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Finite Λ-submodules of Iwasawa modules for a
CM-field for p = 2

par Mahiro ATSUTA

Résumé. Soit F un corps CM et p un nombre premier. Soit X−F∞
le quotient

“moins” du groupe de Galois de la pro-p-extension abélienne non ramifiée
maximale de la Zp-extension cyclotomique de F . Si p ne vaut pas 2, il est
bien connu que X−F∞

n’a pas de sous-module fini non-trivial. Mais pour p = 2,
il peut arriver que X−F∞

contient un sous-module fini non-trivial. Dans cet
article, nous étudions le sous-module fini maximal de X−F∞

pour p = 2, et
nous déterminons ce module sous certaines légères hypothèses.

Abstract. Let p be a prime, X−F∞
the minus quotient of the Iwasawa

module, which we define to be the Galois group of the maximal unramified
abelian pro-p-extension over the cyclotomic Zp-extension over a CM field F .
If p is an odd prime, it is well known that X−F∞

has no non-trivial finite
Zp[[Gal(F∞/F )]]-submodule. But X−F∞

has non-trivial finite Zp[[Gal(F∞/F )]]-
submodule in some cases for p = 2. In this paper, we study the maximal
finite Zp[[Gal(F∞/F )]]-submodule of X−F∞

for p = 2. We determine the size
of the maximal finite Z2[[Gal(F∞/F )]]-submodule of X−F∞

under some mild
assumptions.

1. Introduction

Let p be a prime, F a CM field, and F∞ the cyclotomic Zp-extension
of F . We denote by XF∞ the Galois group of the maximal unramified
abelian pro-p-extension of F∞. Iwasawa proved that XF∞ is a finitely gen-
erated Zp[[Gal(F∞/F )]]-module ([6, Theorem 5]). If p is an odd prime, Iwa-
sawa also proved that the minus part of XF∞ has no non-trivial finite
Zp[[Gal(F∞/F )]]-submodule (see, for example [9, Proposition 13.28]). But
for p = 2, Ferrero proved that if F is an imaginary quadratic field that is
not F = Q(

√
−1),Q(

√
−2) and the prime above 2 ramifies in F∞/Q∞, the

maximal finite Z2[[Gal(F∞/F )]]-submodule of XF∞ is isomorphic to Z/2Z
and this submodule is generated by the prime above 2 ([1, Theorem 5]). One
of our purposes is to generalize Ferrero’s result to an arbitrary CM field.
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In this paper, we study the maximal finite Zp[[Gal(F∞/F )]]-submodule of
the minus quotient of XF∞ of a CM field for p = 2.

For any number field K, we denote by K∞/K the cyclotomic Z2-exten-
sion of K, Kn the n-th layer of K∞/K, and CL(K) the ideal class group
of K. We denote by S2(K), S∞(K) the set of primes of K lying above 2,
∞, respectively.

Let F be a CM field and F+ the maximal real subfield of F . Put Λ :=
Z2[[Gal(F∞/F )]]. We define the subset S (F+) of S2(F+) ∪ S∞(F+) by

S (F+) = {v ∈ S2(F+) | v ramifies in F∞/F
+
∞} ∪ S∞(F+).

For any extension K/F+, we denote by S (K) the set of primes of K lying
above S (F+). We put

d = ]
(
S2(F∞) ∩S (F∞)

)
.

Using this particular S (K), we define CLS (K) by the S (K)-ideal class
group of K, i.e

CLS (K) = coker(K× ⊕ordv−→
⊕
v/∈S (K) Z).

We denote by AK (resp. AK,S ) the 2-Sylow subgroup of the ideal class
group CL(K) (resp. CLS (K)). By class field theory, we have XF∞

∼=
lim←−AFn . There are several ways to define the minus quotient, but we adopt
the following. Let J be the complex conjugation. We define the minus quo-
tient X−F∞ by

X−F∞ = XF∞/(1 + J)XF∞ .

We denote by FΛ(X−F∞) the maximal finite Λ-submodule of X−F∞ . We define

Dn,S = ker(AFn −→ AFn,S ), D+
n,S = ker(AF+

n
−→ AF+

n ,S
),

δ1 = rank2
(

lim←−
(
(O×Fn,S

)1−J/(O×Fn
)1−J)),

δ2 = rank2
(

lim←− ker(D+
n,S → Dn,S )

)
,

where O×Fn,S
is the S (Fn)-unit group of Fn, O×Fn

the unit group of Fn, both
projective limits are taken with respect to the norm maps, and rank2(A)
is the 2-rank, namely the dimension of A/2A as an F2-vector space. We
note that 0 ≤ δ2 ≤ δ1 ≤ 1 and the 2-rank of lim←−Dn,S /(1 + J)Dn,S is d
or d− 1, where d is the number of certain 2-adic prime defined above. (see
Remark 2.4 in this paper). Our main result is the following.

Theorem 1.1. Assume that Leopoldt’s conjecture is valid for F+ and the
lifting maps AF+

n ,S
−→ AFn,S are injective for all sufficiently large n� 0.

Then we have

FΛ(X−F∞) = lim←−Dn,S /(1 + J)Dn,S
∼=
{

(Z/2Z)⊕d (if µ2∞ 6⊂ F∞)
(Z/2Z)⊕d−δ1+δ2 (if µ2∞ ⊂ F∞),
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where d is the number of primes of F∞ above 2 which ramify in F∞/F
+
∞

and µ2∞ is the group of all 2 power roots of unity.

This is a generalization of the Ferrero’s result(see Example 2.7 in this
paper). We prove Theorem 1.1 in Section 2. Concerning the injectivity of
the lifting map AF+

n ,S
−→ AFn,S for an imaginary abelian field F , we get

Lemma 2.6 in Section 2. Theorem 1.1 and Lemma 2.6 imply the following
result.

