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Journal de Théorie des Nombres
de Bordeaux 30 (2018), 859–872

Tamely ramified Iwasawa modules having no
non-trivial pseudo-null submodules

par Tsuyoshi ITOH

Résumé. Ce travail fait suite à l’article [4] de Satoshi Fujii et l’auteur.
Soient k un corps de nombres, p un nombre premier, et kc/k la Zp-extension
cyclotomique. Pour un ensemble fini S de nombres premiers qui ne contient pas
p, le module d’Iwasawa (par rapport à la pro-p extension abélienne maximale
non ramifiée en dehors de S) a été étudié dans plusieurs articles. Nous donnons
des exemples non-triviaux où XS(kc) a un sous-module fini non-nul avec k
totalement réel. Nous donnons également un exemple similaire dans le cas de
la Z⊕2

p -extension d’un corps quadratique imaginaire. De plus, nous discutons
en appendice des analogues faibles de la conjecture de Greenberg pourXS(kc).

Abstract. The present paper is a sequel to the previous paper [4] (by
Satoshi Fujii and the author). Let k be an algebraic number field, p a prime
number, and kc/k the cyclotomic Zp-extension. For a finite set S of prime
numbers which does not contain p, the Iwasawa module XS(kc) (with respect
to the maximal pro-p abelian extension unramified outside S) has been studied
in several papers. We will give some non-trivial examples such that XS(kc)
has no non-trivial finite submodules even when k is totally real. We also give
a similar example for the case of the Z⊕2

p -extension of an imaginary quadratic
field. Moreover, weak analogs of Greenberg’s conjecture for XS(kc) are also
discussed in the appendix.

1. Introduction and results
Let p be a prime number, S a finite set of prime numbers which does

not contain p. For an algebraic extension K/Q, let LS(K)/K be the max-
imal abelian (pro-)p-extension unramified outside S. We put XS(K) =
Gal(LS(K)/K). When K is an algebraic number field (i.e., K/Q is finite),
LS(K)/K is finite because all ramified primes are tamely ramified.
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Let k be an algebraic number field, and K/k a Zp-extension. We put
ΛK/k = Zp[[Gal(K/k)]]. Then, we can show that XS(K) is a finitely gener-
ated torsion module over ΛK/k (this is often called a tamely ramified Iwa-
sawa module). We will consider the existence of a non-trivial pseudo-null
ΛK/k-submodule of XS(K). (For the definition of pseudo-nullity, see, e.g.,
[18]. In this case, a pseudo-null ΛK/k-module is just a finite ΛK/k-module.)
We denote by kc/k the cyclotomic Zp-extension.

In [4], it was shown that if p is odd and XS(Qc) 6= 0, then XS(Qc)
always contains a non-trivial finite submodule. On the other hand, when
p = 2, Mizusawa’s result [16, Theorem 7.3] implies the existence of the case
that XS(Qc) ∼= Z2 as a Z2-module. Hence, the case when p = 2 is more
complicated. Our first result is a determination of the set S of odd prime
numbers such that XS(Qc) does not contain a non-trivial finite submodule
for p = 2 (the proof will be given in Section 3).

Theorem 1.1. Assume that p = 2. Let S be a non-empty finite set of
odd prime numbers. For an odd prime number q, we denote by P (q) the
number of primes in Qc lying above q. (Note that q is finitely decomposed
in Qc.) Then XS(Qc) does not have a non-trivial finite ΛQc/Q-submodule
if and only if S = {q1, . . . , qr} satisfies q1 ≡ · · · ≡ qr ≡ 3 (mod 4) and
P (q1) = · · · = P (qr) (where q1, . . . , qr are distinct prime numbers).

When p is an odd prime number, we can also find an example of a totally
real number field k such that XS(kc) does not contain a non-trivial finite
submodule. Our second result is a simple criterion whether XS(kc) has no
non-trivial finite submodules for a real quadratic field k and certain p and
S. We denote by |A| the number of elements of a finite set A.

Theorem 1.2. Let p be an odd prime number, and k a real quadratic field.
Assume that p is inert in k and p does not divide the class number of k.
Take distinct prime numbers q1, . . . , qr such that qi ≡ −1 (mod p) and qi
is inert in k for i = 1, . . . , r. We put S = {q1, . . . , qr}. We denote by P (qi)
the number of primes of Qc lying above qi, and by P ′ the largest number
of P (qi) for i = 1, . . . , r. Then XS(kc) does not have a non-trivial finite
Λkc/k-submodule if and only if

|XS(k)| = pr−1 ·
(

r∏
i=1

P (qi)
)
/P ′.

