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Modularity of elliptic curves over abelian totally
real fields unramified at 3, 5, and 7

par SHO YOSHIKAWA

RESUME. Soit K un corps totalement réel qui est une extension abélienne
finie de Q non ramifiée en 3,5 et 7. Nous prouvons que toute courbe elliptique
E sur K est modulaire, en réduisant la question de modularité de F aux
théorémes de reléevement modulaire connus.

ABSTRACT. Let K be a totally real field which is a finite abelian extension
over Q and is unramified at 3,5, and 7. We prove that any elliptic curve E
over K is modular, by reducing modularity of E to known modularity lifting
theorems.

1. Introduction

Let E be an elliptic curve over a totally real field K. We say that E
is modular if there exists a Hilbert eigenform f over K of parallel weight
2 such that L(E,s) = L(f,s). The classical Shimura-Taniyama conjec-
ture asserts that all elliptic curves over Q are modular. This conjecture for
semi-stable elliptic curves, which was the crucial step in proving Fermat’s
Last Theorem, was proved by Wiles [18] and Taylor-Wiles [16]. Later, the
general case of the conjecture was completed by Breuil-Conrad-Diamond—
Taylor [2].

The Shimura—Taniyama conjecture has a natural generalization to totally
real fields:

Conjecture 1.1. Let K be a totally real number field. Then, any elliptic
curve over K is modular.

A number of developments of modularity lifting theorems enable us to
prove that elliptic curves with certain conditions are modular. Also, it is
known that all elliptic curves over any totally real fields are potentially
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modular, in the sense that they become modular after a suitable totally real
base change. This essentially follows from Taylor’s potential automorphy
argument in [15]. (The detailed proof is given in the appendix of [9], and a
survey on potential modularity of elliptic curves is found in [3].) However,
it has been difficult to prove the modularity of all elliptic curves over a
fixed field.

Recently, a breakthrough on this problem was brought by Freitas—
Le Hung—Siksek. In their paper [5], they prove Conjecture 1.1 for any qua-
dratic field. Based on the methods and results of loc. cit., we attack Con-
jecture 1.1 for certain abelian totally real fields. More precisely, the main
theorem is the following;:

Theorem 1.2. Let K be a totally real number field which is abelian over
Q. Suppose that K is unramified at every prime above 3, 5, and 7. Then,
any elliptic curve over K is modular.

In the rest of this introduction, we explain the structure of the proof of
Theorem 1.2.

Firstly, we prove the following proposition, which is a complementary
result of [5, Theorem 7] (see Proposition 3.2); we treat elliptic curves with
additive reduction at a prime dividing p = 5 or 7, instead of semi-stable
reduction as considered in loc. cit..

Proposition 1.3. Let p =5 or 7. Let K be a totally real field, p a prime of
K dividing p, and v, the normalized discrete valuation of K at p. Also, let
E be an elliptic curve over K. Assume that K is unramified at p, that the
j-tnvariant jg of E is nonzero, and that E has additive reduction at p with
pEp (absolutely) irreducible, with pg, the mod p Galois representation de-
fined by p-torsion points of E. Then, ,5E,p|G(K(§p)) is absolutely irreducible,
unless either of the following exceptional cases holds:

(1) p=5, vy(jg) =1 mod 3, and E has additive potential good (super-
singular) reduction at p, or

(2) p=17, v(jr) = 2 mod 3, and E has additive potential good (ordi-
nary) reduction at p.

Remarks 1.4.

(1) Note that, for p # 2, pg, is irreducible if and only if pg, is ab-
solutely irreducible. This follows from the presence of the complex
conjugates in Gg. So, we will omit the term “absolutely” if we do
not need it.

