theorem 1.1]); whereas the prime
number theorem is equivalent to the estimate o(x). Indeed, the behaviour
of the Liouville function, being a close relative of the more well-known
Mobius function, is strongly connected to prime number theory. Also, we
note that by the generalized Riemann hypothesis, one also expects (1.2) to
hold for partial sums of A\(n) restricted to arithmetic progressions, with an
added dependence on the modulus.

In this paper, we introduce natural refinements of the Liouville function,
which detect how primes in given arithmetic progressions appear in prime
factorizations. We find that these functions behave in somewhat unexpected
ways, which is in turn related to certain subtleties of the original Liouville
function.

Define €2(n;q, a) to be the total number of prime factors of n congruent
to a modulo ¢, and

(1.3) A(n;q,a) = (_1)Q(n;q,a)

to be the completely multiplicative function that is —1 if n has an odd
number of prime factors congruent to a modulo ¢, and 1 otherwise. They
are related to the classical functions by

q—1 q—1
(1.4) A(n) = [[ Mrig.a), Qn) =3 Qniq,a).
a=0 a=0

Using this we study the asymptotic behaviour instead of

(1.5) L(z;q,a) = Y An;q,a),

n<x
hence the distribution of the values of A(n;¢q,a). Also, we will be interested
in r-fold products of A(n;q,a),
(1.6) Ansq,an, ... ar) = [[ AMnsq,a:)

i=1

where the a; are distinct residue classes modulo ¢, with 1 < r < ¢, and
define Q(n;q,a1,...,a,) and L(z;q,ay,...,a,) analogously.

1.2. Prime factorizations. Given a prime number p, we will call the
parity of p in an integer n to be even or odd according to the exponent of
p in the prime factorization of n. This includes the case where p is prime
to m, in which case its exponent is zero and therefore having even parity.
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Landau [13] proved that the number of n < z containing an even (resp.
odd) number of prime factors both tend to

(1.7) S+ Olwe*VIEF)

with x tending to infinity, and ¢ some positive constant. In fact, he showed
that this is equivalent to the prime number theorem. Pélya [20] asked
whether L(z) is nonpositive for all x > 2. A negative answer to this ques-
tion was provided by Haselgrove [8], building on the work of Ingham [11],
using the zeroes of ((s); in fact, the sum must change sign infinitely often,
with the first sign change subsequently computed to be around 9 x 108. A
similar problem was posed by Turdn on the positivity of partial sums of
A(n)/n, which was also shown to be false, with the first sign change taking
place around 7 x 103 [4, Theorem 1].

On the other hand, by the equidistribution of primes in arithmetic pro-
gressions, one might guess that the number of n < x containing an even
(respectively odd) number of prime factors p = a (mod g), for a fixed arith-
metic progression would be evenly distributed over residue classes coprime
to ¢. By our analysis of A\(n; ¢, a), we find this not to be the case. Our first
theorem shows a quantitative difference in taking all residue or non-residue
classes.

Theorem 1.1. Given any q > 2, let ai,...,a,, be the residue classes
modulo q such that (a;,q) = 1, and by, .. -y bg—p(q) the remaining residues
classes. Then
(1.8) S Aniq a1, .., auy) = o),

n<z

for & > 1. Assuming the Riemann hypothesis, (1.8) is O.(z'/?*¢) for all
€ > 0. On the other hand,

k
(1.9) S A by b = | [T 2 | 2 + o(a)

n<lz i=1pl|b; p+ 1

for any subset of residue classes by,...,b

a—plq) Of size k.

In fact, it is straightforward to show that the estimate O.(z'/2%€) is
equivalent to the Riemann hypothesis, as in the classical Liouville function.

Definition 1.2. For general moduli, taking r = ¢(q)/2, there exists a
choice of ai,...,a, coprime to g, we have that A(n;q,a1,...,a,) = xq(n)
for some non-trivial real Dirichlet character mod ¢, whenever (n,q) = 1.
We will call these Liouville functions character-like', and its complement
to be A(n;q,b1,...,bq—r).

1See also [3, p. 2].
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FIGURE 1.1. L(z;4,3) and L(x;4,1).

By multiplicativity, our function A(n; g, a1, ..., a,) is defined by its values
on primes less than ¢, so it suffices to set these values to be equal to that of
the desired non-trivial real Dirichlet character x,. In this case, we can pre-
dict the behaviour of the function and its “complement”, so to speak. For
example, the A(n;4, 3) resembles the nonprincipal Dirichlet character mod-
ulo 4, and its partial sums are shown to be positive, whereas the A(n;4,1)
turns out to be related to the classical A(n) restricted to arithmetic pro-
gressions modulo 4 (cf. Proposition 3.5). The next theorem describes the
character-like case and its complement.

Theorem 1.3. Fiz ¢ > 2, and let r = ¢(q)/2. Also let ai,...,aq—r and
bi,...,b. be chosen as in Definition 1.2. Then

(1.10) Z An;q,a1,...,aq—) = O, (z1/%7)
n<x

is equivalent to the generalized Riemann hypothesis for L(s,xq); uncondi-
tionally, it is o(z). On the other hand,

(1.11) Z)\(n;q,bl,...,br) = O(log ).
n<x

if there is only one nonprincipal real Dirichlet character modulo q; if there
is more than one, then we have only o(x'~%) for some § > 0.
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FIGURE 1.2. Combinations of L(x;5,*, ).