Corollary 1.2. Assume that F is an imaginary abelian field and all primes
above 2 ramify in F∞/F+

∞. If F∞ contains µ2∞ or Hasse’s unit index [O×Fn
:

µ(Fn)O×
F+

n
] = 2 for all sufficiently large n� 0, we have

FΛ(X−F∞) = lim←−Dn,S /(1 + J)Dn,S
∼=
{

(Z/2Z)⊕d (if µ2∞ 6⊂ F∞)
(Z/2Z)⊕d−δ1+δ2 (if µ2∞ ⊂ F∞),

where d is the number of primes of F∞ above 2, µ(Fn) is the group of roots
of unity contained in Fn.

For example, let F+ be a real abelian field which is unramified at 2, and
F = F+(

√
−1). Then, we have

FΛ(X−F∞) ∼= (Z/2Z)⊕d−1,

where g is the number of primes of F lying above 2 (see Example 2.8 in
this paper).

For any extension K/F+, let S (K) be the set we defined on page 1018.
We define XF∞,S , X

−
F∞,S

by

XF∞,S = lim←−AFn,S , X−F∞,S = XF∞,S /(1 + J)XF∞,S ,

where the projective limit is taken with respect to the norm maps. We also
prove the following result which plays an important rule in the proof of
Theorem 1.1.

Theorem 1.3. X−F∞,S has no non-trivial finite Λ-submodule.

To prove Theorem 1.3, we use a result of Greenberg in [4]. We prove
Theorem 1.3 in Section 3. A key point to prove this theorem is to choose
some appropriate local conditions.

If all primes above 2 are unramified in F∞/F+
∞, the set S (F+) defined on

page 1018 coincides with S∞(F+) by definition. Therefore we have AFn,S =
AFn , and X−F∞,S = X−F∞ . Thus Theorem 1.3 implies the following result.

Corollary 1.4. Assume that all primes above 2 are unramified in F∞/F+
∞.

Then, X−F∞ has no non-trivial finite Λ-submodule.
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Remark 1.5. Put S(Fn) = S2(Fn) ∪ S∞(Fn). We denote by AFn,S is
the 2-Sylow subgroup of the S(Fn)-ideal class group. We define XF∞,S =
lim←−AFn,S and X−F∞,S = XF∞,S/(1+J)XF∞,S . We can also prove that X−F∞,S
has no non-trivial finite Λ-submodule, using the result of Greenberg in [4].

2. The maximal finite Λ-submodule of X−
F∞

In this section, we prove Theorem 1.1 assuming Theorem 1.3. We use
the same notation as in the previous section.

Lemma 2.1. We have an exact sequence

0 −→ ker(D+
n,S → Dn,S ) −→ (O×Fn,S

)1−J/(O×Fn
)1−J

−→
⊕

w∈S (Fn)∩S2(Fn)
Z/2Z −→ Dn,S /(1 + J)Dn,S −→ 0

of F2-vector spaces for all sufficiently large n� 0, where J is the complex
conjugation and (O×Fn,S

)1−J = {(1− J)x | x ∈ O×Fn,S
}.

Proof. For any extension K/F+, put Sf (K) = S (K) ∩ S2(K). We take
n sufficiently large such that the primes above 2 are totally ramified in
F∞/Fn and F+

∞/F
+
n . We consider the following commutative diagram

0 // O×
F+

n ,S
/O×

F+
n
⊗ Z2

f1

��

//
⊕

v∈Sf (F+
n )

Z2 //

×2
��

D+
n,S

//

f2

��

0

0 // O×Fn,S
/O×Fn

⊗ Z2 //
⊕

w∈Sf (Fn)
Z2 // Dn,S

// 0,

where f1, f2 are homomorphisms induced by the natural maps O×
F+

n ,S
−→

O×Fn,S
and CLS (F+

n ) −→ CLS (Fn). By the snake lemma, we get an exact
sequence

0 −→ ker f2 −→ coker f1 −→
⊕

w∈Sf (Fn)
Z/2Z −→ coker f2 −→ 0.
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Therefore, it suffices to show that coker f1 ∼= (O×Fn,S
)1−J/(O×Fn

)1−J and
coker f2 ∼= Dn,S /(1 + J)Dn,S . We consider the following diagram

0 // O×
F+

n

//

��

O×
F+

n ,S
//

��

O×
F+

n ,S
/O×

F+
n

//

f1′
��

0

0 // O×Fn

1−J
��

// O×Fn,S

1−J
��

// O×Fn,S
/O×Fn

// 0

(O×Fn
)1−J // (O×Fn,S

)1−J .

Since the map f ′1 is injective and (O×Fn,S
)1−J/(O×Fn

)1−J is a 2 group (see
Remark 1.4 in this paper), we have

coker f1 = coker f ′1 ⊗ Z2 ∼= (O×Fn,S
)1−J/(O×Fn

)1−J

by the snake lemma.
Next we show that coker f2 ∼= Dn,S /(1 + J)Dn,S . Since Dn,S is equal

to ker
(

CL(Fn) → CLS (Fn)
)
⊗ Z2, we have coker f2 ∼= Dn,S /D

+
n,S . We

consider the following diagram,

Dn,S
1+J //

N
Fn/F +

n
��

Dn,S

D+
n,S D+

n,S .

f2

OO

Since all primes above 2 which are contained in S (Fn) ramify in Fn/F
+
n ,

the norm map NFn/F
+
n

: Dn,S −→ D+
n,S is surjective. This implies that

coker f2 ∼= Dn,S /(1 + J)Dn,S . �

Lemma 2.2 ([2, Corollary]). Assume that Leopoldt’s conjecture is valid for
F+. Then the order of D+

n,S remains bounded as n→∞.

Proof. Put Γn = Gal(F+
n /F

+). If Leopoldt’s conjecture is valid for F+,
the order of the Galois invariant AΓn

F+
n

remains bounded as n→∞ (see [2,
Proposition 1]). This implies that the order of D+

n,S remains bounded as
n→∞. �

Proposition 2.3. Assume that Leopoldt’s conjecture is valid for F+. Then,

lim←−Dn,S /(1 + J)Dn,S
∼=
{

(Z/2Z)⊕d (µ2∞ 6⊂ F∞)
(Z/2Z)⊕d−δ1+δ2 (µ2∞ ⊂ F∞),

where d is the number of primes of F∞ above 2 which ramify in F∞/F
+
∞,

and δ1, δ2 are defined just before Theorem 1.1.