(2) The absolute irreducibility of pg p|cy, ¢,y 10 the above proposition is
very important, because under this condition we may use a powerful
modularity theorem for elliptic curves; for details, see Theorem 4.1.
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The proof of Proposition 1.3 will be given in Section 3. The basic strategy
is the same as [5, Theorem 7|; we shall sketch it very briefly. First we
look closely at the projective image of pgp(I,), where I, is the inertia
subgroup at p, to find a cyclic subgroup of certain order in that projective
image. Then, we show that the existence of such a cyclic subgroup forces
PEpla(x(c,)) to be absolutely irreducible; to do this, we use a description 5,
Proposition 9.1] (see Theorem 3.1) of the projective image of pg ;, such that
PEpla(k(c,)) is absolutely reducible.

Since we treat the cases of additive reduction, we need to look at local
mod p Galois representations more carefully than [5, Theorem 7]. The local
computations are carried out in Section 2. For this local arguments, we
heavily use the results of Kraus [7].

Secondly, we show the following result:

Theorem 1.5. Let K be a totally real field in which 7 is unramified. If £
is an elliptic curve over K with pg 7 irreducible, then E is modular.

Let us sketch the proof of Theorem 1.5. By Proposition 1.3 and [5, The-
orem 7] together with the modularity result [5, Theorem 2], we prove mod-
ularity of many elliptic curves with irreducible mod 7 representations. In
the remaining cases where neither Proposition 1.3 nor [5, Theorem 7] can
be applied, we will see that we may use another modularity lifting theo-
rem due to Skinner—Wiles [14] to prove modularity. The detailed proof of
Theorem 1.5 is given in Section 4.

We remark that Theorem 1.5 is seen as a mod 7 variant of the following
theorem due to Thorne.

Theorem 1.6 ([17, Theorem 7.6]). Let K be a totally real field with /5 ¢
K. If E is an elliptic curve over K with pg 5 irreducible, then E is modular.

Finally, in Section 5, we complete the proof of Theorem 1.2. Let K be
a totally real field as in Theorem 1.2 and E be an elliptic curve over K.
We want to show that F is modular. If pg s or pg 7 is irreducible, then
modularity of E follows from Theorem 1.5 or Theorem 1.6, so that we may
assume that E has reducible mod 5 and mod 7 representations. In this case,
by an elementary group-theoretic argument, we show that a quadratic twist
of E will be semi-stable at all primes dividing 3. Then, we can use another
modularity theorem [4] due to Freitas to prove modularity of E.

2. Local computations

First, we fix the notation of this section:

(1) pis a prime number.
(2) F is an absolutely unramified p-adic local field.
(3) v is the normalized p-adic discrete valuation of F'.
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(4) wi: I = pp1(F) — F)* denotes the fundamental character of
level 1, and wo,wh: I — py2 1 (F) — IF';2 denote the fundamental
characters of level 2. Here, I = I is the inertia subgroup of Gp.

(5) E is an elliptic curve over F having additive reduction.

(6) pep: Gr — GLa(F,) is the mod p Galois representation attached
to p-torsion points of E.

The aim of this section is to capture certain cyclic groups inside the
projective image of pg ,|7. The results obtained here will be used to prove
Proposition 1.3 in the next section. In this section, we only consider el-
liptic curves having additive reduction. More precisely, we consider the
following three cases; additive potential multiplicative reduction, additive
potential good ordinary reduction, or additive potential good supersingular
reduction. In each of the following subsections, we treat these three cases
separately, and we heavily use the results of Kraus in [7]. We remark that,
although Kraus proves his results for elliptic curves over Q,, the proofs also
work without change for those over any absolutely unramified p-adic field.

Potential multiplicative reduction case.

Proposition 2.1. Let p > 3 be a prime number, F an unramified extension
of Qp, and E an elliptic curve over F' with additive potential multiplicative
reduction. Then, the restriction of pg, to the inertia subgroup I is of the
form

Pl
_ w *
(2.1) PEplI = ! p—1
0 w?
Proof. See [7, Proposition 10]. O

Since the projective image of (2.1) is of the form (% 7), we obtain the

following corollary:

Corollary 2.2. In the setting of Proposition 2.1, the projective image
PpE p(GF) contains a cyclic subgroup of order p — 1.

Potential ordinary reduction case.