Moreover, we show in the next theorem that when r # ¢(q)/2, and
(ai,q) = 1, the behaviour of A\(n;q,ay,...,a,) is determined. Otherwise,
the behaviour of \(n;q, a1, ..., a,) seems more difficult to describe precisely,
and in this case it is interesting to ask the same question as Pélya did for
A(n). For example, with modulus 5 we observe as in Figure 1.2, that except
for the character-like function and its complement, the partial sums tend to
fluctuate with a positive bias, except for A(n; 5,1, 2), which already changes
sign for small z. The remaining three remain positive up to < 107, which
leads us to ask whether they eventually change sign.

Theorem 1.4. Let aq,...,a, be distinct residue classes modulo q, coprime
to g. Then for r # ¢(q)/2,¢(q),

(112) Z)‘(n;qaala"'7a7“) :bO * +0 v N

9__2r_ 3__2r_
n<z (log x) »(q) (log x) »(q)

where by is an explicit constant such that by > 0 if 2r < ¢(q) and by < 0
if 2r > p(q). If r = v(q)/2 and X(n;q,a1,...,a,) is not character-like, we
have again

(1.13) Z AN, a1, 5 aux)) = o(z),

n<x
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for x > 1. Assuming the Riemann hypothesis, it is in fact Oe(x1/2+€) for
all € > 0.

The proof of the first estimate essentially follows the method of Karat-
suba for the Liouville function [12], which is a simple variant of the Selberg—
Delange method.

The most intriguing aspect of our new family of Liouville-type functions,
in light of the conjectures of Pélya, Turan, and even Mertens, is distin-
guishing when the partial sums of A(n;q,ay,...,a,) have any sign changes
at all and furthermore whether infinitely many sign changes must follow.
We give conditional answers to this question in Section 4 in the particu-

lar case where r = ¢(q)/2 and A(n;q,ay,...,a,) is the complement to a
character-like function. Our main result concerns the logarithmic density
1 dx
1.14 o(P):= li —
(1.14) (P) Koo log X / x’
PA[1,X]
of the set

(1.15) P = {a: €[1,00) : Z Ansq,at,...,a4—y) > O} .

n<zx

To study this, we must assume the following conjecture.

Definition 1.5. We say that L(s,y,) satisfies the linear independence
hypothesis if the set

(1.16) {720:L<;+i’y,xq> :0}

is linearly independent over the rationals.

In particular, the linear independence hypothesis implies that
L(1/2,x4) # 0 and that every zero is simple.

Theorem 1.6. Assume the generalized Riemann hypothesis and linear in-
dependence hypothesis for L(s, xq), and that the bound

1
(1.17) > <71’
0<"/§T| /(p7 Xf])‘Z
holds for some 1 <0 < 3 — V3. Then
1
(1.18) 5 So(P) <1,

That is, the limiting logarithmic density of P is at least 1/2 but strictly
less than 1, so that “most” of the time, }°, ., A(n;q,a1,...,aq—,) is non-
negative, but nevertheless it is negative a positive proportion of the time.
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Remark 1.7. The requirement that § < 3 — /3 may be weakened to 0 < 2;
cf. [17, Remark 3]. Conjecturally, one expects the exponent § = 1 to be
both valid and sharp; cf. [9, Conjecture 1.3].

1.2.1. Auxiliary results. We also prove some results on distribution of
total number of primes in arithmetic progression; the analogues Q(n; ¢, a)
and w(n;q,a) are more well-behaved, though we still observe some slight
discrepancy in the implied constants in the growth of the partial sums, with
respect to the residue class. For example, we show that

(1.19) > w(niq,a) = 90(1(])azlog logz + g(q,a)x + o(x)

for some absolute constant g(g, a) (see Proposition 2.6), and that w(n;q, a)
is distributed normally, as an application of the Erdés—Kac theorem.

n<x

1.2.2. Mixed residue classes. Finally, we mention the “mixed” case,
where A(n;aq,...,a,) involves both residue classes that are and are not
coprime to ¢q. Numerical experiments seem to suggest that they do affect
the behaviour in small but observable ways; in particular, we observe that
adding several residue classes may cause a sum to fluctuate more. For ex-
ample, in Figure 1.3 below, the addition of residue classes 2 and 3, which
divide 6, affect the fluctuations in the sum in a nontrivial manner. In fact,
while we know that L(x;6,1) is asymptotically positive, L(z;6,1,2,3) al-
ready exhibits multiple sign changes.

1.2.3. Owutline. This paper is organized as follows. In Section 2 we de-
velop basic properties of the Liouville function for arithmetic progressions,
including brief discussions of the analogue of the Chowla conjecture, and
the distribution of the primes in arithmetic progressions in a given prime
factorization.

In Section 3, we study the parity of the number of primes in arithmetic
progressions appearing in a given prime factorization, and prove Theo-
rems 1.1, 1.3 and 1.4.