1022 Mahiro Atsuta

Proof. Put Bn = (O×Fn,S
)1−J/(O×Fn

)1−J for any n ∈ Z≥0. We consider
the following commutative diagram which is obtained by Lemma 1.1 for
n ≥ m� 0,

Bn //

NFn/Fm

��

⊕
v∈S (Fn)∩S2(Fn)

Z/2Z // Dn,S /(1 + J)Dn,S
//

NFn/Fm

��

0

Bm //
⊕

w∈S (Fm)∩S2(Fm)
Z/2Z // Dm,S /(1 + J)Dm,S

// 0

Since the action of J on S (Fn) is trivial, we have (O×Fn,S
)1−J ⊂ µ(Fn)

for all n ≥ 0, where µ(Fn) is the set of root of unity which contains in Fn
(see [9, Lemma 1.6]).

If F∞ does not contain µ2∞ , the 2-Sylow subgroup of µ(Fn) is {±1} for
all n ≥ 0. Therefore the norm map µ(Fn)⊗Z2 → µ(Fm)⊗Z2 is the 0-map.
This fact and (O×Fn,S

)1−J ⊂ µ(Fn) imply that Bn → Bm is the 0-map for all
n ≥ m ≥ 0. Therefore we have ⊕v∈S (Fn)∩S2(Fn) Z/2Z ∼= Dn,S /(1+J)Dn,S

for all sufficiently large n� 0. Taking the projective limit, we have

lim←−Dn,S /(1 + J)Dn,S
∼= (Z/2Z)⊕d.

If F∞ contains µ2∞ , we have (O×Fn,S
)1−J = µ(Fn) or µ(Fn)2 (see [9,

Theorem 4.12]). Since the norm map µ(Fn) → µ(Fm) is surjective, the
norm map Bn → Bm is surjective for all sufficiently large n ≥ m� 0.

We claim that the norm map

NF+
n /F

+
m

: ker(D+
n,S → Dn,S ) −→ ker(D+

m.S → Dm,S )

is also surjective for all sufficiently large n ≥ m � 0. We consider the
commutative diagram

0 // ker(D+
n,S → Dn,S ) //

N
F +

n /F +
m

��

D+
n,S

N
F +

n /F +
m

��
0 // ker(D+

m,S → Dm,S ) // D+
m,S .

Lemma 2.2 implies that the norm map NF+
n /F

+
m

: D+
n,S → D+

m,S is an
isomorphism for all sufficiently large n ≥ m� 0. Therefore the norm map
NF+

n /F
+
m

: ker(D+
n,S → Dn,S ) −→ ker(D+

m,S → Dm,S ) is injective for
all sufficiently large n ≥ m � 0. Since the order of ker(D+

n,S → Dn,S )
is 1 or 2 for all n ≥ 0 (see [9, Theorem 10.3]), the norm map NF+

n /F
+
m

:
ker(D+

n,S → Dn,S ) −→ ker(D+
m,S → Dm,S ) is surjective for all sufficiently
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large n ≥ m � 0. Therefore, taking the projective limit of the exact se-
quences obtained from in Lemma 2.1, we get an exact sequence

0 −→ lim←−
(

ker(D+
n,S → Dn,S )

)
−→ lim←−

(
(O×Fn,S

)1−J/(O×Fn
)1−J)

−→ (Z/2Z)⊕d −→ lim←−Dn,S /(1 + J)Dn,S −→ 0

of F2-vector spaces. Proposition 2.3 is obtained by considering the 2-rank
of this exact sequence. �

Remark 2.4. Since (O×Fn
)1−J = µ(Fn) or µ(Fn)2, (O×Fn,S

)1−J/(O×Fn
)1−J

is isomorphic to 0 or Z/2Z for all n ≥ 0. Thus we have 0 ≤ δ2 ≤ δ1 ≤ 1 and
the 2-rank of lim←−Dn,S /(1 + J)Dn,S is d or d− 1.

Lemma 2.5. We have

lim←−Dn,S /(1 + J)Dn,S
∼= (lim←−Dn,S )/(1 + J)(lim←−Dn,S ).

Proof. Put D′n,S := ker(Dn,S
1−J−→ Dn,S ). We consider the commutative

diagram

0 // D′n,S
//

NFn/Fm

��

Dn,S
1+J //

NFn/Fm

��

(1 + J)Dn,S
//

NFn/Fm

��

0

0 // D′m,S
// Dm,S

1+J // (1 + J)Dm,S
// 0.

Since D′n,S is finite for any n ≥ 0, the system (D′n,S , NFn/Fn−1) satisfies the
Mittag-Leffler property (see [8, Chapter 2, §7]). Therefore taking projective
limits, we get an exact sequence

0 −→ lim←−D
′
n,S −→ lim←−Dn,S

1+J−→ lim←−(1 + J)Dn,S −→ 0.

Thus we have lim←−(1 + J)Dn,S
∼= (1 + J) lim←−Dn,S . This implies that

lim←−Dn,S /(1 + J)Dn,S
∼= (lim←−Dn,S )/(1 + J)(lim←−Dn,S ). �

Now we proceed to the proof of Theorem 1.1, assuming Theorem 1.3.

Proof of Theorem 1.1. We consider the commutative diagram

0 // lim←−Dn,S
//

f1
��

XF∞
//

f2
��

XF∞,S
//

f3
��

0

0 // lim←−Dn,S
// XF∞

// XF∞,S
// 0,
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where f1, f2, f3 are induced by 1 + J , and XF∞,S = lim←−AFn,S . By the
snake lemma, we get an exact sequence

(2.1) ker f2 −→ ker f3 −→ (lim←−Dn,S )/(1 + J)(lim←−Dn,S )
−→ X−F∞ −→ X−F∞,S −→ 0

where X−F∞,S = XF∞,S /(1 + J)XF∞,S . We claim that the map ker f2 −→
ker f3 is surjective if AF+

n ,S
−→ AFn,S is injective for sufficiently large

n� 0. We define

A′Fn
= ker(AFn

1+J−→ AFn),

A′Fn,S = ker(AFn,S
1+J−→ AFn,S ),

D′n,S = ker(Dn,S
1+J−→ Dn,S ).