Proposition 2.3. Let p > 5 be a prime number, F an unramified exten-
sion of Qp, and E an elliptic curve over F' with additive potential ordinary
reduction. Denote A for a minimal discriminant of E and v for the nor-
malized discrete valuation of F. Set o = (p—1)v(A)/12, which is an integer
as noted just before 2.3.2 in [7]. Then, the restriction of pg, to the inertia
subgroup I is of the form

11—«
— w *
(2:2) pE,prI:< L )

w1
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Proof. See [7, Proposition 1]. O

The projective image of (2.2) is of the form ("J}:a i), and w2 is a

character of order m := (pif%liw. Thus, the projective image Ppg ,(GF)
contains a cyclic subgroup of order m. In the following, we compute the
order m for certain p, which we will take as 5 or 7 in Section 3.

Suppose first that p is a prime number of the form p = 2% 4+ 1 for an
integer a > 2. Since 1 — 2« is an odd integer, 1 — 2« is prime to p — 1 = 2¢
so that we have m = p — 1. Thus, we have the following corollary.

Corollary 2.4. Let p be a prime number of the form p = 2%+ 1 with a > 2
an integer, F/Q, an unramified extension, and E an elliptic curve over F
with additive potential good ordinary reduction. Then, the projective image
PpE p(GF) contains a cyclic group of order p — 1.

Suppose next that p is a prime number of the form p = 3-2+41 with a >
an integer. Since a = (p — 1)v(A)/12 is an integer, 1 — 2a = 1 — 29" 1y(A
is odd. Thus, we have

m— el (w(A) = (-1)2"! mod 3)
Cp—1 (otherwise).

1
)

Therefore, we obtain the following corollary:

Corollary 2.5. Let p be a prime number of the form p=3-2*+1 for an
integer a > 1, F/Q, an unramified extension, and E be an elliptic curve
over F' with additive potential good ordinary reduction. Let also A be a
minimal discriminant of E. Then, Ppg,(Gp) contains a cyclic group of
order (p —1)/3 or p — 1, depending on whether v(A) = (—=1)2~! mod 3 or
not, respectively.

Potential supersingular reduction case. As in the previous subsec-
tions, we begin with Kraus’ result.

Proposition 2.6. Letp > 5 be a prime number, F' an unramified extension
of Qp, and E an elliptic curve over F' with additive potential supersingular
reduction. We choose a minimal model

y* =23+ Az + B
of E. Also, let A denote a minimal discriminant of E.
(1) If (v(A),v(A),v(B)) is one of the triples (2,1,1),(3,1,2),(4,2,2),
(8,3,4), (9,3,5), or (10,4,5), then pg,p is wildly ramified.
(2) If (v(A),v(A),v(B)) is not any of the above triples, then the re-
striction of pgp to the inertia subgroup I is given by

o, /P&
(2.3) ,5E,p|I ®1Fp2 ~ <w2w§ 0 ) .

wh waP ™
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Here, o = (p+1)v(A)/12 is an integer as noted in [7, Proposition 2].

Proof. The part (1) is a consequence of [7, Lemme 2, Proposition 4]. The
part (2) follows directly from [7, Proposition 2, Lemme 2]. O

From the case (1) in the above proposition, we immediately obtain the
following corollary:

Corollary 2.7. Let the notation be as in Proposition 2.6. If the condition

of (a) holds, then the projective image Ppg ,(GF) contains a p-group.
Next, we consider the case (b) in the Proposition 2.6. The image of (2.3)

in PGLy(F,2) is of the form (“’;(%1)(2%1) 0).

—(p—1)(2a+1) . L p+1
Wo is of order n := GFiZaTT)

F,2)(Gr) (and hence P(pg,)(GF)) contains a cyclic subgroup of order n.
In the rest of this subsection, we make computations of the number n for
certain p. We will apply them to the case p =5 or 7 in Section 3.