In Section 4, we study the occurrence of sign changes and prove Theo-
rem 1.6.

2. First estimates

2.1. Basic properties. We develop some basic properties of the Liouville
function for arithmetic progressions, analogous to the classical results. Us-
ing this, we prove a basic estimate for the distribution of A(n;q,a). Most
of the statements in this section will be proven for A(n;q,a), and we leave
to the reader the analogous statements for products A\(n;q, a1, ...,a,).

In [3], the authors consider any subset A of prime numbers, and define
Q4(n) to be the number of prime factors of n contained in n, counted with



8 Peter HUMPHRIES, Snehal M. SHEKATKAR, Tian An WoONG

1000

750

=
g
5 500
=~ 250
0
0 20000 40000 60000 80000 100000
~ 200
-
©
3 100
=1
0
0 20000 40000 60000 80000 100000
= 100
~
-
S 0
e
=
-100
0 20000 40000 60000 80000 100000

FiGURE 1.3. Mixing residue classes.

multiplicity. They then define a Liouville function for A to be As(n) =
(—1)QA("), taking values —1 at primes in A and 1 at primes not in A, and
show, for example, that A4 (n) is not eventually periodic in n. Our functions
can be viewed as particular cases of A4(n) where A is a set of primes in a
given arithmetic progression. This by [3, Theorem 1], we infer that A(n; ¢, a)
is not eventually periodic.

Secondly we note that its partial sums are unbounded from the Erdés
discrepancy problem,? but we will also prove this more directly below.

2.1.1. Divisor sum. Recall that the classical Liouville function satisfies
the identity

Z Md) = 1 if n is a perfect square,

(2.1) |
0 otherwise.

din
The following proposition gives the analogue of this identity.
2This may seem like big hammer to invoke, but it is worth noting that our A\(n;q,a) have

as special cases the “character-like” multiplicative functions considered in [3], whose O(logx)
growth constitute near misses to the problem.
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Lemma 2.1. Write n = ning with n1 not divisible by any prime p = a
(mod q) dividing n. Then we have

(22)  S(nig,a

Z d: T(n1) if ng is a perfect square,
e a 0 otherwise.

where T(n) is the divisor function.

Proof. By multiplicativity, it suffices to prove this when n = p" is a prime
power. If p = a (mod ¢), then

-
(2.3) S(p";q,a ZAP% => (-1,

=0
which is 1 is r is even, so that p” is a perfect square, and is 0 otherwise. If
p # a (mod ¢q), on the other hand, then it is trivially true that S(p";q,a) =
r+1=r7(p"). O

2.1.2. Awverage orders. Call a subset A of primes to have sifting density
K, if

(2.4) 3 08P _ log a4+ O(1).

p<z

peA
where 0 < k < 1. In particular, we will take A to be the set of primes
congruent to a certain a modulo g. For example, we have k = 0 if (a,q) > 1,
and for (a,q) = 1 with ¢ odd, we have 0 < kK < % with equality only when

elq) = 2.

Proposition 2.2. We have for any a,q such that k < % and (a,q) =1,

(2.5) S Aniq.a) = (1+ 0(1))(1(;;;%

where C\, > 0 is an explicit constant depending on a,q and K, and for k > %,

(2.6) Z)\nq, ) = o(z).

n<x

Proof. This follows from [3, Theorem 5|, as an application of the
Liouville function for A, choosing A to be a set of primes in arithmetic
progression. O

Remark 2.3. More generally, if we take A to consist of several residue classes
a; modulo ¢, then x will also vary accordingly according to the number of
residue classes prime to ¢ that are taken. In this case, we may replace the
sum over A(n;q,a) by A\(n;q,a,...,a,) to obtain similar estimates.
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We also record the following estimates for the classical Liouville function
as a benchmark: The average order 3.,., A(n) = O(ze “1VI°eT) is well
known, and by the same method of proof of [6, Theorem 2|, we have that

x x

2.7) An) = —er—2 40 <> |
n§<:x (10g 1’) »(q) +1 (log x) »(a) +2
nepP

where P is a set of r residue classes coprime to ¢ > 2 and ¢y, ¢y > 0.

In particular, we observe that when \(n) is restricted to arithmetic pro-
gressions (containing infinitely many primes), its partial sums tend to be
negative. One can also show that its limiting distribution is negative using
its relation to Lambert series; see [5, Theorem 1].

2.2. Chowla-type estimates. One may also consider a variant of the
Chowla conjecture for the Liouville function. Fix a, q relatively prime. Given
distinct integers h1, ..., hy, fix a sequence of signs €¢; = £1 for 1 < j < k.
Then one would like to know whether

k
(2.8) Z H)\(n—i—hi;q, a) = o(x).

n<lzi=1

for all k. In particular, the number of n < x such that A(n+j;¢,a) = ¢; for
alll < j < kis (1/2F + o(1))z. Roughly, this tells us that A(n;q,a) takes
the value 1 or —1 randomly. We then have the following evidence towards
the conjecture.