By definition, ker f2 = lim←−A
′
Fn

and ker f3 = lim←−A
′
Fn,S

. We consider the
commutative diagram

0 // Dn,S
//

N
Fn/F +

n
��

AFn
//

N
Fn/F +

n

��

AFn,S
//

N
Fn/F +

n

��

0

0 // D+
n,S

// AF+
n

// AF+
n ,S

// 0.

Since infinite primes ramify in Fn/F+
n , all norm maps NFn/F

+
n

are surjective
by class field theory. Since we assumed that AF+

n ,S
−→ AFn,S is injective,

A′Fn,S = ker
(
AFn,S

N
Fn/F +

n−→ AF+
n ,S

)
.

Put

D′′n,S = ker
(
Dn,S

N
Fn/F +

n−→ D+
n,S

)
,

A′′Fn
= ker

(
AFn

N
Fn/F +

n−→ AF+
n

)
.

By the snake lemma, we get an exact sequence,
0 −→ D′′n,S −→ A′′Fn

−→ A′Fn,S −→ 0
for all sufficiently large n� 0. We consider the commutative diagram

0 // D′′n,S
//

��

D′n,S
//

��

ker(D+
n,S → Dn,S )

f4

��

// 0

0 // A′′Fn
// A′Fn

// ker(AF+
n
→ AFn) // 0.
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Since the map AF+
n ,S
−→ AFn,S is injective, the map f4 is an isomorphism.

Therefore we get an exact sequence,

0 −→ D′n,S −→ A′Fn
−→ A′Fn,S −→ 0

for all sufficiently large n� 0. Lemma 1.2 implies that the map

D′n,S
NFn/Fn−1−→ D′n−1,S

is surjective for sufficiently n � 0. Therefore, taking the projective limit,
we get an exact sequence

0 −→ lim←−D
′
n,S −→ lim←−A

′
Fn
−→ lim←−A

′
Fn,S −→ 0.

This implies that ker f2 −→ ker f3 is surjective. Therefore, it follows
from (2.1) that we have an exact sequence

0 −→ (lim←−Dn,S )/(1 + J)(lim←−Dn,S ) −→ X−F∞ −→ X−F∞,S −→ 0.

If X−F∞,S has no non-trivial finite Λ-submodule, we have

FΛ(X−F∞) = (lim←−Dn,S )/(1 + J)(lim←−Dn,S ).

Proposition 2.3, Lemma 2.5 and the above equality imply that

FΛ(X−F∞) = lim←−Dn,S /(1 + J)Dn,S
∼=
{

(Z/2Z)⊕d (if µ2∞ 6⊂ F∞)
(Z/2Z)⊕d−δ1+δ2 (if µ2∞ ⊂ F∞),

if X−F∞,S has no non-trivial finite Λ-submodule. This completes the proof
of Theorem 1.1. �

Next we study certain conditions on the injectivity of the map AF+
n ,S
−→

AFn,S for an imaginary abelian field F . Leopoldt’s conjecture is valid for
a real abelian field. Hence the following result implies Corollary 1.2.

Lemma 2.6. Assume that F is an imaginary abelian field and all primes
above 2 ramify in F∞/F+

∞. If F∞ contains µ2∞ or Hasse’s unit index [O×Fn
:

µ(Fn)O×
F+

n
] = 2 for all sufficiently large n� 0, the lifting map AF+

n ,S
−→

AFn,S is injective for all sufficiently large n� 0.

Proof. It is well known that the kernel of the map AF+
n ,S
−→ AFn,S coin-

cides with the kernel of the map

H1(Fn/F+
n ,O×Fn,S

) −→ H1
(
Fn/F

+
n ,

∏
v/∈S (Fn)

O×Fn,v

)
,

where O×Fn,v
is the unit group of the completion of Fn at v. Therefore it

suffices to show that H1(Fn/F+
n ,O×Fn,S

) = 0 for all sufficiently large n� 0.
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If F∞ contains µ2∞ , since all primes above 2 are contained in S (Fn),
O×Fn,S

contains 1−ζ2m for all 2mth roots of unity ζ2m in µ(Fn). This implies
that (O×Fn,S

)1−J = µ(Fn) for all sufficiently large n� 0.
If Hasse’s unit index [O×Fn

: µ(Fn)O×
F+

n
] = 2, we also have (O×Fn,S

)1−J =
µ(Fn) (see [5, Satz 14]).

Therefore, we get an exact sequence for all sufficiently large n� 0,

0 −→ O×
F+

n ,S
−→ O×Fn,S

1−J−→ µ(Fn)→ 0.

Put G = Gal(Fn/F+
n ). Taking Galois cohomology, we get an exact sequence

0 −→ O×
F+

n ,S

f1−→ O×
F+

n ,S

f2−→ {±1} f3−→ H1(G, O×
F+

n ,S
) f4−→ H1(G, O×Fn,S

)
f5−→ H1(G, µ(Fn)) f6−→ H2(G, O×

F+
n ,S

) f7−→ H2(G, O×Fn,S
).

Since f1 is an isomorphism, f2 is the 0-map. Therefore f3 is injective. Since
Fn/F

+
n is a cyclic extension,

H1(G, O×
F+

n ,S
) =

ker
(
1 + J : O×

F+
n ,S
→ O×

F+
n ,S

)
(
O×
F+

n ,S

)1−J = {±1}.