Suppose first that p is a prime number of the form p = 2 — 1 with a > 3
an integer. Since « is an integer, 2« + 1 is prime to p + 1 = 2% so that
n = p + 1. Thus, we have proved the following corollary:

Since the character

the projective image P(pg, ®

Corollary 2.8. Let p be a prime number of the form p =2%—1 witha > 3
an integer, F/Q, an unramified extension, and E an elliptic curve over
F with additive potential good supersingular reduction. Assume the condi-
tion of (b) in Proposition 2.6 holds. Then, the projective image Ppg ,(GF)
contains a cyclic group of order p + 1.

Suppose next that p is a prime number of the form p = 3-2—1 witha > 1
an integer. Since a = (p + 1)v(A)/12 is an integer, 2a + 1 = 2¢"1y(A) + 1
is odd. Thus, we have

_ % (v(A) = (—1)* mod 3)
p+1 (otherwise).
Therefore, we obtain the following corollary:

Corollary 2.9. Let p be a prime number of the form p = 3 -2% — 1 with
a > 1 an integer, F/Q, an unramified extension, and E an elliptic curve
over I with additive potential good supersingular reduction. Let also A be a
minimal discriminant of E. Assume the condition of (b) in Proposition 2.6
holds. Then, Ppg ,(GF) contains a cyclic group of order (p+1)/3 orp+1,
depending on whether v(A) = (—1)* mod 3 or not, respectively.

3. Irreducibility of mod 5 or 7 representations; the proof of
Proposition 1.3

In this section, we apply the results in the previous section to prove the
following proposition:
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Proposition 1.3. Let p =5 or 7. Let K be a totally real field, p a prime of
K dividing p, and vy, the normalized discrete valuation of K at p. Also, let
E be an elliptic curve over K. Assume that K is unramified at p, that the
j-tnvariant jg of E is nonzero, and that E has additive reduction at p with
pEp (absolutely) irreducible. Then, pgplc(k(c,)) s absolutely irreducible,
unless either of the following exceptional cases holds:
(1) p=5, v(jg) =1 mod 3, and E has additive potential good (super-
singular) reduction at p, or
(2) p=17, v(jE) = 2 mod 3, and E has additive potential good (ordi-
nary) reduction at p.

Before proving this proposition, we give a few facts. The following re-
sult will be useful for deducing absolute irreducibility of ﬁEyp’GK( &) from
irreducibility of pg .

Theorem 3.1 ([5, Proposition 9.1]). Let p =5 or 7, and K be a totally
real field satisfying K N Q(¢p) = Q. For an elliptic curve E over K such
that pgyp is irreducible but ﬁE,p‘Gmcw is absolutely reducible, we have the
following:
(1) If p =5, then prs(Gk) is a group of order 16, and its projective
image Ppg 5(Gk) is isomorphic to (Z/27)?.
(2) If p=17, then Ppg 7(Gk) is isomorphic to Sg or Dy.

Using this theorem, Freitas—Le Hung—Siksek obtained the following re-
sult.

Proposition 3.2 ([5, Theorem 7]). Let p=>5 or 7. Let K be a totally real
field having some unramified prime p above p. Let E be an elliptic curve
semi-stable at p and suppose that pg, is irreducible. Then, pg pla(k(c,))
absolutely irreducible.

As noted in the introduction, Proposition 1.3 treats elliptic curves with
additive reduction at a prime above p = 5 or 7, while Proposition 3.2
considers those with semi-stable reduction at such a prime.

Proof of Proposition 1.3. Denote by A a minimal discriminant of FE, :=
E @k K,. We split the proof into three cases according to reduction of E:

Case (i). If E has additive potential multiplicative reduction at p, then
Corollary 2.2 for E, implies that Ppg ,(Gk) has a cyclic subgroup of order
p — 1. Thus, Theorem 3.1 implies that 5E7P|Gx(gp) cannot be absolutely
reducible.

Case (ii). Suppose next that E has additive potential good ordinary re-
duction at p.
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If p = 5, then Corollary 2.4 for E,, shows that Ppg 5(G'x) contains a cyclic
subgroup of order 4. Thus, by Theorem 3.1(1), ﬁEv5|GK(c5) is absolutely
irreducible.