Proposition 2.4. For every h > 1 there exists §(h) > 0 such that

(2.9) % > An;g,a)A(n + 154, a)

n<zx

<1-4(h)

for all sufficiently large x. Similarly,

(2.10) Z An;q,a)A(n+ 1;q,a)A\(n+2;q,a)] <1 —0(h)

1
z n<lz

Proof. This follows as an application of [16, Theorem 1] to deduce the ana-
log of [16, Corollary 2], in our case specializing the multiplicative function
f(n) to be A(n;q,a) instead of \(n). O

Remark 2.5. We also note that as an application of [16, Corollary 5] on sign
changes of certain multiplicative functions, there exists a constant C' such
that every interval [z,z + C'y/z] contains a number with an even number
of prime factors in a fixed arithmetic progression @ modulo ¢, and another
one with an odd number of such prime factors.
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2.3. The number of prime factors. Recall the functions w(n) counting
the number of distinct prime factors of n, and £2(n) counting the total num-
ber of prime factors of n. As in (1.4), we may define the analogous functions
w(n;q,a) and Q(n; ¢, a) counting only primes congruent to a modulo g, so
that

q—1 q—1
(2.11) w(n) =Y wnig,a), Qn)=3 QUnig,a).
a=0 a=0
Proposition 2.6. There ezists an absolute constant g(q,a) such that
1
(2.12) Z w(n;q,a) = ——zxloglogz + g(q,a)x + o(x).
= ©(q)

Proof. Write

(2.13) Z w(n;q,a) = Z Z 1= Z Z 1

n<w n<w pln p<z m<z/p
p=a (mod q) p=a (mod q)

which is

x x xT

2.14 E —+0 E 1] = E -+0 ( )

21 p<z P p<z p<o P log
p=a (mod q) p=a (mod q) p=a (mod q)

by the prime number theorem. Now, using Mertens’ theorem for primes in
arithmetic progressions for (a,q) =1 [19, Corollary 4.12], we have

1 1
2.15) - = loglogx + g(q,a) + o(1
( %;c R0 JF o
p=a (mod q)

where ¢(q,a) is an absolute constant. Applying this yields the propo-
sition. 0

Note that this constant has been studied in greater detail, for exam-
ple [14, 15, 18], which may be useful in further analysis of the partial sums
of w(n;q,a).> One may also consider higher moments, such as

1 2 1
(2.16) ng;c (w(n, q,a) e log log ;v) (2 zloglogz + O(x)
by expanding the square and applying simple estimates.

Moreover, since w(n; ¢, a) is additive, we may apply the Erdés—Kac the-
orem [7], which applies to strongly additive functions (additive functions f
such that f(mn) = f(m)+ f(n) for all natural numbers m,n, and |f(p)| < 1
for all primes p) to immediately obtain the following statement.

3We thank the referee for pointing this out to us.
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FIGURE 2.1. Distribution of w(n;q,a).

Theorem 2.7 (Erdés—Kac). Fiz a modulus q and constants A, B € R.
Then

w(n;q,a) — ﬁ log log
1

7@ loglog x

(2.17)  lim l# n<xz:A<

T—00 I

—12/244.

1 B
= — e
\/ZW/A

Hence w(n;q, a) is also normally distributed.

3. Parity of prime factors

We now turn to the average behaviour of our A(n;¢,a). A refinement of
Poélya’s problem leads us to ask: given the prime factorization of a composite
number n, do the primes in arithmetic progressions tend to appear an even
or odd number of times? As described in the introduction, we show that
one encounters biases, namely, that the answer depends strongly on the
arithmetic progression chosen.
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3.1. Dirichlet series. Since \(n;q, a) is completely multiplicative, we can
form the Dirichlet series generating function

o~ Alnig,a 1-p*
B Dga) =Y 0 T[T
n=1 p=a (mod q) p

using the Euler product in the case (a,q) = 1, and by the trivial bound
converges absolutely for #(s) > 1. Taking the product over all such a, we
obtain

1 —|—p
(3-2) II D(sig,a) =¢(2s I
a (mod q) p\q
(a,9)=1

and we see that in the region $(s) > 0, the expression has a pole of order
»(q)—2 at s = 1 and a simple pole at s = % Moreover, if we include residue
classes @ modulo ¢ such that (a,q) > 1, for which D(s; g, a) is equal to ((s)

up a finite number of factors, we have

q—1
(3.3) 1 D(s;q,a) = ¢(25)¢(s)7 2,
a=0
generalizing the classical formula with ¢ = 1.
Similarly, for products A(n;q,ai,...,a,) with (a;,q) = 1 for each i, we
have

—S

(3.4) D(s;q,aq,.. H H 1—p

i=1p=a; ( modq)1+p_s

and
1+p%
(3.5) D(s;q,aq,...,a,)D(s;q,a,... ,a;(q)_r) = ((2s) H =t
plq
where af, ..., a:a( g)—r Te the remaining residue classes coprime to q.

It is known that for (a,q) = 1, the Euler product

(3.6) Fu(s)= ]

p=a (mod q)

1—p—s

converges absolutely for R(s) > 1, and has analytic continuation to R(s) >
1—C/logt for |t| < T, and T' > 10 [12, p. 212]. It can be expressed as

(3.7) [ = ()T,
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where G,(s) is given by

(38) L Z X(a) <]0g L(S, X) + Z i M)

SD(q) X (mod q) P m=2 mpms
XF#X0

1
(3.9) +—— log(1—p~%).
wla) o
Even though A(n;q,a) is not eventually periodic, it is still related to

Dirichlet characters by the following identity.

