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Some remarks on pseudo-null submodules of
tamely ramified Iwasawa modules

par Satoshi FUJII et Tsuyoshi ITOH

Résumé. Nous donnons diverses observations sur la structure des modules
d’Iwasawa modérément ramifiés pour une Zp-extension (ou une Zp-extension
multiple) d’un corps de nombres. Dans cet article, nous considérons la question
de savoir si un module d’Iwasawa modérément ramifié possède un sous-module
fini (ou pseudo-nul) non-nul ou non. Pour la Zp-extension cyclotomique de Q
(avec p impair), nous pouvons obtenir une solution complète à cette question.
Nous donnons également des conditions suffisantes pour avoir un sous-module
pseudo-nul non-nul pour la Z⊕2

p -extension d’un corps quadratique imaginaire.
Et nous donnons aussi une application de nos résultats à la « théorie d’Iwasawa
non-abélienne » dans le sens d’Ozaki.

Abstract. We will give several observations about the structure of tamely
ramified Iwasawa modules for a Zp-extension (or a multiple Zp-extension)
of an algebraic number field. In the present paper, we consider the question
whether a given tamely ramified Iwasawa module has a non-trivial finite (or
pseudo-null) submodule or not. For the cyclotomic Zp-extension of Q (with
odd p), we can obtain a complete answer to this question. We also give suffi-
cient conditions for having a non-trivial pseudo-null submodule for the case of
the Z⊕2

p -extension of an imaginary quadratic field. We also give an application
of our results to the “non-abelian Iwasawa theory” in the sense of Ozaki.

1. Introduction

We recall some basic facts on “tamely ramified Iwasawa modules”. (For
the details of this paragraph, see [12].) Let p be an odd prime number.
Firstly, we will consider the cyclotomic Zp-extension Qc over the field Q
of rational numbers. Take a finite set S of finite primes of Q which does
not contain p. Let LS(Qc) be the maximal abelian pro-p extension of Qc

which is unramified outside S. (The term “unramified outside S” denotes
that every prime of Qc lying above ` 6∈ S or the infinite prime of Q is
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unramified.) Put XS(Qc) = Gal(LS(Qc)/Qc). We also put Γ = Gal(Qc/Q),
and Λ1 = Zp[[Γ]] (the completed group ring). Note that XS(Qc) is a finitely
generated torsion Λ1-module because p 6∈ S.XS(Qc) is called the S-ramified
Iwasawa module. We note that a prime number q ∈ S which satisfies q 6≡ 1
(mod p) does not have an effect on the structure of XS(Qc). Thus, it is
convenient to add the assumption that
(C1.1) the congruence q ≡ 1 (mod p) is satisfied for every q ∈ S.

Greenberg’s conjecture [8] says that the “unramified” Iwasawa module
(i.e., the case when S = ∅) of the cyclotomic Zp-extension of a totally real
number field is always finite. Contrary to this, it is known that XS(Qc) can
be infinite (see [19]). Note also that XS(Qc) is finitely generated as a Zp-
module, and a formula of the Zp-rank of XS(Qc) is also known (see [12]).
Hence a naive analog of Greenberg’s conjecture does not hold for general
S. However, we can obtain the following:
Theorem 1.1. Assume that S is not empty and satisfies (C1.1). Then
XS(Qc) always contains a non-trivial finite Λ1-submodule.

We shall give two proofs of Theorem 1.1 in Section 2. One is based
on Ozaki’s method (given in [23]) for studying the unramified Iwasawa
module of the cyclotomic Zp-extension of a totally real field. The other is
an extension of the argument given in [12].

One may expect to generalize this theorem for other situations (e.g.,
the cyclotomic Zp-extension of a totally real field). However, Y. Mizusawa
remarked that the same assertion does not hold for the cyclotomic Z2-
extension of Q. That is, for a certain set S of finite primes of Q (which
does not contain 2), the S-ramified Iwasawa module of the cyclotomic Z2-
extension of Q is infinite and does not contain a non-trivial finite submodule
(see [18, Theorem 7.3]). It was also found (after Mizusawa’s remark) that
there are an odd prime p, a totally real number field H, and a finite set
S of finite primes of H (which does not contain any prime lying above p)
such that the S-ramified Iwasawa module of the cyclotomic Zp-extension of
H is infinite and does not contain a non-trivial finite submodule. However,
the details about such an example will be given in another paper. (In the
present paper, we shall treat only the “having case”.)

We are also concerned with whether the similar assertion to Theorem 1.1
is satisfied for the case of multiple Zp-extensions or not. Let F be an arbi-
trary algebraic number field and S a finite set of finite primes of F which
does not contain any prime lying above p. Let F̃ /F be the composite of
all Zp-extension of F . Then it is well known that Gal(F̃ /F ) ∼= Z⊕dp as a
Zp-module with a certain positive integer d. We put Γd = Gal(F̃ /F ) and
Λd = Zp[[Γd]]. Let LS(F̃ ) be the maximal abelian pro-p extension of F̃ un-
ramified outside S, and put XS(F̃ ) = Gal(LS(F̃ )/F̃ ). We can show that
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XS(F̃ ) is a finitely generated torsion Λd-module by using the argument
given in [7].