(Note that pr−1 · (
∏r
i=1 P (qi)) /P ′ ≤ |XS(k)| ≤ pr ·

∏r
i=1 P (qi) in this case.

We also see that XS(kc) is infinite if |S| ≥ 2.)

This theorem will be shown in Section 4. As a consequence, one can
find an explicit example such that XS(kc) does not have a non-trivial finite
submodule (see Remark 4.3). We note that when p splits in a real quadratic



Tamely ramified Iwasawa modules 861

field k, the same type result does not hold (see Appendix A). We also give
another (non-trivial) example of a totally real field k such that XS(kc) does
not have a non-trivial finite submodule (Proposition 4.5).

Next, we will consider the case of the Z⊕2
p -extension of an imaginary

quadratic field k. Concerning this paragraph, see also [4] for the details.
Let k̃/k be the unique Z⊕2

p -extension. We put Λ
k̃/k

= Zp[[Gal(k̃/k)]]. Then
XS(k̃) is a finitely generated torsion Λ

k̃/k
-submodule. In [4], some sufficient

conditions such that XS(k̃) has a non-trivial pseudo-null Λ
k̃/k

-submodule
were given. However, there is a non-trivial example such that XS(k̃) does
not contain a non-trivial pseudo-null submodule. In Section 5, we will prove
the following:

Theorem 1.3. We put k = Q(
√
−3) and p = 3. Let k̃/k be the unique

Z⊕2
3 -extension. Take a set S = {q1, q2} of distinct prime numbers which

satisfy qi ≡ 2 (mod 3) and qi is not decomposed in Qc for i = 1, 2. Then
XS(k̃) is not pseudo-null, and it does not contain a non-trivial pseudo-null
submodule.

In Appendix A, we consider analogs of weak forms of Greenberg’s con-
jecture in the sense of Nguyen Quang Do.

2. Preliminaries
We shall define some notations. Let | · |p be the multiplicative p-adic

absolute value normalized as |p|p = p−1. In the following of this section, k
denotes an arbitrary algebraic number field. We denote by Ok the ring of
integers of k, and by E(k) the group of units of k. For a non-zero integral
ideal m of k, we put R(k,m) = (Ok/m)×⊗ZZp. We consider every algebraic
extension field over Q as a subfield of C, and put ζn = e2πi/n for a positive
integer n.

Let K/k be a Zp-extension. Put Γ = Gal(K/k), and ΛK/k = Zp[[Γ]]. We
also note that ΛK/k is isomorphic to the power series ring Zp[[T ]] (and we
fix an isomorphism). Let S be a finite set of prime numbers not containing
p. In this case, there is a pseudo-isomorphism

XS(K)→
m⊕
i=1

Zp[[T ]]/pciZp[[T ]]⊕
n⊕
j=1

Zp[[T ]]/gdj

j Zp[[T ]],

where ci, dj are positive integers and gj is an irreducible distinguished poly-
nomial for each i, j (see, e.g., [18], [26]). We put

µK/k,S =
m∑
i=1

ci and FK/k,S(T ) =
n∏
j=1

g
dj

j .
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FK/k,S(T ) is called the characteristic polynomial of XS(K) (in the sense
of [18, (5.3.9) Definition]). Note that µK/k,S = 0 if and only if XS(K)
is finitely generated as a Zp-module. In particular, if k/Q is an abelian
extension and K = kc (the cyclotomic Zp-extension), then µkc/k,S = 0 (see,
e.g., [10, p. 1494]). Note also that if XS(K) is finite, then µK/k,S = 0 and
FK/k,S(T ) = 1. Moreover, we denote by XS(K)Γ the Γ-invariant submodule
of XS(K), and by XS(K)Γ the Γ-coinvariant quotient of XS(K) (similar
notations will be used in Section 5 under a slightly different setting).

The following is our main criterion. (This type result seems well known,
however, we will give a brief proof.)

Proposition 2.1. Assume that there is only one prime p of k lying above
p, and p is totally ramified in K/k. Then XS(K) does not have a non-trivial
finite ΛK/k-submodule if and only if

|XS(k)| · |FK/k,S(0)|p = pµK/k,S .