Proposition 3.1. Let ¢ > 2. Given any nonprincipal real Dirichlet char-

acter xq modulo q, there is a combination of residue classes aq,...,a, such
that
1
(3.10) D(s;q,a1,...,a,) = L(S,Xq)H T
-Dp
plg
Proof. Given x4, we can choose a combination of residue classes a1, ..., ar,
coprime to ¢ for which x(a;) = —1, so that A(n;q,a1,...,a,) = xq(n)
whenever (n,q) = 1. Then we may express the Dirichlet series as
1

3.11 D(s;q,a1,...,a,) =
( ) ( T) 1;[ 1—)\(]7;(],0,1,...7@7-)])_8

1 1
(3.12) =11 11 :

1 — —S 1 — /=S
pig L~ XaP)PT* L —p

and the result follows. O

3.2. The odd primes and 2. The first natural refinement is to ask what
is the parity of (i) the odd primes and (ii) the prime 2 in prime factoriza-
tions. We have:

Proposition 3.2. Assuming the Riemann hypothesis,
(3.13) > A12,1) = O (a/2T)
n<x
for all e > 0, while unconditionally this sum is o(x). On the other hand,
x
3.14 A(n;2,2) = =
(314) > Am32,2) = 5 + ofa)
n<x
and is nonnegative for all x > 1.
Proof. We first treat the simpler case L(n;2,2). The Dirichlet series
1—-27°
1425

(3.15) D(s52,2) = ((s)
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has meromorphic continuation to $(s) > 1 with only a simple pole at s = 1
with residue %, and is holomorphic for R(s) > 1; hence we have

3.16 A(n; 2,2 :§+0m
(3.16) o A02.2) = 3+ ofe)
by a standard Tauberian argument.

Now, notice that A(n;2,2) is always 1, —1,1 when n is of the form 4k +
1,4k + 2,4k + 3 respectively. Only if it is of the form 4k can it take both
1 and —1 as values, in which case it is determined by the value A(k;2,2).
Thus the first few summands of L(z;2,2) are

(3.17) 1—14+14+X42,2)+1—-1+1+X(8;2,2)+...

and continuing thus, we conclude that for L(z;2,2) > 0 for all x > 1.
Next, we treat the case L(x;2,1). Notice that

¢(2s)1+427°

((s) 1—27%

where we recall from (1.1) that ((2s)/{(s) is the Dirichlet series for the

Liouville function. Since ((s) has a simple pole at s = 1 and is nonvanishing

on R(s) = 1, it follows that D(s;2,1) has analytic continuation to R(s) > 1
and has a zero at s = 1. Thus we have

(3.19) > An;2,1) = o(x)

n<x

(3.18) D(s;2,1) =

unconditionally. Assuming the Riemann hypothesis, D(s;2, 1) continues an-
alytically to R(s) > % and has a simple pole at s = %, and so L(x;2,1) =
O€ ($1/2+e)_ 0O

By a similar argument, we observe the analogous behaviour for general
arithmetic progressions, described in Theorem 1.1.

Proof of Theorem 1.1. Simply observe that the Dirichlet series in this set-
ting can be expressed as

C(28) 4 14+ p~°
(3.20) D(S;Qaala"->a<p(q)) = H 1 -5

<(s) plg P
and

k‘ 1 _ pfs
(3.21) D(s;q,bl,-.-,bk)ZC(S)HH1+ =5
i=1plb; p

and argue as in Proposition 3.2. O

The following corollary is proved in the same manner for the classical
Liouville function, after the method of Landau.
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Corollary 3.3. With assumptions as in Theorem 1.1,

(3.22) Y Anig,ar,... ag3) = ofz)

n<x
is equivalent to the prime number theorem.

By a similar reasoning, we shall see that one can also recover Dirichlet’s
theorem on primes in arithmetic progressions, but only in cases where there
are no complex Dirichlet characters modulo q.

3.3. A Chebyshev-type bias. We show a result using the properties
developed above, which can be interpreted as: the number of prime factors
of the form 4k + 1 and 4k + 3 both tend to appear an even number of times,
but the former having a much stronger bias. We first prove the following
closed formula.

Lemma 3.4. Define the characteristic function

(. k) = {1 [] =2k (mod 4k)

(3.23) .
0 otherwise

for any x > 0. Then

oo
(3.24) > Am;4,3) =) ez, 28,
n<lz k=1
with finitely many terms on the right-hand side being nonzero.

Proof. To prove the formula, we repeatedly apply the elementary fact that
if n =1 (mod 4) (respectively 3 (mod 4)), then the prime factors of n of
the form 3 modulo 4 appear an even (respectively odd) number of times.