Thus f3 is also an isomorphism and f4 is the 0-map. Therefore f5 is injective.
Since

H1(G, µ(Fn)) =
ker(1 + J : µ(Fn)→ µ(Fn))

µ(Fn)1−J =
µ(Fn)
µ(Fn)2 = {±1},

we get an exact sequence

0 −→ H1(G, O×Fn,S
) f5−→ {±1} f6−→ H2(G, O×

F+
n ,S

) f7−→ H2(G, O×Fn,S
).

If f7 is not injective, f6 is not the 0-map. This implies that H1(G, O×Fn,S
) =

0. We show that f7 is not injective. Since Fn/F+
n is a cyclic extension,

H2(G, O×
F+

n ,S
) = Ĥ0(G, O×

F+
n ,S

) =
(O×

F+
n ,S

)G

NFn/F
+
n

(O×
F+

n ,S
)

=
O×
F+

n ,S

(O×
F+

n ,S
)2,

H2(G, O×Fn,S
) =

O×
F+

n ,S

NFn/F
+
n

(O×Fn,S
)
.

If Hasse’s unit index [O×Fn
: µ(Fn)O×

F+
n

] = 2, Satz 14 in [5] shows that
[(O×Fn

)1+J : (O×
F+

n
)2] = 2. This implies that f7 is not injective.

If F∞ contains µ2∞ , O×Fn,S
contains 1 + ζ2l where 2l is the order of the

2-Sylow subgroup of µ(Fn). Thus we have
NFn/F

+
n

(1 + ζ2l) = 2 + ζ2l + ζ−1
2l ∈ NFn/F

+
n

(O×Fn,S
).
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Since
√

2 + ζ2l + ζ−1
2l = ±(ζ2l+1 + ζ−1

2l+1) /∈ F×n , we have

2 + ζ2l+1 + ζ−1
2l+1 /∈ (O×

F+
n ,S

)2.

This implies that f7 is not injective. This completes the proof of Lem-
ma 2.6. �

We give some examples here.

Example 2.7. Let F be an imaginary quadratic field that is not Q(
√
−1),

Q(
√
−2) and the prime above 2 ramifies in F∞/F+

∞. Then, Leopoldt’s con-
jecture is valid for F+ = Q. Since the class numbers of F+

n are odd for all
n ≥ 0 (see [5, Satz 6]), the lifting maps AF+

n ,S
−→ AFn,S are injective

for all n ≥ 0. Since F∞ does not contain all 2nth roots of unity for n ≥ 1,
Theorem 0.1 implies that

FΛ(X−F∞) ∼= Z/2Z.
This is the result which was proved by Ferrero in [1].

Example 2.8. Let F+ be a real abelian field which is unramified at 2, and
F = F+(

√
−1). Then, we have

FΛ(X−F∞) ∼= (Z/2Z)⊕d−1,

where d is the number of primes of F lying above 2. In fact, Theorem 1
in [7] implies that (O×Fn

)1−J = µ(Fn)2 for all n ≥ 0. Since 1 − ζ2n+2 ∈
O×Fn,S

, we have (O×Fn,S
)1−J = µ(Fn) for all n ≥ 0. Therefore we have

(O×Fn,S
)1−J/(O×Fn

)1−J ∼= Z/2Z for all n ≥ 0 and δ1 = 1. Theorem 1 in [7]
also implies that δ2 = 0.

3. S -modified Iwasawa module XF∞,S

We use the same notation as in the Introduction. We defined XF∞,S ,
X−F∞,S by

XF∞,S = lim←−AFn,S , X−F∞,S = XF∞,S /(1 + J)XF∞,S .

In this section, we prove Theorem 1.3, using a result of Greenberg in [4].
At first, we introduce the result of Greenberg. Greenberg describes his
theorems in a much more general setting in [4]. However, we describe it in
a restricted setting here.

Let p be a prime. Suppose that K is a finite extension of Q and that
Σ is a finite set of primes of K. Let KΣ be the maximal extension of K
unramified outside Σ. We assume that Σ contains all archimedean primes
and all primes lying above p. Put Λ := Zp[[T ]] and let T be a Gal(KΣ/K)-
module such that T ∼= Λ as a group and Gal(KΣ/K) acts on T continuously.
We define D = T ⊗Λ Λ̂, where Λ̂ = Hom(Λ,Qp/Zp) is the Pontryagin dual
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of Λ. The Galois group Gal(KΣ/K) acts on D through its action on the
first factor T . We note that D is a discrete abelian group and the Galois
cohomology group H1(KΣ/K,D) is a discrete Λ-module. Let L(Kv,D) be
a Λ-submodule of H1(Kv,D) for each v ∈ Σ, where Kv is the completion
of K at v. Put Q(K,D) := ∏

v∈ΣH
1(Kv,D)/L(Kv,D). The natural global-

to-local maps induce a map
φ : H1(KΣ/K,D) −→ Q(K,D).

The kernel of φ is denoted by S(K,D). We define T ∗ = Hom(D, µp∞), and

X2(K,Σ,D) = ker
(
H2(KΣ/K,D) −→

∏
v∈Σ

H2(Kv,D)
)
.

We say that a finitely generated Λ-module M is reflexive if the map
M −→ HomΛ

(
HomΛ(M,Λ),Λ

)
m 7−→ [α 7→ α(m)].

is an isomorphism. Suppose that N is a discrete Λ-module and that its
Pontryagin dual is finitely generated. We say that N is almost Λ-divisible
if there is a nonzero element f(T ) ∈ Λ such that g(T )N = N for all
irreducible elements g(T ) ∈ Λ not dividing f(T ).