Also, if p = 7 and v(A) = 0,2 mod 3, then Corollary 2.5 shows that
PpE,7(Gk) has a cyclic subgroup of order 6. Hence, Theorem 3.1 (2) implies
that ,5E,7|GK( o I8 absolutely irreducible.

We consider the remaining case; that is, p = 7 and vp(A) = 1 mod 3.
These cases are equivalent to the case vy(jr) = 2 modulo 3; in fact, this
follows by taking a minimal model 3% = 23 + Az + B of Ej, and noting that
jE = 172843 /A.

Case (iit). Finally, suppose that E has additive potential good supersingu-
lar reduction at p.

If the condition (1) in Proposition 2.6 holds, then Corollary 2.7 and
Theorem 3.1 show that pg,|¢ K(Cp) is absolutely irreducible.

Assume the condition (2) in Proposition 2.6 holds. Then we have the
following two cases:

e If p=>5and v(A) = 0,1 mod 3, then Ppg 5(Gk) contains a cyclic
subgroup of order 6 by Corollary 2.9. Hence, Theorem 3.1 (1) shows
that ﬁE,5|GK( ) is absolutely irreducible. The remaining case when
p =5 and vp(A) =2 mod 3 can be rephrased as vy(jg) = 1 mod 3.

o If p =7, then IEE77|GK(§7) is absolutely irreducible by Corollary 2.8
with Theorem 3.1(2).

In summary, combining (i), (ii), and (iii), we have seen that ﬁE7p|GK(§p)

is absolutely irreducible unless the following conditions hold:
(1) p =5, vp(jr) = 1 mod 3, and E has additive potential good (su-
persingular) reduction at p, or
(2) p="7,v(jr) =2 mod 3, and E has additive potential good (ordi-
nary) reduction at p.

This shows Proposition 1.3. O

4. Proof of Theorem 1.5
First we recall Theorem 1.5 stated in the introduction:

Theorem 1.5. Let K be a totally real field in which 7 is unramified. If £
is an elliptic curve over K with pg 7 irreducible, then E is modular.

To prove Theorem 1.5, we first need the following modularity theorem for
elliptic curves, which is deduced from deep modularity lifting theorems due
to many people. Note that we do not have to care about residual modularity,
thanks to the theorem of Langlands-Tunnell and the modularity switching
arguments.
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Theorem 4.1 ([5, Theorem 2|). Let E be an elliptic curve over a totally
real field K. If p = 3,5, or 7, and if ﬁE,p|GK(<p) is absolutely irreducible,
then E is modular.

We also employ another modularity lifting theorem for residually dihe-
dral representations due to Skinner-Wiles. Since there is a mistake in the
original paper [14], we will state the modified version as corrected in [12,
Theorem 1].

As [12] has not been published, we begin with introducing some notation
and terminology from loc. cit..

First, let p be a prime number, K a totally real field, and p: Gx —

GL2(F,) a 2-dimensional mod p Galois representation such that

—(p)
o [xa *
P’Dp ~ ( 0 )_((2,3))
=(p)

for each p|p. We say that p is Dy-distinguished if x;"" # )Zgj), in which case

we fix the ordering of )ng) and )ng). Write xo = ()Zép))mp. We say that a lift

p': G — GLa(Qy) of p is a Y2-good lift of p, if for each plp,

(p)
/ ~ [ Xi *
olon = ( 0 X%”)

and the reduction of Xép) is )ng).

Next, let p: Gx — GLQ(@p) be a 2-dimensional p-adic Galois represen-
tation. Fix an isomorphism C ~ @p and consider the following properties
of p:

i) p is continuous and irreducible,
(ii) p is unramified at all finite places outside of some finite set X,

(iii) det p(7) = —1 for all complex conjugations 7,

(iv) detp = wx;j’_l for some integer w > 2 and some character v of
finite order, where x, is the p-adic cyclotomic character, and
(v) for each prime p|p of K,

(v s
p|D,, —< 0 ¢§p)

with wép) |7, having finite order.