First, observe that A(n;4,3) is 1 or —1 if n is 1 or 3 modulo 4, thus the
sum
(3.25) > A(n;4,3)

n<x
n=1(2)

is equal to ¢(n,2). Then we move on to the even numbers, which, written
as 2m,2(m + 1) and using \(2;4,3) = 1, gives again the pattern 1 and —1
depending on whether m is 1 or 3 modulo 4. The even numbers of the form
4 and 6 modulo 8 contribute the term c(n, 22).

Repeating this process we obtain the terms c(n, 2k ) for all k, but certainly
for k large enough this procedure will cover all n < z, so only finitely many
terms will be nonzero. O

Proposition 3.5. Let x4 be the nonprincipal Dirichlet character modulo
4. Then

(3.26) 3 Am;4,1) = Oc(x'/2F)

n<x
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for any € > 0 assuming the generalized Riemann hypothesis for L(s,x4),
while unconditionally this sum is o(x). On the other hand,

(3.27) > A(n;4,3) = O(log z)

for any € > 0 and is nonnegative for x > 1.

Proof. We first prove the latter statement. The Dirichlet series of \(n;4, 3)
can be written as

1
(3.28) D(s;4,3) = L(s, x4) =T
Thus we see that D(s;4,3) has analytic continuation to the half-plane
R(s) > 0.

From the explicit formula in Lemma 3.4 we also see immediately that
L(x;4,3) is nonnegative, and given any C' > 0 we can find z large enough
so that L(z;4,3) > C. Hence D(s;4,3) has a simple pole at s = 0, and
finally we conclude that
(3.29) > A(n;4,3) = O(log z)

n<zx

On the other hand, from (3.2) we have that

(3.30) D(s:4,1)D(s:4,3) = ¢(25) 1 * g:
which by (3.28) is

. _ C(2s) s
(3.31) D(sid 1) = Fps(1+27)

Comparing both sides, we observe that D(s;4,1) is analytic in the region
R(s) > 1, giving o(x) unconditionally by analytic continuation of L(s, x4).
Moreover, assuming the generalized Riemann hypothesis for L(s,x4), we
see that D(s;4,1) in fact converges absolutely in R(s) > 3, with only a
simple pole at s = %, so that

(3.32) > Ani4,1) = Oc(z'/?7),
n<x
as required. O

The proposition above holds more generally for any g > 2, by the same
method of proof, using the following observation: Let r = ¢(q)/2. Then

there is exactly one combination of residue classes, say b1, ..., b, such that
1
(3.33) D(s;q,b1,...,b:) = L(s,xq) [ p—

plg
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where x, is a nonprincipal real Dirichlet character modulo ¢; whereas

2s _
(3.34) D(s;q,a1,...,aq9—y) = LH(I—p ),
L(S’ Xq) p|q
where aq,...,aq—, are the remaining residue classes.

Proof of Theorem 1.3. The estimate (1.10) follows the same argument as in
Proposition 3.5. For (1.11), using the relation between x, and the Kronecker
symbol, we need to extend the arguments of [3, Corollary 6] to composite
moduli, which we do as follows:

Let p be a prime dividing the modulus of ¢ the Kronecker symbol asso-
ciated to x4, and let ag + a1p + -+ + aip® be the base p expansion of n.
Then

n

k aj
(3.35) DA by b)) =YD g, b1, by)

=1 7j=01i=1

as in [3, Theorem 8]. On the other hand, by the character-like property we
know that A(i;q,b1,...,b.) = AMkp+4;q,b1,...,b,) for 1 <i <p—1 and
k € N, and hence L(p™n;q,b1,...,b.) = L(n;q,b1,...,b,) for any r,n € N.
Using this, we may bound the maximum value by

(3.36) max |L(n;q,by,...,b)| < max|L(n;q,b1,...,0)]
n<p® n<q
and thus conclude |L(z;q,b1,...,b.)| < logx. O

Remark 3.6. We have not strived for the optimal unconditional bounds,
that is, not assuming the generalized Riemann hypothesis. The relevant
estimates can certainly be improved, for example, using the zero-free regions
for the associated Dirichlet L-functions and ((s).

3.4. General arithmetic progressions. Now we turn to general arith-
metic progressions. We now restrict to residue classes a coprime to g, which
is the most interesting case. We will also assume moreover that ¢(q) > 2.

Proof of Theorem 1.4. For the first statement, our method follows that of
Karatsuba for the classical Liouville function [12, Theorem 1], namely via
the Selberg—Delange method. We begin with the following expression:

(1—p*)?
1 _p—2s

(3.37) D(siq,a1,...,a,)=C(s) [ 1l

i=1 p=a; (mod q)

(3.38) — ()" F¢(28) 77 [T exp(Go, (25) — 2Gi (5))

=1



Biases in prime factorizations and Liouville functions 19

by (3.7). Applying Perron’s formula, we have
1 T x® x
(3.39) Z Anyq,a1,...,a,) = D(s;q,aq,... ,ar)?ds + O(T)

e 2wt Jo—iT

for b > 1 and x,T > 2. Now analytically continue D(s;q,a,...,a,) to the
left of the line R(s) = 1, say to 0 > 1 — C/logT, so that the integral is
estimated by