Theorem 3.1 (Greenberg [4, Proposition 4.1.1]). Suppose that the follow-
ing assumptions are satisfied,

(a) The Λ-module X2(K,Σ,D) is Λ-cotorsion,
(b) The Λ-module T ∗/(T ∗)GKv is reflexive for all v ∈ Σ,
(c) There exists a non-archimedean prime v∈Σ such that (T ∗)GKv =0,
(d) ∏v∈Σ L(Kv,D) is almost Λ-divisible,
(e) corankΛ

(
H1(KΣ/K,D)

)
= corankΛ

(
S(K,D)

)
+corankΛ

(
Q(K,D)

)
,

(f) At least one of the following additional assumptions is satisfied.
• D[m] has no subquotient isomorphic to µp for the action of
GK = Gal(K̄/K).
• D is a cofree Λ-module and D[m] has no quotient isomorphic

to µp for the action of GK .
• There is a prime v ∈ Σ which satisfies (c) and such that
H1(Kv,D)/L(Kv,D) is coreflexive as a Λ-module.

Then S(K,D) is almost Λ-divisible.

In Sections 3.4 and 3.5 in [4], Greenberg discuss the case that the as-
sumption (f) is not satisfied. We can replace the assumption (f) to (f*) as
following.

Theorem 3.2 (Greenberg [4, Proposition 4.1.1 and Section 3.4, 3.5]). Sup-
pose that the following assumptions are satisfied,

(a) The Λ-module X2(K,Σ,D) is Λ-cotorsion,
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(b) The Λ-module T ∗/(T ∗)GKv is reflexive for all v ∈ Σ,
(c) There exists a non-archimedean prime v∈Σ such that (T ∗)GKv =0,
(d) ∏v∈Σ L(Kv,D) is almost Λ-divisible,
(e) corankΛ(H1(KΣ/K,D)) = corankΛ(S(K,D)) + corankΛ(Q(K,D)),

(f*) L(Kv,D) ⊂ H1(Kv,D)Λ−div for all v ∈ Σ.
Then S(K,D) is almost Λ-divisible.

Remark 3.3. Let M be a finitely generated Λ-module, and N the Pon-
tryagin dual of M (i.e., N = Hom(M,Qp/Zp)). Then, the following two
statements are equivalent:

• M has no non-trivial finite Λ-submodule.
• N is almost Λ-divisible.

The proof of this fact can be found in Proposition 2.4 in Greenberg [3]

We prove Theorem 1.3 using Theorem 3.2, taking K = F+, p = 2. We
may assume that all primes above 2 are totally ramified in F∞/F and
F+
∞/F

+. We define

Σ = Sram(F/F+) ∪ S∞(F+) ∪ S2(F+),

where Sram(F/F+) is the set of primes of F+ which ramify in F/F+. Let
F+

Σ be the maximal extension of F+ unramified outside Σ. By definition,
F∞ ⊂ F+

Σ . Put Γ := Gal(F+
∞/F

+), and Λ := Z2[[Γ]] ∼= Z2[[T ]]. Let J be
the complex conjugation. By definition, Gal(F/F+) = {1, J}. We take T
to be a Gal(F+

Σ /F
+)-module such that T ∼= Λ as a Λ-module, for which J

acts as −1, and the group Gal(F+
Σ /F

+) acts on T through the natural map
Gal(F+

Σ /F
+) � Gal(F∞/F+) ∼= Gal(F/F+)×Gal(F+

∞/F
+). We define

D = T ⊗Λ Λ̂, T ∗ = Hom(D, µ2∞),

where Λ̂ = Hom(Λ,Q2/Z2) is the Pontryagin dual of Λ. We define the
Λ-submodule L(F+

v ,D) of H1(F+
v ,D) for each v ∈ Σ

L(F+
v ,D)

=
{

ker
(
H1(F+

v ,D)→ H1(F+
v

unr
,D)

)
, if v /∈ S2(F+) ∩ Sram(F∞/F+

∞)
0, if v ∈ S2(F+) ∩ Sram(F∞/F+

∞),

where F+
v

unr is the maximal unramified extension of F+
v and Sram(F∞/F+

∞)
is the set of primes of F+ which ramify in F∞/F

+
∞. Put Q(F+,D) :=∏

v∈ΣH
1(F+

v ,D)/L(F+
v ,D). The natural global-to-local maps induce a map

φ : H1(F+
Σ /F

+,D) −→ Q(F+,D).

The kernel of φ is denoted by S(F+,D). In this situation, we check the
assumptions (a), (b), (c), (d), (e), (f*) in Theorem 3.2.
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Proof of Theorem 1.3. (c) T ∗ = Hom(D, µ2∞) = Hom(D,Q2/Z2)⊗Z2(1) =
Λ(1) as Λ-modules. Since no prime splits completely in the cyclotomic Z2-
extension in F+

∞/F
+, GKv acts on Λ(1) nontrivially for each v. Therefore,

(T ∗)GF +
v = 0 for any non-archimedean prime v ∈ Σ.

(b) If v is non-archimedean, T ∗/(T ∗)GF +
v ∼= Λ(1). This Λ-module Λ(1)

is reflexive. If v is archimedean, GF+
v

= {1, J}. Since

(Jf)(x) = J
(
f(J−1x)

)
= J

(
f(−x)

)
= J

(
f(x)−1) = f(x)

for any f ∈ T ∗ and x ∈ D, so J acts trivially on T ∗. Thus, T ∗/(T ∗)GF +
v = 0.

(d) We claim that

L(F+
v ,D) ∼=

{
Q2/Z2 (if v ∈ S2(F+) and v splits in F∞/F

+
∞)

0 (otherwise)
for each v ∈ Σ. This fact implies that ∏v∈Σ L(Kv,D) is almost Λ-divisible.

If v ∈ S2(F+) ∩ Sram(F∞/F+
∞), this is trivial by definition. Thus, we

consider the case v /∈ S2(F+) ∩ Sram(F∞/F+
∞). The inflation-restriction

sequence shows that

L(F+
v ,D) ∼= H1(F+

v
unr
/F+

v ,D
G

F +
v

unr ).
If v is archimedean, Gal(F+

v
unr
/F+

v ) = 1 implies L(F+
v ,D) = 0.

If v is non-archimedean and v /∈ S2(F+), then v is unramified in F+
∞/F

+

and hence F+
v,∞ ⊂ F+

v
unr, where F+

v,∞ is the cyclotomic Z2-extension of F+
v .