Proof. By our assumptions, we can show that XS(K)Γ ∼= XS(k) (see also,
e.g., [13, Proposition 2.2.2] for a more general result), and hence XS(K)Γ
is finite. This implies that XS(K)Γ is also finite, and FK/k,S(0) 6= 0 (see,
e.g., [18, p. 300, Exercise 3]). We can show that XS(K) does not have
a non-trivial finite ΛK/k-submodule if and only if XS(K)Γ is trivial (see,
e.g., [18, (5.3.19) Proposition] or the argument given in the proof of [22,
Proposition 2]). It is known that

|XS(K)Γ| · |FK/k,S(0)|p = |XS(K)Γ| · pµK/k,S

(see, e.g., [18, p. 300, Exercise 3]). The assertion follows from this. �

As a corollary, we can obtain the following simpler criterion. (This type
result also seems well known. See, e.g., the proof of [23, Theorem 2].)

Corollary 2.2. Let the assumptions be as in Proposition 2.1. If |XS(k)| =
p and XS(K) is infinite, then XS(K) does not have a non-trivial finite
ΛK/k-submodule.

We will prove Theorems 1.1 and 1.2 by using Proposition 2.1 directly.
(Note that a similar idea is already used in [4] to show the existence of a
non-trivial finite submodule of XS(Qc) when p is odd.)

3. Proof of Theorem 1.1
In this section, we will only treat the case of Qc/Q when p = 2. Let

S be a non-empty finite set of odd prime numbers. In this section, we
write F (T ) = FQc/Q,S(T ) for simplicity (note that µQc/Q,S = 0). We can
compute F (T ) from the results given in [10]. To state this, we need some
preparations.
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We define a topological generator of Gal(Qc/Q) similar to [10]. That is,
let γ be the topological generator of Gal(Q(ζ4)c/Q(ζ4)) satisfying ζγ2n = ζ5

2n ,
and let γ1 be the restriction of γ to Qc. Then γ1 is a topological generator of
Gal(Qc/Q). We fix an isomorphism ΛQc/Q → Z2[[T ]] satisfying γ1 7→ 1 + T .

We define the subsets S◦ and S• of S by
S◦ = {q ∈ S | q ≡ 1 (mod 4)}, S• = {q ∈ S | q ≡ 3 (mod 4)}.

For q ∈ S, we put P (q) the number of primes of Qc lying above q. Let P ◦
be the largest number of P (q) for q ∈ S◦ (if S◦ is empty, we put P ◦ = 0).
Moreover, let P• be the set of (distinct) numbers P (q) for q ∈ S•, and put
P•• = {P ∈ P• |P ≥ P ◦} (if S• is empty, then both P• and P•• are also
empty). We define the following polynomials

F ◦(T ) =


 ∏
q∈S◦

((1 + T )P (q) − 5P (q))

 /((1 + T )P ◦ − 5P ◦) if S◦ 6= ∅,

1 if S◦ = ∅,

F •(T )

=


 ∏
q∈S•

((1 + T )P (q) + 5P (q))

 /( ∏
P∈P••

((1 + T )P + 5P )
)

if S• 6= ∅,

1 if S• = ∅.

Then, from the arguments and results given in [10] (especially, see the proof
of Lemma 2.3 of [10]), we see that

F (T ) = F ◦(T ) · F •(T ).
By using this formula, the value |F (0)|2 can be obtained. (Note that
|1 − 52a |2 = 2−(a+2) and |1 + 52a |2 = 2−1.) We can also compute |XS(Q)|
from the following exact sequence

0→ E(Q)⊗Z Z2 →
⊕
q∈S

R(Q, qZ)→ XS(Q)→ 0

and the fact that E(Q) = {±1}.
At first, we assume that S◦ = ∅. In this case, we see that

F (T ) =

 ∏
q∈S•

((1 + T )P (q) + 5P (q))

 /( ∏
P∈P•

((1 + T )P + 5P )
)
.

From this,
|F (0)|2 = 2|P•|−|S|.

We also see that |XS(Q)| = 2|S|−1, and hence

|XS(Q)| · |F (0)|2 = 2|P•|−1.
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This implies that |XS(Q)| · |F (0)|2 = 1 if and only if |P•| = 1. When
S = {q1, . . . , qr}, |P•| = 1 if and only if P (q1) = · · · = P (qr). Hence, by
using Proposition 2.1, the assertion of Theorem 1.1 has been shown for this
case.