1 b+iT 5
(3.40) — / D(s;q,a1,...,a,)—ds
b

27 Jo—iT s

1 z® T
= — [ D(s; —d O|=
27F’L[y (37Q7a17 aar) s s+ (T) )

where v is a closed loop around s = 1, with radius taken to be less than
1 —C/logT. In fact, we will choose T" such that log 7' = C(log z)'/2.
Now if we define the function H(s) by the relation %D(s; q,a1,...,0p) =

2r_
(s — 1)1_%0@) H(s), we can write

1 S
(3.41) 5 /7 D(s;q,a1,... ,ar)%ds =zl(x)
where
1 _2r
(3.42) I(@) = 5— L CH(s+ 1)z*s'# 0 ds

and ~/ is the contour obtained by translating v by s — s + 1. Taking v to
have radius 1/v/log z, the integral can be written as (see [12, p. 216])

(343) I(x)= Y B; — + O(e~CVlogT),

; 2+j—
0<j<vlogz I (% e 1) (logz)"™7 " %@

where B are the coefficients of the Taylor series expansion of H(s) at s = 1.
In particular, By = H(1) > 0. Set by = BD/F(% — 1), and notice that

F(sOQ(Z) — 1) is positive or negative depending on whether 2r/p(q) is greater

or lesser than 1, and is singular at 2r = ¢(q). Since we may truncate the

sum over j to one term with an error term of size O((log x)%_g), the
result follows.

The proof of the second case follows from an application of Ingham’s
analysis of A(n) in [11]. Recall the Dirichlet series expression from (3.38),
we have that

(344) Y Amigar,....ar) = C(25)"/2 ] exp(2Gas(s) — G (25))
n<lz =1

where we have used r = ¢(q)/2. O
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4. Sign changes and biases: complementary case

4.1. Sign Changes. Let r = ¢(q)/2, and let a4, ..., a,—, denote the set
of residue classes for which

2s _
(4.1) D(s;q,a1,...,a0-y) = M]‘[u—p 5,
L(s, xq) plg
so that A(n;q,a1,...,a4—,) is the complement to a character-like function.

It is natural to ask whether Y, .. A(n;q,a1,...,aq—,) changes sign infin-
itely often; for ¢ = 1, this is Pdlya’s conjecture. In this section, we give
proofs that this is indeed the case conditional on several different hypothe-
ses: firstly, that the generalized Riemann hypothesis for L(s, x4) is false;
secondly, that it is true but there exist zeroes of L(s,x4) of order at least
two; and thirdly, that it is true and the nonnegative imaginary ordinates of
the zeroes are linearly independent over the rationals. We expect the third
set of hypotheses to be the true properties.

Remark 4.1. For small values of ¢, one ought to be able to unconditionally
prove an infinitude of sign changes via numerical calculations involving
zeroes of L(s,xq), as in [2]. For arbitrary ¢, however, we do not know of
any method that would be able to give an unconditional proof.

We begin with the proof under the first hypothesis.

Proposition 4.2 (cf. [10, Theorem 2.6]). Suppose that the generalized
Riemann hypothesis for L(s,xq) tis false, so that © := sup{R(p)
L(p,xq) =0} >1/2. Then

anx )\(na q,a1,..., aq—r)

(4.2) hxnilo%f o <0,
and

An;q,a1,...,a
(4.3) li{gis;p 2nsa Al xg_el r) >0

for every € > 0.

Proof. The proof is via the same method as [19, Theorems 15.2 and 15.3].
More precisely, we note that

(4.4) F(s):= /100 <m®€ + Z A(n;q,an,. .. ,aq_r)) x° dz

n<x

C ¢(2s)

(45) T s—O+e * sL(s, xq) g(l -

for R(s) > 1, and the right-hand side extends to a meromorphic function
on the right-half plane $(s) > 1/2 with no real poles but complex poles in
the strip © — e < R(s) < O at the zeroes of L(s, xq)-
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If2®=¢4+3, .. A(n;jq,a1,...,a4—,) is always positive for sufficiently large
x, on the other hand, then Landau’s lemma [19, Lemma 15.1] implies that
both sides of (4.4) extend to a holomorphic function on some right-half
plane R(s) > o¢, but has a singularity at the point s = og. This yields the
desired contradiction if L(©, x4) # 0. The remaining case L(O, x,) = 0 is
similar, using the construction detailed in [19, Proof of Theorem 15.3]. O

Next, we prove an infinitude of sign changes under the second set of
hypotheses.

Proposition 4.3 (cf. [10, Theorem 2.7]). Assume the generalized Riemann
hypothesis for L(s, xq) and that L(s, xq) has a zero of order m > 2. Then

anz )‘(nv q,a1,--., aq—r)

4. lim inf
(4.6) BT Jlegnyt
and
A ; 9 PR -Tr

(4.7) lim sup Znge AR, 41 — 9g=r) > 0.

z—00 Vr(logx)m—1
Proof. This is via the same method as [19, Theorem 15.3]; see in particu-
lar [19, p. 467]. O

Of course, it is widely expected that L(s,x,) does indeed satisfy the
generalized Riemann hypothesis and that all of its zeroes are simple. If we
assume an additional widely believed conjecture on the behaviour of the
zeroes of L(s, xq), namely the linear independence hypothesis, then we can
again show that >~ ., A(n;q,a1,...,aq—r) changes sign infinitely often.