Here, the condition (iv) can be generalized to treat the case of non-parallel
weights, but for our purpose it suffices to consider (iv) in the above form;
indeed, when p arises from an elliptic curve, 1 is trivial and w = 2.

Now we state the Skinner—Wiles” modularity lifting theorem:
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Theorem 4.2 ([12, Theorem 1]). Suppose that p: Gx — GL2(Q,) satis-
fies (i)—~(v) above. Let p** denote the semi-simplification of a mod p reduc-
tion of p. Suppose also that

(1) p* is irreducible and D,-distinguished for all p|p;.
(2) there exists a cuspidal representation my of GLa(Ak) such that the
p-adic Galois representation pr, associated to my is a X2-good lift of

p°%, where )Zép) 1s the reduction of ¢£p) for plp;
(3) if ﬁSS|GK(Cp) is reducible and the quadratic subfield K* of K((p)/K
is a CM extension, then not every prime p|p of K splits in K*.
Then p is modular.

To ensure the conditions (1) and (2) in our situation, we use the following
lemma.

Lemma 4.3. Let p > 2 be a prime number and p: Gx — GLa(F,) a mod
p Galois representation such that

=(p)
_ ~ Xl *
vl = ( 0 xé’”)

for each p|p. Assume that p is irreducible and /3|G(K(<p)) is reducible.
(1) If K is unramified at p, then p is Dy-distinguished for every p|p.
(2) There exists a reqular cuspidal automorphic representation my which
gives a X2-good lift of p.
Proof. Since p is irreducible and p|g(x(c,)) is reducible, we obtain p =
Indgi< X, where L is the quadratic subextension of K((,)/K and x: G —

JF;; is a character.

(1). Let p be any prime of K dividing p. Set D = D, and D' = DN Gy.
We have D # D’ because K is unramified at p, and so p|p = IndB, x|p:.
Since p|ps contains X|ps and p|p is reducible as in the assumption, x|p/ is
extended to x' = )Zz(p) for i =1 or 2. Hence we obtain p|p = X’ @ x'¢, where
e: D — D/D’" ~ {£1} is the canonical quadratic character. This shows
that p is D-distinguished.

(2). See [1, Lemma 5.1.2]. O

With the above preparations in hand, we are now ready to prove Theo-
rem 1.5.

Proof of Theorem 1.5. Let K and E be as in Theorem 1.5. If E has
semi-stable reduction at some prime dividing 7, then the assertion follows
from [5, Theorem 7]. So suppose that E has additive reduction at every
prime p|7. If jg = 0, then E has complex multiplication. Thus, the Tate
module of F is induced from a character, which proves that E is modular
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by class field theory and the automorphic induction. So we may moreover
assume that jg # 0. By Proposition 1.3 and Theorem 4.1, we have only
to consider the case when E has potential good ordinary reduction at ev-
ery prime p|7 and pg 7|G(k(¢;)) is absolutely reducible. In this case, we will
apply Theorem 4.2 in order to prove the modularity of E.

In the following, we check that our pg7: Gx — GL2(Z7) satisfies (i)—(v)
and (1)-(3) in Theorem 4.2. First, the conditions (i)—(iv) are immediate.
Also, pg 7 satisfies (v) because we now assume that E has potential good
ordinary reduction at every p|7. As K is unramified at 7, Lemma 4.3 (1) for
pe,7 implies (1). Also (2) follows from Lemma 4.3(2) for pg 7. Finally, the
condition (3) is automatic under our assumption that K is unramified at
7. Therefore, Theorem 4.2 shows that F is modular. O

Remark 4.4. A similar argument does not reprove Theorem 1.6 even if
K is just unramified at 5; in fact, Proposition 1.3 implies that an elliptic
curve E over K with ﬁE75\G( K(¢s)) absolutely reducible must have additive
potential supersingular reduction at every prime p|5. In such a case, the
theorem of Skinner-Wiles [14] is unavailable.

Remark 4.5. In his thesis [8], Le Hung essentially shows the following;
if K is a totally real field unramified at 5 and 7, and if F is an elliptic
curve over K with both pg, (p = 5,7) irreducible, then E is modular.
This follows from [8, Proposition 6.1] combined with the modularity lifting
theorem due to Skinner-Wiles [14].