We shall show the remaining case. It is sufficient to show that XS(Qc)
has a non-trivial finite submodule when S◦ 6= ∅. In this case, we see that

|F ◦(0)|2 = 22 · P ◦
∏
q∈S◦

(2−2P (q)−1), |F •(0)|2 = 2|P••|−|S•|.

On the other hand, we can show that

|XS(Q)| =

2|S•| ·
∏
q∈S◦

(22P (q))

 /2.
Hence

|XS(Q)| · |F (0)|2 = 2|P••|+1 · P ◦ > 1.
By using Proposition 2.1, we see that XS(Qc) has a non-trivial finite sub-
module in this case. Thus we have completed the proof of Theorem 1.1. �

4. Totally real fields
We shall show Theorem 1.2, however, we will give a simple remark before

this.

Remark 4.1. Let k be a real quadratic field, and p an odd prime number.
Let S be a non-empty finite set of prime numbers not containing p. For the
structure of XS(kc), it is sufficient to consider the case that every q ∈ S
satisfies either

(a) q ≡ 1 (mod p), or
(b) q ≡ −1 (mod p) and q is inert in k

(see [8]). We put
S1 = {q ∈ S | q ≡ 1 (mod p)}.

We note that if S1 6= ∅, then XS(kc) always contains a non-trivial finite
Λkc/k-submodule. Indeed, since Gal(kc/Qc) acts on XS(kc), the plus and
minus parts

XS(kc)± = {x ∈ XS(kc) | σ(x) = ±x for the generator σ of Gal(kc/Qc)}

can be defined, and we see that XS(kc) ∼= XS(kc)+ ⊕ XS(kc)−. We can
show that XS(kc)+ is isomorphic to XS1(Qc), and this is not trivial because
S1 6= ∅ (see also [10]). Hence, the assertion follows from the fact (which is
shown in [4]) that XS1(Qc) contains a non-trivial finite submodule. (The
same type result for imaginary quadratic fields is given in [4].)
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Proof of Theorem 1.2. Let k be a real quadratic field. Assume that p is
inert in k, and p (> 2) does not divide the class number of k. Let kcn be the
nth layer of kc/k. Take a topological generator γ of Gal(k(ζp)c/k(ζp)) which
satisfies ζγpn = ζ1+p

pn for all n. Let γ1 be the restriction of γ to kc, then γ1 is
a topological generator of Gal(kc/k). We fix an isomorphism from Λkc/k to
Zp[[T ]] satisfying γ1 7→ 1 + T .

Let q1, . . . , qr be distinct prime numbers satisfying the assumption of
this theorem. For each i, we see that R(k, qiOk) is a cyclic group of order
p · P (qi). Since X∅(k) = 0, we obtain the following exact sequence

E(k)⊗Z Zp →
r⊕
i=1

R(k, qiOk)→ XS(k)→ 0.

We note that E(k)⊗ZZp is a cyclic Zp-module. Hence, we have the inequal-
ities

pr−1 ·
(

r∏
i=1

P (qi)
)
/P ′ ≤ |XS(k)| ≤ pr ·

r∏
i=1

P (qi).

We will compute the characteristic polynomial of XS(kc). The following
argument is essentially given in [8, Section 6], however, we shall recon-
struct it for our situation. We denote by kcn the nth layer of kc/k. We put
Ri = lim←−nR(kcn, qiOkc

n
) (for each i) and E = lim←−nE(kcn) ⊗Z Zp, where the

projective limits are taken with respect to the norm mappings. By using
class field theory, we obtain the following exact sequence

E →
r⊕
i=1

Ri → XS(kc)→ 0

of Zp[[Gal(kc/Q)]]-modules (note that X∅(kc) = 0 by Iwasawa’s result [11]).
For each term of the above exact sequence, we can consider its plus and mi-
nus parts with respect to the action of Gal(kc/Qc). We note thatXS(kc)+ ∼=
XS(Qc) = 0 because qi ≡ −1 (mod p) for all i (see also Remark 4.1).
Hence we will consider the structure of XS(kc)−(∼= XS(kc)) as a module
over Λkc/k

