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Cubic polynomials defining monogenic fields with
the same discriminant

par Chad T. DAVIS, Blair K. SPEARMAN† et Jeewon YOO

Résumé. Un corps de nombres K est dit monogène si son anneau des entiers
vérifie OK = Z[θ] pour un certain θ ∈ OK . La monogénéité d’un corps de
nombres n’est pas toujours assurée. En outre, il est rare que deux corps de
nombres aient le même discriminant. Donc, trouver des corps avec ces deux
propriétés est un problème intéressant. Dans cet article, nous montrons qu’il
existe une infinité de triplets de polynômes définissant des corps cubiques
monogènes distincts de même discriminant.

Abstract. Let K be a number field with ring of integers OK . K is said
to be monogenic if OK = Z[θ] for some θ ∈ OK . Monogeneity of a number
field is not always guaranteed. Furthermore, it is rare for two number fields
to have the same discriminant, thus finding fields with these two properties is
an interesting problem. In this paper we show that there exist infinitely many
triples of polynomials defining distinct monogenic cubic fields with the same
discriminant.

1. Introduction
Let K be a number field with ring of integers OK and discriminant

d(K). K is called monogenic if there exists an element θ ∈ OK with OK =
Z[θ]. The properties of monogeneity and sharing the same discriminant are
uncommon (see for instance [4], and [5, p. 80, Remark 2.4]) thus, finding
fields that have both properties is an interesting problem. The following
three polynomials provide an example of this phenomenon (see [2, p. 94,
Exercise 21])

p1(X) = X3 − 18X − 6,
p2(X) = X3 − 36X − 78,
p3(X) = X3 − 54X − 150.
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Note that the coefficients of these polynomials are in arithmetic progression.
The purpose of this paper is to give three infinite families of polynomials
f1(X), f2(X), and f3(X), defining cubic monogenic fields over Q of the
same discriminant. In particular we prove the following
Theorem 1. There exists infinitely many pairs of relatively prime integers
(k, e) satisfying k ≡ ±1 (mod 3), e ≡ ±1 (mod 3), and
(1.1) k(3k4 − 6k2e2 − e4)
is squarefree. For each such pair (k, e), the polynomials

(1.2)
f1(X) = X3 − 9k(k + e)X − 3k(3k2 + 6ke+ e2),
f2(X) = X3 − 9k2X − 3k(3k2 + e2),
f3(X) = X3 − 9k(k − e)X − 3k(3k2 − 6ke+ e2),

define distinct monogenic cubic fields with the same discriminant. Further-
more, the set of integers defined in equation (1.1) is infinite.

2. Preliminaries
In this section, we provide some preliminary results. Throughout this

section, k and e will be as in the statement of Theorem 1.
Lemma 1. The polynomials f1, f2, and f3 of equation (1.2) are irreducible
over Q and each have the same polynomial discriminant.
Proof. Since 3 - k, e it is clear that 3 exactly divides the constant coefficients
of f1, f2, and f3, hence they are 3-Eisenstein. Verifying that they have the
same discriminant is strictly computational. �

Lemma 2. Let f1, f2, and f3 be the polynomials from equation (1.2). Let
θi be a root of fi, and set Ki = Q(θi) for i ∈ {1, 2, 3}. Then K1, K2, and
K3 are monogenic.
Proof. If the discriminant of fi is equal to d(Ki) for each i ∈ {1, 2, 3} then
each Ki is monogenic. Thus, it suffices to show that for each prime p, the
exact power of p in the discriminant of fi is equal to the exact power of p
dividing d(Ki). This can be determined using a result due to Llorente and
Nart ([3, Theorem 2]), or alternatively, by Tables A, B, and C on p. 4–7
of [1]. The discriminant of each fi, which we denote by ∆, is equal to

∆ = 35k2(3k4 − 6k2e2 − e4).
Following the notation of [3] and [1], let vp(x) denote the exact power
of a prime p dividing an integer x and let sp = vp(∆). We show that
sp = vp(d(Ki)), i = 1, 2, 3, for all primes p. We give the proof for the field
K1 and note that the other cases are done similarly. Let a1 and b1 denote
the coefficients on X and the constant coefficient of f1 respectively. We
break into cases when p = 2, p = 3, and p > 3.



Monogenic cubic fields with the same discriminant 993

Case 1: p = 2. The assumption that k(3k4 − 6k2e2 − e4) is squarefree im-
plies that k and e have opposite parity. If k is even, then k ≡ 2 (mod 4)
lest equation (1.1) is divisible by a square. In this case, we have a1 ≡ 0
(mod 2) and b1 ≡ 2 (mod 4). Then line 2 of Table A in [1] implies that
s2 = v2(d(K1)) = 2 as desired. If k is odd and e is even, then b1 ≡ 1
(mod 2), so that line 1 of Table A of [1] implies that s2 = v2(d(K1)) = 0 as
desired.

Case 2: p = 3. Since neither k nor e is divisible by 3, it is easily verified
that a1 ≡ 0 (mod 9) and b1 ≡ 0 (mod 3) but b1 6≡ 0 (mod 9). Thus line 3
of Table B of [1] implies that s3 = v3(d(K1)) = 5 as desired.

Case 3: p > 3. First suppose that p does not divide k nor e. Then

(2.1)

a1 ≡ −9k(k + e) (mod p)

b1 ≡ −3k(3k2 + 6ke+ e2) (mod p)

∆ ≡ −4a3
1 + 27b2

1 (mod p).