Thus, Gal(F+
v

unr
/F+

v ) contains the unique subgroup Pv which is isomorphic
to Z2 and the restriction map Pv → Γv = Gal(F+

v,∞/F
+
v ) is an isomorphism.

The inflation-restriction sequence shows that the restriction map

H1(F+
v

unr
/F+

v ,D
G

F +
v

unr ) −→ H1(Pv,D
G

F +
v

unr )

is injective. Hence, it suffices to show that H1(Pv,D
G

F +
v

unr ) = 0. The action
of GF+

v
unr on D factors through GF+

v
unr � Gal(Fw/F+

v ) = {1, J}, where w
is a prime of F lying above v. Since J acts on D as −1 and D is a divisible
group, we get an exact sequence

0 −→ DGF +
v

unr
−→ D 1−J−→ D −→ 0.

Taking Galois cohomology, we get an exact sequence

DPv ×2−→ DPv −→ H1(Pv,D
G

F +
v

unr ) −→ H1(Pv,D).
Let γv be a topological generator of Γv. Then,
DPv ∼= HomΓv (Λ,Q2/Z2) ∼= Hom(Λ/(1− γv),Q2/Z2) ∼= (Q2/Z2)⊕n

where, n = [Γ : Γv]. Thus, DPv is a divisible group and the map DPv
×2−→

DPv is surjective. Therefore, the map H1(Pv,D
G

F +
v

unr ) −→ H1(Pv,D) is
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injective. Here, H1(Pv,D) ∼= D/(1− γv)D = 0 because 1− γv acts on D as
the multiplication by a nonzero element of Λ and D is Λ-divisible. Thus,
H1(Pv,D

G
F +

v
unr ) = 0 for each non-archimedean prime v /∈ S2(F+).

We consider the case that v ∈ S2(F+) and v is inert in F∞/F
+
∞. Let

Pv be the maximal subgroup of Gal(F+
v

unr
/F+

v ) which is isomorphic to Z2,
and γv a topological generator of Pv. The action of Gal(F+

v
unr
/F+

v ) on D
factors through Gal(F+

v
unr
/F+

v ) � Gal(Fw/F+
v ) = {1, J}, where w is the

prime of F lying above v. Therefore, γv acts on D as −1. Thus,

H1(F+
v

unr
/F+

v ,D
G

F +
v

unr ) = H1(F+
v

unr
/F+

v , A)
= H1(Pv, A)
= A/(1− γv)A = 0,

where A is a Gal(F+
v

unr
/F+

v )-module such that A is isomorphic to Q2/Z2 as
a group, for which J acts as−1, and Gal(F+

v
unr
/F+

v ) acts via Gal(Fw/F+
v ) =

{1, J}.
If v ∈ S2(F+) and v splits in F∞/F

+
∞, the action of Gal(F+

v
unr
/F+

v ) on
D is trivial since we assumed that all primes above 2 are totally ramified
in F+

∞/F
+. Therefore,

H1(F+
v

unr
/F+

v ,D
G

F +
v

unr ) = H1(F+
v

unr
/F+

v ,Q2/Z2)
= Hom(Z2,Q2/Z2)
∼= Q2/Z2.

(f*) Let γ be a topological generator of Γ. L(F+
v ,D) is a divisible group

and annihilated by the ideal (1−γ) for each v ∈ Σ. By Remark 3.5.2 in [4],
we have the inclusion L(F+

v ,D) ⊂ H1(F+
v ,D)Λ−div.

Before we check the assumptions (a) and (e), we prove the following
lemma.

Lemma 3.4. We have

S(F+,D) = Hom
(
X−F∞,S ,Q2/Z2

)
,

where X−F∞,S is the Λ-module defined on page 1018.

Proof. For each w lying above v ∈ Σ, we define L(Fw,D) by

L(Fw,D) = ker
(
H1(Fw,D)Gal(Fw/F

+
v ) → H1(Fwunr,D)

)
if v /∈ S2(F+) ∩ Sram(F∞/F+

∞) and

L(Fw,D) = 0

if v ∈ S2(F+) ∩ Sram(F∞/F+
∞).
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At first, we claim that the map

(3.1)
H1(F+

v ,D)
L(F+

v ,D)
−→

H1(Fw,D)Gal(Fw/F
+
v )

L(Fw,D)

induced by the restriction map is injective for each w lying above v ∈ Σ.
If v /∈ S2(F+) or v ∈ S2(F+) ∩ Sram(F∞/F+

∞), we have L(F+
v ,D) = 0.

Similarly, we have L(Fw,D) = 0. Since DGFw is a divisible group and J
acts on DGFw as −1, we have

H1(Fw/F+
v ,DGFw ) =

ker(DGFw
1+J→ DGFw )

(DGFw )1−J = 0.

Therefore the inflation-restriction sequence

0 −→ H1(Fw/F+
v ,DGFw ) −→ H1(F+

v ,D) −→ H1(Fw,D)Gal(Fw/F
+
v )

implies the above map (3.1) is injective.
If v ∈ S2(F+) and v is unramified in F∞/F

+
∞, then F unr

w = F+
v

unr. We
consider the commutative diagram

0

��

0

��
H1(Fw/F+

v ,DGFw )

inf
��

H1(Fw/F+
v ,DGFw )

inf
��

0 // H1(F+
v

unr
/F+

v ,D
GF unr

w ) inf //

res
��

H1(F+
v ,D)

res
��

0 // H1(F+
v

unr
/Fw,DGF unr

w )Gal(Fw/F
+
v ) inf //

��

H1(Fw,D)Gal(Fw/F
+
v )

��
H2(Fw/F+

v ,DGFw ) H2(Fw/F+
v ,DGFw ).

By the snake lemma, the map H1(F+
v ,D)

L(F+
v ,D) −→

H1(Fw,D)Gal(Fw/F +
v )

L(Fw,D) is injective.
This completes the proof of the injectivity of (3.1).