∼= Zp[[T ]]. We can show that

R−i
∼= Ri ∼= Zp[[T ]]/((1 + T )P (qi) − (1 + p)P (qi))

as Zp[[T ]]-modules for each i (see, e.g., the argument given in the proof
of [10, Lemma 2.1]). Note also that E− ∼= Zp[[T ]] as a Zp[[T ]]-module. (For
example, by using [18, (11.3.11) Theorem (iii)], we see that

E ∼= Zp[[Gal(kc/Q)]] ∼= Zp[Gal(k/Q)][[T ]],

and hence the fact follows.) From [8, Theorem 1.1], we see that X{qi}(kc)
is finite for each i. Hence, by using the same type argument given in [10],
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we obtain the following exact sequence

0→ E−/((1 + T )P ′ − (1 + p)P ′)→
r⊕
i=1

Ri → XS(kc)→ 0

as Zp[[T ]]-modules. From the above results, we can see that

Fkc/k,S(T ) =
(

r∏
i=1

((1 + T )P (qi) − (1 + p)P (qi))
)
/((1 + T )P ′ − (1 + p)P ′)

(and µkc/k,S = 0). Then, we can obtain the formula

|Fkc/k,S(0)|p = p1−r · P ′/
(

r∏
i=1

P (qi)
)
.

Consequently, we see that |XS(k)| · |Fkc/k,S(0)|p = 1 if and only if

|XS(k)| = pr−1 ·
(

r∏
i=1

P (qi)
)
/P ′.

The assertion follows from Proposition 2.1. �

As a special case of Theorem 1.2, we obtain the following:

Corollary 4.2. Let the assumptions be as in Theorem 1.2, and suppose also
that P (qi) = 1 for i = 1, . . . , r. Then, XS(kc) does not have a non-trivial
finite submodule if and only if |XS(k)| = pr−1.

Remark 4.3. Let the assumptions be as in the above corollary (that is,
P (qi) = 1 for all i). In this case, we can show that if |X{qi}(k)| = 1 for some
qi, then |XS(k)| = pr−1, and hence XS(kc) does not have a non-trivial
finite submodule. We will give an example. In the case when k = Q(

√
2)

and p = 3, it can be shown that |X{q}(k)| = 1 for q = 5, 11, 83. (The author
used PARI/GP [25] (versions 2.9.1 and 2.9.3) to check these examples.) As
a consequence, at least for k = Q(

√
2) and p = 3, we can take a set S such

that XS(kc) ∼= Z⊕c3 (as a Z3-module) for any given positive integer c (e.g.,
X{5,11,29}(kc) ∼= Z⊕2

3 ).

Remark 4.4. Let the assumptions be as in Theorem 1.2, however, we
remove the assumption that p does not divide the class number of k. We
also assume that X∅(kc) is non-trivial and finite. Under these assumptions,
we can see that the characteristic polynomial Fkc/k,S(T ) of XS(kc) is the
same as in the proof of Theorem 1.2. In this case, we see that

|XS(k)| · |Fkc/k,S(0)|p ≥ |X∅(k)| > 1

(recall also that µkc/k,S = 0), and hence XS(kc) contains a non-trivial finite
submodule.
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We will give another example. The method of construction is different
from Theorem 1.2.

Proposition 4.5. Let p be an odd prime number. There is a finite set S
of prime numbers (not containing p), and a finite p-extension k of Q such
that XS(kc) ∼= Zp as a Zp-module.

Proof. We use the result given in [17] (see also [9]). Let S = {q1, q2} be a
set of distinct prime numbers satisfying the condition of [17, Theorem 1].
(We will not use this condition directly in this proof. For the existence
of such a set S, see also [17, Remark 1, Remark 2].) Let LS(Qc)/Qc be
the maximal pro-p extension unramified outside S. From [17, Theorem 1],
we see that Gal(LS(Qc)/Qc) is isomorphic to an infinite metacyclic pro-p
group G topologically generated by a, b which satisfy

ap
2 = 1, b−1ab = a1+p.

(In the following, we will identify Gal(LS(Qc)/Qc) with G.) For a positive
integer n, letHn be the open subgroup of G which is topologically generated
by bpn . Then, we can take n such that the fixed field L of LS(Qc) by Hn is
a Galois extension over Q. Since L/Qc is finite, there is a finite p-extension
k/Q such that L = kc. We also note that k is totally real.