Proposition 4.4 (cf. [10, Theorem 2.8]). Assume the generalized Riemann
hypothesis and the linear independence hypothesis for L(s,xq). Then

anx Ansq,a1,...,aq—r)

4. lim inf
(48) i NG <0
and
A 34, g er ey Ug—r
(4.9) lim sup Znga M4, @1 Gg-r) > 0.

Z—00 N3

Proof. The proof is a straightforward modification of [11, Proof of Theo-
rem A], where the same result is proven for the Liouville function \(n),with
the associated Dirichlet series being ((2s)/((s) in place of (4.1). O

4.2. Biases. Now we explain why there appears to be a positive bias in
the limiting behaviour of Y, .. A(n;q,a1,...,as—y). This is for the same
reason that Y, .. A(n) appears to have a heavy bias towards being negative:
it is due to the fact that should it be the case that L(1/2,%,) > 0, as
is widely believed, then D(s;q,a1,...,aq—r) has a pole at s = 1/2 with
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positive residue. To quantify this more precisely, we work with the limiting
distribution of e~¥/2 Yon<ev A5 q a1, ... aqy).

Theorem 4.5. Assume the generalized Riemann hypotheses for L(s, xq),
and that the bound

(4.10) > !

.
0<~<LT |L/(p7 XQ)P

holds for some 1 < 6 < 3 —+/3. Then
(4.11) e /2 Z An;q,a1,...,a,)
n<ey

has a limiting distribution .
Suppose additionally that L(s,x,) satisfies the linear independence hy-
pothesis. Then the Fourier transform [ of u is given by

(4.12) (€)= e I Jo(Ir(n)€D),
>0

where Jy(z) is the Bessel function of the first kind,

(4.13) ¢ = L(1/12X) H(l _ p—1/2)’
P plg
and
2¢(2p) _
(4.14) r(y) = ———<[[Q-p").
PL (P, Xq) 3,

The mean and median of u are both equal to c, while the variance of u is
equal to 53250l (7)]%.

Remark 4.6. Once again, the restriction on 6 may be weakened to 6 < 2.

Proof. This essentially follows from [1]. More precisely, [1, Lemmata 4.3
and 4.4] imply an explicit expression of the form

(4.15) e ¥/? Z An;q,a1,...,aq—) =c+RN ( Z r(y)e”y) +E&(y, X)

n<leY 0<y<X
for y > 0 and X > 1, where
yey/? ey/2
+ 1—e
X yX
for 0 < e <b<1/4, x > 1; cf. [1, Proof of Corollary 1.6]. With this in

hand, the existence of p follows from [1, Theorem 1.4], while the identity for
i is a consequence of [1, Theorem 1.9]. Finally, the proof of the identities

(4.16) E(y.X) = O. ( +(XP21og X)V/2 4 e—y<1/2—b>>
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for the mean and variance follows the same lines as [10, Proof of Corol-
lary 6.3], while the proof of the identity for the median follows [10, Proof
of Theorem 5.1]; cf. [1, Theorem 1.14]. O

The proof of Theorem 1.6 may then be proven as a consequence of this.

Proof of Theorem 1.6. This follows, with minor modifications, via the same
method as [10, Proof of Theorem 1.5], where (among other things) the
analogous result is proved for A(n) in place of A(n;q,a1,...,as—r). O

Finally, we mention that all of the results in this section are valid anal-
ogously for the case where r = (q) and ai, ..., a4 is the set of residue
classes coprime to ¢, so that

C(2s 1+p~°
(4.17) D(s;q,a1,...,apq)) = (25) H —
<(s) plg 1=»
This has a pole at s = 1/2 with negative residue; it is for this reason that
there is a bias towards 3°,, <, A(n;q, a1, ..., a,(,)) being nonpositive.
Indeed, we can again conditionally prove the existence of a limiting dis-

tribution p of e~¥/2 don<ev A5 g, a1, ..., ayg), but now

1 14+p1/2
4.18 =
(4.18) = e
and

202p) yyL4p*
(4.19) r(y) ==

¢’ (p) 11

1—pr
plq p
The mean and median of u is ¢, which is negative; for this reason, the

logarithmic density 6(P) of

(4.20) P:=Sze[l,00): Z)\(n;q,al,...,a@(q)) <0

n<x
is at least 1/2 but strictly less than 1, so that 37, ., A(n;q,a1,...,a,q) 18
nonpositive “most” of the time, yet it is positive a positive proportion of
the time.

Note on computations. All computations in this paper were done on
Fortran95 and Python3. The largest computation that we could carry out
was that of L(x;4,1), which we verified to be positive for all 1 < z < 101,
Most of the other calculations were carried out up to 108 or 10°. Because
of the limited amount of computer memory, we used an algorithm that
calculates the parities in batches of size 10%. Also, to avoid the problem of
factorizing large integers, we used multiplication to build up the parities
of numbers up to x. This results in a significant increase in the speed
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without any type of parallel computation. The codes for the computations
of various combinations were primarily written in Python, which allows to
easily construct all the required combinations.
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