Put

Q(F,D) =
∏

w∈ΣF

H1(Fw,D)Gal(Fw/F
+
v )

L(Fw,D) ,
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where ΣF is the set of primes of F lying above Σ. We consider the commu-
tative diagram

H1(F/F+,DGal(F+
Σ /F ))

inf
��

0 // S(F+,D) //

��

H1(F+
Σ /F

+,D) φ //

g1res
��

Q(F+,D)

g2

��
0 // ker f // H1(F+

Σ /F,D)Gal(F/F+)

��

f // Q(F,D)

��
coker g1 // coker g2

Here, we defined g1 to be the restriction map

H1(F+
Σ /F

+,D) −→ H1(F+
Σ /F,D)Gal(F/F+)

and g2 the map Q(F+,D)→ Q(F,D) induced by the restriction map. Next,
we show that the map coker g1 → coker g2 is injective.

By definition, we have

coker g2 =
∏
v∈Σ

coker

H1(F+
v ,D)

L(F+
v ,D)

→
⊕
w|v

H1(Fw,D)Gal(Fw/F
+
v )

L(Fw,D)

 .
For any prime v ∈ Σ, put

(coker g2)v = coker

H1(F+
v ,D)

L(F+
v ,D)

→
⊕
w|v

H1(Fw,D)Gal(Fw/F
+
v )

L(Fw,D)

 .
It is sufficiently to show that the map coker g1 → (coker g2)v is injective for
any v ∈ S∞(F+). Since L(F+

v ,D) = 0, L(Fw,D) = 0 for any v ∈ S∞(F+),
the inflation-restriction sequence implies the commutative diagram

0 // coker g1 //

��

H2(F/F+,DGal(F+
Σ /F ))

g3
��

0 // (coker g2)v // H2(Fw/F+
v ,DGFw ).

We show that the map g3 is injective. We know that H2(Fw/F+
v ,DGFw ) =

H2(F/F+,D). Put D′ = coker(DGal(F+
Σ /F ) → D). Since both DGal(F+

Σ /F )

and D are divisible groups, D′ is also divisible. We consider the exact se-
quence

H1(F/F+,D′) −→ H2(F/F+,DGal(F+
Σ /F )) g3−→ H2(F/F+,D).
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Since D′ is divisible, we have

H1(F/F+,D′) =
ker(D′ 1+J→ D′)
D′1−J

=
D′

2D′ = 0.

Therefore the map g3 is injective. This implies that the map the map
coker g1 → coker g2 is injective.

The map g2 is injective by the injectivity of (3.1). And we have
H1(F/F+,DGal(F+

Σ /F )) = 0. Thus, S(F+,D) is isomorphic to ker f by
the snake lemma. We also have D = IndGal(F+

Σ /F∞)
Gal(F+

Σ /F ) (A), where A is a
Gal(F+

Σ /F
+)-module such that A is isomorphic to Q2/Z2 as a group, for

which J acts as −1, and Gal(F+
Σ /F

+) acts on A via Gal(F/F+) = {1, J}.
Thus, we have

H1(F+
Σ /F,D)Gal(F/F+) ∼= H1(F+

Σ /F∞, A)Gal(F/F+)

= HomGal(F/F+)(Gal(F ab
Σ /F∞), A)

by Shapiro’s lemma, where F ab
Σ is the maximal abelian pro-2-extension of F

unramified outside ΣF . We may assume that all primes in ΣF does not split
in F∞/F . We denote by Fw,∞ the cyclotomic Z2-extension of Fw. Similarly,
we have

H1(Fw,D)Gal(Fw/F
+
v )

L(Fw,D)

=
{

HomGal(Fw/F
+
v )(IFw,∞ , A)

(
v /∈ S2(F+) ∩ Sram(F∞/F+

∞)
)

HomGal(Fw/F
+
v )(GFw,∞ , A)

(
v ∈ S2(F+) ∩ Sram(F∞/F+

∞)
)
,

for each w|v, where IFw,∞ is the inertia group in GFw,∞. Therefore we have

ker f ∼= HomGal(F/F+)
(

Gal(L′∞/F∞), A
)
,

where L′∞ is the maximal unramified abelian pro-2-extension of F∞ in which
the primes of F∞ lying above S2(F ) ∩ Sram(F∞/F+

∞) split completely. By
class field theory, Gal(L′∞/F∞) is isomorphic to XF∞,S . Thus, we have
S(F+,D) ∼= HomGal(F/F+)

(
Gal(L′∞/F∞), A

)
= Hom

(
X−F∞,S ,Q2/Z2

)
.

This completes the proof of Lemma 3.4. �

Finally, we check the assumptions (a) and (e) to complete the proof of
Theorem 1.3.

(e) One has the following obvious inequality:
corankΛ

(
S(F+,D)

)
≥ corankΛ

(
H1(F+

Σ /F
+,D)

)
− corankΛ

(
Q(F+,D)

)
.

The formulae in Section 2.3 in [4] show that the Λ-corank of H1(F+
Σ /F

+,D)
is at least [F+ : Q] and the Λ-corank of Q(F+,D) is equal to [F+ : Q].
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Iwasawa proved that S(F+,D) is cotorsion Λ-module([6, Theorem 5]). This
implies that the Λ-corank of H1(F+

Σ /F
+,D) is equal to [F+ : Q] and (e) is

satisfied.
(a) The formulae in Section 2.3 in [4] also show that

corankΛ
(
H1(F+

Σ /F
+,D)

)
= corankΛ

(
H2(F+

Σ /F
+,D)

)
+ [F+ : Q].

This implies that H2(F+
Σ /F

+,D) is a cotorsion Λ-module and hence
X2(K,Σ,D) is also Λ-cotorsion.

Thus Theorem 3.1 implies that S(F+,D) is almost Λ-divisible. Since
S(F+,D) = Hom

(
X−F∞,S ,Q2/Z2

)
by Lemma 3.4, this is equivalent that

X−F∞,S has no non-trivial finite Λ-submodule (Remark 3.3). This completes
the proof of Theorem 1.3. �
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