Remark 4.6. Recently, S. Kalyanswamy [6] announced to prove a version
of Theorem 1.5. He actually proves a new modularity theorem [6, Theo-
rem 3.4] for certain Galois representations, and applies it to elliptic curves
in [6, Theorem 4.4]. For clarity, we describe the difference between Theo-
rem 1.5 and [6, Theorem 4.4]: Kalyanswamy considers elliptic curves over a
totally real field F' with F' N Q({7) = Q, which is weaker than the assump-
tion that F'is unramified at 7, while he also imposes an additional condition
on the mod 7 Galois representations. Therefore, both Theorem 1.5 and [6,
Theorem 4.4] have their own advantage.

5. Proof of the second main theorem: Theorem 1.2

In this last section, we finally prove the following theorem:

Theorem 1.2. Let K be a totally real number field which is abelian over
Q. Suppose that K is unramified at every prime above 3,5, and 7. Then,
any elliptic curve over K is modular.

For the proof of Theorem 1.2, we need another modularity theorem due to
Freitas [4]. This theorem essentially follows from [13], [14], and Theorem 4.1.
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Theorem 5.1 ([4, Theorem 6.3]). Let K be an abelian totally real field
where 3 is unramified. Let E be an elliptic curve over K semi-stable at all
primes p|3. Then, E is modular.

Also, we note a well-known result on a torsion version of Neron—-Ogg—
Shafarevich criterion of good reduction.

Lemma 5.2 ([10, Corollary 2 of Theorem 2|). Let F' be a local field, E an
elliptic curve over F with potential good reduction, and m > 3 an integer
relatively prime to the residual characteristic of F'.
(1) The inertia group of F(E[m])/F is independent of m.
(2) The extension F(E[m])/F is unramified if and only if E has good
reduction.

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let K be as in Theorem 1.2 and FE an elliptic curve
over K. Our goal is to prove that E is modular. By Theorem 1.5 and
Theorem 1.6, we may assume that both pg 5 and pg 7 are reducible; that
is, ppp for p = 5,7 factors through a Borel subgroup B(F,). Note that
B(Fs5) (resp. B(F7)) is of order 42 - 5 (resp. 62 - 7).

In this situation, we claim that a suitable quadratic twist of £ becomes
semi-stable at every prime p|3 of K. So let p be a prime of K dividing 3.

If £, = EF'® K, is semi-stable, then its quadratic twist Eéa) by any unit
a € O}{p is also semi-stable, because £, and Eéa) become isomorphic over
an unramified extension K,(y/a) of K.

Suppose next that Ej, has additive potential good reduction. Then, by
Lemma 5.2, the actions of the inertia subgroup I, C Gk, on E[5] and E[7]
factor through the same nontrivial quotient I,. This implies that || divides
ged(4%-5,6% - 7) = 4, and hence I is tame (and so cyclic) of order dividing
4. Since the 2-Sylow subgroups of B(IF7) are of order 4 and not cyclic, I;,
must be of order 2. Because det pg, is trivial on I if p # 3, we see that Ig
acts on Ep] (p =5,7) via £1. It follows that the quadratic twist of E, by
any uniformizer of K, has good reduction by Lemma 5.2(2).

Finally, suppose that E}, has additive potential multiplicative reduction.
In this case, using [11, C, Theorem 14.1], we see that the quadratic twist
of Ej, by any uniformizer of K, has multiplicative reduction.

By the Chinese remainder theorem, we find an element d € K such that,
for each prime p|3 of K,

(d) 0 (if E is semi-stable at p)
v =
i 1 (if E has additive reduction at p).

For such a d, the above argument shows that the quadratic twist E@ of E
by d is semi-stable at every prime p|3 of K, and hence the claim follows.
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Now Theorem 5.1 implies that E(® is modular. Since modularity of elliptic
curves is invariant under quadratic twists, it follows that F is modular. [
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