Greenberg’s generalized conjecture (GGC) says that X∅(F̃ ) is a pseudo-
null Λd-module, that is, the annihilator ideal of Λd for X∅(F̃ ) has height at
least 2 (see [10, Conjecture (3.5)]). For the case of tamely ramified Iwasawa
modules, we consider the following:

Question 1.2. When does XS(F̃ ) have a non-trivial pseudo-null Λd-sub-
module?

When S = ∅, this question is weaker than GGC, and there are several
relating works (see, e.g., [2, 4, 29]).

Note that XS(F̃ ) also can be a non-pseudo-null Λd-module when S 6= ∅
and d = 2 (see Section 7). We found that there are many cases such that
XS(F̃ ) contains a non-trivial pseudo-null submodule when the base field is
an imaginary quadratic field. One more main purpose of the present paper
is to state such cases. This will be done in Sections 3 and 4.

In the following, we denote by k an imaginary quadratic field, and S a
finite set of finite primes of k which does not contain any prime lying above
p (note that p is odd). In this case, k̃/k is a Z⊕2

p -extension. Similar to the
case of Qc/Q, any prime q ∈ S satisfying Nq 6≡ 1 (mod p) does not have
an effect on the structure of XS(k̃), where Nq is the absolute norm of q
(see also, e.g., [12, 13]). Hence, it is sufficient to consider S satisfying the
following condition.
(C1.2) Nq ≡ 1 (mod p) is satisfied for every q ∈ S.
Take a prime q ∈ S, and let q be the rational prime lying below q. Then,
under the condition (C1.2), q satisfies either of

(1) q ≡ 1 (mod p), or
(2) q ≡ −1 (mod p), and q is inert in k.

We put
S1 = {q ∈ S | q satisfies (1)} and S2 = {q ∈ S | q satisfies (2)}.

In Section 3, we consider Question 1.2 for the case that p splits in k. When
S = ∅, the first author [4] gave a Z⊕2

p -extension analog of Ozaki’s result
given in [23]. We will give an S-ramified version of this result. However, we
only show it under a (somewhat strict) condition on S, because we could
not imitate the original argument in general.
Theorem 1.3. Assume that p splits into two distinct primes p and p′ in k.
Let MS,p(k̃) be the maximal abelian pro-p extension of k̃ unramified outside
S ∪ {p}. Assume also that S satisfies (C1.2) and S1 = ∅. Then XS(k̃) con-
tains a non-trivial pseudo-null submodule if and only if Gal(MS,p(k̃)/LS(k̃))
is non-trivial.
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Note that for the case S = ∅, the above theorem is just the first author’s
original result [4, Theorem 1].

In Section 4, we will consider Question 1.2 for the case that p does not
split in k (recall that k is an imaginary quadratic field). One of our results
is a sufficient condition for having a non-trivial pseudo-null submodule.
Before stating this, we will introduce a condition on S.

(C1.3) For q ∈ S, if the rational prime q below q splits in k,
S contains all primes above q.

(Roughly speaking, S comes from a set of rational primes.)

Theorem 1.4. Assume that p does not split in k. Let S be a finite set of
primes of k satisfying the conditions (C1.2) and (C1.3). If S1 6= ∅, then
XS(k̃) contains a non-trivial pseudo-null submodule.

We also mention that further observations are given in Sections 3 and 4.
In particular, relating Question 1.2, the structure of S-ramified Iwasawa
modules of the “p-ramified” Zp-extension is also considered in Section 3.

From our results in the present paper, it can be expected that an analog
of Theorem 1.1 for imaginary quadratic fields (with odd p) holds without a
few exceptional cases. However, we need more observations to clarify this.
(Actually, when we were preparing the present paper, an example such
that XS(k̃) is not trivial and it does not contain a non-trivial pseudo-null
submodule was found. The details also will be given in another paper.)

In Section 5, we shall give an application to “non-abelian Iwasawa the-
ory” in the sense of Ozaki [26]. We will show some results on the structure
of the Galois group of the maximal S-ramified pro-p extension of Qc (or the
cyclotomic Zp-extension of an imaginary quadratic field). Section 6 is an
appendix. We will discuss a certain assertion stated in Section 3. Section 7
is an additional section to remark Kataoka’s recent result.

We will define some notations and symbols which will be used. In the
following of the present paper, p always denotes an odd prime number. Let
νp( · ) be the additive p-adic valuation of Q which satisfies νp(p) = 1. For
a finite set A, we denote by |A| its number of elements. Let G be a pro-p
group which is topologically isomorphic to the additive group of Zp. For a
Zp[[G]]-module X, let XG (resp. XG) be the G-invariant submodule (resp.
theG-coinvariant quotient) ofX. For an algebraic number field F , let OF be
the ring of integers of F . As we have already done, we often identify a finite
prime of F with the corresponding prime ideal of OF (or the corresponding
prime number when F = Q). We also denote by F c = FQc the cyclotomic
Zp-extension over F .