By the above results, Gal(LS(Qc)/kc) ∼= Zp. Note that LS(Qc) is also
the maximal pro-p extension of kc unramified outside S. This implies that
XS(kc) ∼= Gal(LS(Qc)/kc). The assertion follows. �

5. Proof of Theorem 1.3
In this section, we put k = Q(

√
−3) and p = 3. Note that there is only

one prime p of k lying above 3. Suppose that q1, q2 satisfy the assumptions
of Theorem 1.3, and put S = {q1, q2}. We see that qi is inert in k and
|R(k, qiOk)| = 3 for i = 1, 2. Note also that |XS(k)| = 3 because the image
of ζ3 in R(k, q1Ok)⊕R(k, q2Ok) is not trivial.

First, we will show that XS(k̃) is not pseudo-null. To see this, we need
some preparations. Let ka/k be the anti-cyclotomic Z3-extension, and kam
its mth layer.

Lemma 5.1. Let the assumptions be as in Theorem 1.3. We put F = kam.
Then dimQ3 XS(F c)⊗Z3 Q3 ≥ 3m − 1.

Proof. Our proof of this lemma uses a method given in [8], [10], [17], etc.
Take a topological generator γ of Gal(F c/F ) satisfying ζγ3n = ζ4

3n for all
n, and fix an isomorphism from ΛF c/F to Zp[[T ]] satisfying γ 7→ 1 + T .

We remark that the prime of k lying above qi splits completely in F (see,
e.g., [12]), and hence there are 3m primes in F lying above qi (for i = 1, 2).
Put r = 3m. We denote by q1,1, . . . , qr,1 (resp. q1,2, . . . , qr,2) the primes of
F lying above q1 (resp. q2). Note that each qi,j is not decomposed in F c/F
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by the assumptions. Let F cn be the nth layer of F c/F . We denote by in(qi,j)
the extension of qi,j in F cn. Note that we can see that

lim←−
n

R(F cn, in(qi,j)) ∼= Z3[[T ]]/(T − 3)

as a Z3[[T ]]-module (see also the proof of Theorem 1.2 in Section 4).
Note that 3 does not divide the class number of k, and only p is ramified

in F cn/k. Hence X∅(F c) is trivial (by Iwasawa’s result [11]). We put E =
lim←−nE(F cn) ⊗Z Z3 where the projective limit is taken with respect to the
norm mappings. We can also regard E as a Z3[[T ]]-module. By using class
field theory, we obtain the following exact sequence

E/(T − 3)→ lim←−
n

2⊕
j=1

r⊕
i=1

R(F cn, in(qi,j))→ XS(F c)→ 0

(cf. e.g., [17], [10]). Note that the second term is isomorphic to (Zp[[T ]]/
(T − 3))⊕2r, and hence it is free of rank 2r as a Z3-module.

By using [18, (11.3.11) Theorem (iii)] (F c/F satisfies the assumption of
this theorem), we see that

E ∼= Z3[[T ]]⊕r ⊕ Z3(1),

here Z3(1) is the first Tate twist of Z3. Hence dimQ3 E/(T−3)⊗Z3Q3 = r+1.
The assertion follows from these facts. �

Lemma 5.2. Under the assumptions of Theorem 1.3, XS(k̃) is not pseudo-
null as a Λ

k̃/k
-module.

Proof. Let the notations be as in Lemma 5.1. Note that F c is an interme-
diate field of k̃/kc, and F c/kc is a cyclic extension of degree 3m. Since p

is totally ramified in k̃/k, we see that the Gal(k̃/F c)-coinvariant quotient
XS(k̃)Gal(k̃/F c) is isomorphic to XS(F c). We can also show that XS(k̃) is a
finitely generated Z3[[Gal(k̃/kc)]]-module because XS(k̃)Gal(k̃/kc)

∼= XS(kc)
is finitely generated over Z3 (see, e.g., [10]). However, Lemma 5.1 implies
that XS(k̃) is not a torsion Z3[[Gal(k̃/kc)]]-module. From this, we can de-
duce that XS(k̃) is not pseudo-null as a Λ

k̃/k
-module (see Greenberg [7], or

Lemma 2.3 of Fujii [3]). �

Remark 5.3. Concerning the non-pseudo-nullity of XS(k̃) (for a general
imaginary quadratic field k), see also Kataoka [14]. However, Kataoka’s
result does not cover our case (p = 3 and k = Q(

√
−3)).