If k ≡ −e (mod p), then from equation (2.1) we have

a1 ≡ 0 (mod p) and b1 ≡ −6e3 6≡ 0 (mod p)

so that p - ∆. Consequently p - d(K1) and sp = vp(d(K1)). If k 6≡ −e
(mod p), then from equation (2.1) we have a1 6≡ 0 (mod p). If b1 ≡ 0
(mod p) then ∆ 6≡ 0 (mod p) so sp = vp(d(K1)). If b1 6≡ 0 (mod p), then
recalling that 3k4 − 6k2e2 − e4 is squarefree, we see that sp = 0 or 1. From
line 5 of Table C of [1], we get that sp = vp(d(K1)) as required.

Now suppose p divides k but does not divide e. Then using the assump-
tion that equation (1.1) is squarefree, it is easily checked that vp(a1) =
vp(b1) = 1. Using line 2 of Table C of [1], we have sp = vp(d(K1)) = 2 as
desired. Finally, if p divides e but does not divide k, then p - ∆ so that
sp = vp(d(K1)) = 0 as required.

In all cases, it has been verified that vp(d(K1)) = sp = vp(∆) for all
primes p ≥ 2. Thus d(K1) = ∆ and K1 is monogenic. �

Lemma 3. Let everything be as in Lemma 2. Then K1,K2, and K3 are
distinct.

Proof. Towards a contradiction, suppose that two of the fields are not dis-
tinct. Without loss of generality, suppose that Q(θ1) = Q(θ2) (noting that
the other two cases are done similarly). Then θ1 ∈ K2. Since K2 is mono-
genic by Lemma 2, there exist a, b, c ∈ Z such that

θ1 = a+ bθ2 + cθ2
2.
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Since the trace of θ1 is zero, it follows that a = −6ck2. Making this substi-
tution, we calculate the minimal polynomial of the above element as

F (X) = X3 + uX + v

where
u = −9k(kb2 + (3k2 + e2)bc+ 3k3c2),

v = −3k
(
(3k2+e2)b3+18k3b2c+(27k4+9k2e2)bc2+(3ke4+18k3e2+9k5)c3)

.

Since the minimal polynomial of θ1 is f1(X), we see that the coefficients of
f1 and F must be equal. Thus, from the constant term

0 ≡ v

3 + k(3k2 + 6ke+ e2) ≡ 2ke2(b+ 2)3 (mod 3).

Since 3 does not divide k nor e, this congruence forces b ≡ 1 (mod 3).
Substituting b = 1 + 3m for some integer m into the equations for u and v
yields two congruences

0 ≡ u

9 + k(k + e) ≡ 2ke(ec+ 2) (mod 3),

0 ≡ 1
3

(
v

3 + k(3k2 + 6ke+ e2)
)
≡ 2k2e(ec+ 1)3 (mod 3)

which is impossible as these two congruences can not simultaneously hold.
Thus K1 and K2 must be distinct fields. �

3. Proof of Theorem
Proof. By Lemma 1, each fi is irreducible over Q and have the same poly-
nomial discriminant. Lemma 2 implies that the fields Ki are monogenic for
each i ∈ {1, 2, 3} and Lemma 3 implies that the fields Ki are all distinct.
The only thing left to verify is that there are infinitely many integer pairs
(k, e) such that the result holds. In order for this to happen, we need only
show that equation (1.1) is squarefree for infinitely many pairs of integers
(k, e). This follows from Theorem 1 on p. 950–951 of [6] with A = ±1, B =
±1,M = 3,m = 4, w = 1, r = 5, k = 2, F = k(3k4 − 6k2e2 − e4) and let-
ting x → ∞. The statement that there are infinitely many integers as in
equation (1.1) follows immediately from this argument. Finally, note that
this implies there are infinitely many field discriminants that satisfy the
property given in the theorem. �

4. Examples
Let θi be a root of fi for each i = 1, 2, 3. The following table gives some

numerical examples of polynomials f1, f2, f3 that define distinct monogenic
fields over Q of the same discriminant. Notice that when (k, e) = (2, 1) we
recover the example from [2] cited at the beginning of this paper.
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(k, e) fi(X) ∆fi Integral Basis for Ki = Q(θi)

(2, 1)
f1(X) = X3 − 54X − 150
f2(X) = X3 − 36X − 78
f3(X) = X3 − 18X − 6

22356 = 22 · 35 · 23 {1, θi, θ
2
i }

(1, 2)
f1(X) = X3 − 27X − 57
f2(X) = X3 − 9X − 21
f3(X) = X3 + 9X + 15

−8991 = −35 · 37 {1, θi, θ
2
i }

(1, 4)
f1(X) = X3 − 45X − 129
f2(X) = X3 − 9X − 57
f3(X) = X3 + 27X + 15

−84807 = −35 · 349 {1, θi, θ
2
i }

(1, 10)
f1(X) = X3 − 99X − 489
f2(X) = X3 − 9X − 309
f3(X) = X3 + 81X − 129

−2575071 = −35 · 10597 {1, θi, θ
2
i }

Table 1. Integral Bases and discriminants for K = Q(θi)
defined by fi for i ∈ {1, 2, 3}.

We end with a numerical example of an extension of Theorem 1 to four
polynomials that define distinct monogenic fields with the same discrimi-
nant. Let θi be a root of fi and set Ki = Q(θi) for i ∈ {1, 2, 3, 4}.

fi(X) ∆fi Integral Basis for Ki =Q(θi)

f1(X) = X3−990X−10830
f2(X) = X3−900X−9030
f3(X) = X3−810X−7230
f4(X) = X3−720X+5370

714395700 = 22 ·35 ·52 ·29399 {1, θi, θ
2
i }

Table 2. Integral Bases and discriminants for K = Q(θi)
defined by fi for i ∈ {1, 2, 3, 4}.
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