Lemma 5.4. Under the assumptions of Theorem 1.3, XS(K) does not have
a non-trivial finite ΛK/k-submodule for every Z3-extension K/k.
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Proof. Let K/k be an arbitrary Z3-extension, and put H = Gal(k̃/K).
We recall that p is totally ramified in K/k, and |XS(k)| = 3. Hence, by
Corollary 2.2, it is sufficient to show that XS(K) is infinite. Assume that
XS(K) is finite. In our situation, the H-coinvariant quotient XS(k̃)H is
isomorphic to XS(K), and hence XS(k̃)H is also finite. Then we can see
that XS(k̃) is pseudo-null by using Perrin-Riou’s result [24, Lemme 4] (see
also Minardi [15]). However, this contradicts to Lemma 5.2. �

The remaining part of our proof of Theorem 1.3 is heavily relied on
Greenberg’s results given in [6]. Assume that the maximal pseudo-null
submodule Z of XS(k̃) is not trivial. Let I be the augmentation ideal of
Z3[[Gal(k̃/k)]]. We claim that Z/I is finite. To show this, we use a simi-
lar argument which is given in the paragraph before Lemma 5 of [6]. Let
K/k be a Z3-extension. We put H = Gal(k̃/K) and Γ = Gal(K/k). Re-
call that p is totally ramified in k̃/k. Then XS(k̃)H ∼= XS(K), and it is
a finitely generated torsion Z3[[Gal(K/k)]]-module. From this, we can see
that (XS(k̃)/Z)H is trivial, and hence the natural Z3[[Gal(K/k)]]-module
homomorphism ZH → XS(k̃)H(∼= XS(K)) is injective. Moreover, since
XS(K)Γ ∼= XS(k) is finite, we can show that (ZH)Γ is finite. Then the
claim follows. From this, we can apply [6, Lemma 5]. In this case, there
must be a Z3-extension K†/k such that ZGal(K†/k) has a non-trivial finite
submodule, and then XS(K†) has a non-trivial finite submodule from the
above argument. This contradicts Lemma 5.4. Hence, Theorem 1.3 com-
pletely follows. �

Remark 5.5. There is another method to deduce Theorem 1.3 from the
lemmas. We shall state this briefly. We take the isomorphism
Z3[[Gal(kc/k)]] ∼= Z3[[T ]] given in the proof of Lemma 5.1, then we see
that µkc/k,S = 0 and Fkc/k,S(T ) = T − 3 (see, e.g., [10]). Moreover, by
Lemma 5.4, we see that XS(kc) ∼= Z3 as a Z3-module. Recall also that
XS(k̃)Gal(k̃/kc)

∼= XS(kc). Moreover, it can be shown that XS(k̃) is a cyclic
Z3[[Gal(k̃/k)]]-module. Hence, XS(k̃) ∼= Z3[[Gal(k̃/k)]]/A, where A is the
annihilator ideal of Z3[[Gal(k̃/k)]] for XS(k̃). By Lemma 5.2, XS(k̃) is not
pseudo-null. By a similar argument given in the proof of [2, Proposition 3.1]
(or [15, Section 3.D]), we can show that A is a principal ideal generated
by an irreducible element. (The fact that Fkc/k,S(T ) = T − 3 is crucial.)
Hence, XS(k̃) does not contain a non-trivial pseudo-null submodule.

Appendix A. Weak analogs of Greenberg’s conjecture
Let k be a totally real field and p an odd prime number. We denote

by S a finite set of prime numbers which does not contain p. To consider
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the structure of XS(kc), it is sufficient to treat S satisfying the following
condition (see also, e.g., [10]):

(R) For each q ∈ S, there is a prime q of k lying above q such that
R(k, q) is not trivial.

When k is a real quadratic field, the condition (R) is equivalent to the
condition that every q ∈ S satisfies (a) or (b) in Remark 4.1.

Let MS,p(kc) be the maximal abelian pro-p extension of kc unramified
outside S ∪ {p}. In this case, we see that Gal(MS,p(kc)/kc) is a finitely
generated torsion Λkc/k-module. We also see that Gal(MS,p(kc)/kc) does
not contain a non-trivial finite Λkc/k-submodule. (For these results, see,
e.g., [6], [18].)

First, we consider the case when S = ∅. It is conjectured that X∅(kc)
is finite (Greenberg’s conjecture [5]). Moreover, some weak forms of this
conjecture are also proposed (see Nguyen Quang Do [19], [20]).
(Conj1) X∅(kc) is trivial or contains a non-trivial finite Λkc/k-submodule.
(Conj2) Gal(M∅,p(kc)/kc) is trivial or Gal(M∅,p(kc)/L∅(kc)) is not trivial.
Remark A.1. Note that (Conj1) implies (Conj2). If p splits completely in
k and Leopoldt’s conjecture holds for k and p, then (Conj1) and (Conj2) are
equivalent (see [19], [22]). In [19] and [20], Nguyen Quang Do considered
these conjectures for the case when k is a real abelian field and p splits
completely in k (see also [21]).

Next, we shall consider the “S-ramified” version of these assertions:
(Conj1S) XS(kc) is trivial or contains a non-trivial finite Λkc/k-submodule.
(Conj2S) Gal(MS,p(kc)/kc) is trivial or Gal(MS,p(kc)/LS(kc)) is not trivial.

However, the results given in Section 4 imply that the assertion (Conj1S)
does not hold in general. For the assertion (Conj2S), we can obtain the
following:
Theorem A.2. Let k be a totally real field, p an odd prime number, and S
a non-empty finite set of prime numbers which does not contain p. Assume
that S satisfies (R). If Gal(L{q}(kc)/L∅(kc)) is finite for some q ∈ S, then
Gal(MS,p(kc)/LS(kc)) is not trivial.
Proof. When k = Q, this assertion is already mentioned in [4] (and the
proof of our case is almost similar). Take a prime number q ∈ S such that
Gal(L{q}(kc)/L∅(kc)) is finite. Since S satisfies (R), we see that
Gal(M{q},p(kc)/M∅,p(kc)) is infinite (see, e.g., [18, (11.3.5) Theorem and
(11.3.6) Corollary]). Hence Gal(M{q},p(kc)/L∅(kc)) is also infinite. Thus, we
conclude that Gal(M{q},p(kc)/L{q}(kc)) is infinite. Since LS(kc) ⊆
M{q},p(kc)LS(kc) ⊆ MS,p(kc), we can show that Gal(MS,p(kc)/LS(kc)) is
not trivial. (Note that we do not need the validity of Leopoldt’s conjecture
in this proof.) �
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Moreover, we can also see the following:

Proposition A.3. Let k be a totally real field, p an odd prime number,
and S a non-empty finite set of prime numbers which does not contain
p. Assume that Leopoldt’s conjecture holds for k and p. Assume also that
p splits completely in k. Then XS(kc) contains a non-trivial finite Λkc/k-
submodule if and only if Gal(MS,p(kc)/LS(kc)) is not trivial.

Proof. The proof is quite similar to the case when S = ∅. See [22] or [19]
(see also [4] for the case when k = Q and S 6= ∅). Note that we need
the finiteness of Gal(MS,p(kc)/kc)Γ (where Γ = Gal(kc/k)) to show the
triviality of Gal(MS,p(kc)/kc)Γ, however, this follows from class field theory
and the validity of Leopoldt’s conjecture for k and p (see, e.g., [18]). �

Hence we obtained the following:

Corollary A.4. Let k be a totally real field, p an odd prime number, and S
a non-empty finite set of prime numbers which does not contain p. Assume
that S satisfies (R). Assume also that p splits completely in k, and Leopoldt’s
conjecture holds for k and p. If Gal(L{q}(kc)/L∅(kc)) is finite for some
q ∈ S, then XS(kc) contains a non-trivial finite submodule.

When k is a real abelian field and p is an odd prime, it was shown
that Gal(L{q}(kc)/L∅(kc)) is finite for every prime number q(6= p) (see [8,
Theorem 1.1]). Hence, by combining the validity of Leopoldt’s conjecture
(see [1]), we can also obtain the following:

Corollary A.5. Let k be a real abelian field, p an odd prime number, and S
a non-empty finite set of prime numbers which does not contain p. Assume
that S satisfies (R). Then the following statements hold.

(1) Gal(MS,p(kc)/LS(kc)) is not trivial.
(2) Moreover, if p splits completely in k, then XS(kc) contains a non-

trivial finite submodule.

Note that the assertions of the above corollary were already shown in [4]
for the case when k = Q.
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