We also define some notations concerning extensions with restricted ram-
ification. In this paragraph, k denotes Q or an imaginary quadratic field.
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Let S be a finite set of finite primes of k which does not contain any prime
lying above p, and K/k an algebraic extension. We denote by LS(K) the
maximal abelian pro-p extension over K unramified outside S, and put
XS(K) = Gal(LS(K)/K). We also denote by MS,p(K) the maximal abelian
pro-p extension over K unramified outside S ∪{primes lying above p}, and
put XS,p(K) = Gal(MS,p(K)/K). When k is an imaginary quadratic field in
which p splits into two distinct primes p and p′, we defineMS,p(K) similarly
(unramified outside S ∪ {p}). We also put XS,p(K) = Gal(MS,p(K)/K).

2. Finite submodules of the S-ramified Iwasawa modules for the
cyclotomic Zp-extension of Q

In this section, let S be a finite set of finite primes of Q satisfying (C1.1),
and assume also that S is not empty. Recall that Γ = Gal(Qc/Q) and
Λ1 = Zp[[Γ]]. We shall restate the notations given in [12]. For each positive
integer n, we put ζpn = e

2π
√
−1

pn . Recall that Qc(ζp) =
⋃
nQ(ζpn) is the

cyclotomic Zp-extension over Q(ζp). We take a topological generator γ of
Gal(Qc(ζp)/Q(ζp)) which satisfies ζγpn = ζ1+p

pn . We also put γ′ = γ|Qc . As
usual, we fix an isomorphism Λ1 → Zp[[T ]] satisfying γ′ 7→ 1 + T . Since
XS(Qc) is a finitely generated torsion Λ1-module, the characteristic ideal
charΛ1 XS(Qc) ⊆ Zp[[T ]] can be defined.

We put r = maxq∈S νp(q − 1). (From our assumption, r ≥ 1.) For i =
1, . . . , r, we denote by ni the number of q ∈ S satisfying νp(q−1) = i. (Note
that ni ≥ 0, nr ≥ 1, and n1 + · · ·+ nr = |S|.) We put Pi = pi−1. From the
results of [12], we can see that charΛ1 XS(Qc) is generated by F (T ), where

F (T ) =
(

r∏
i=1

{
(1 + T )Pi − (1 + p)Pi

}ni)
/
{

(1 + T )Pr − (1 + p)Pr
}
.

(Although this is not explicitly written in [12], we can easily deduce this
fact from the arguments given there. Especially, see Lemma 2.1, Lemma 2.2,
the proof of Lemma 2.3, and Theorem 3.1 of [12].)

We note that Ozaki’s arguments given in [23] are also applicable to our
situation. Since F (T ) is not divisible by T , we can show that XS(Qc)Γ =
(XS(Qc)fin)Γ, where XS(Qc)fin is the maximal finite Λ1-submodule of
XS(Qc) (see the proof of [23, Proposition 2]). Hence, to see Theorem 1.1,
it is sufficient to show that XS(Qc)Γ is not trivial.

First proof of Theorem 1.1. The following is an analog of Ozaki’s result [23,
Proposition 2].

Lemma 2.1. XS(Qc)Γ ∼= Gal(MS,p(Qc)/LS(Qc))Γ.

Proof. This lemma can be shown by using the same argument given in [23].
Hence we only give an outline of the proof.
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We claim that the following holds.
(a) As a Zp-module, XS,p(Qc) is finitely generated and free.
(b) The prime lying above p is unramified in MS,p(Q)/Qc.
(c) XS,p(Qc)Γ is finite.

By using the argument given in the proof of [12, Lemma 3.2], we can
show (a). The argument which is given in the proof of [23, Proposition 1]
shows (b). Note that XS,p(Qc)Γ is isomorphic to Gal(MS,p(Q)/Qc). Then
the assertion (c) follows from the fact that the Zp-rank of Gal(MS,p(Q)/Q)
is just 1.

To see the assertion of this lemma, we consider the following exact se-
quence

0→ Gal(MS,p(Qc)/LS(Qc))→ XS,p(Qc)→ XS(Qc)→ 0,
and evaluate the Γ-invariant and the Γ-coinvariant of each term. From (a)
and (c), we can see that XS,p(Qc)Γ is trivial. Moreover, from (b), we see
that XS,p(Qc)Γ ∼= XS(Qc)Γ. The lemma follows from these facts. �

The following is also an analog of Ozaki’s result [23] (see also [4, Theo-
rem B]).

Corollary 2.2. XS(Qc) has a non-trivial finite Λ1-submodule if and only
if Gal(MS,p(Qc)/LS(Qc)) is non-trivial.

The above corollary follows from Lemma 2.1 and Nakayama’s lemma.
Moreover, by using this, we obtain the following:

Corollary 2.3. If there is a subset S′ of S such that XS′(Qc) has a non-
trivial finite Λ1-submodule, then XS(Qc) also has.

Proof. Note that MS′,p(Qc) is a subfield of MS,p(Qc). Hence, if
Gal(MS′,p(Qc)/LS′(Qc)) is not trivial, then Gal(MS,p(Qc)/LS(Qc)) is also
not trivial. �

Remark 2.4. Since XS′(Qc) is a quotient of XS(Qc), the above corollary
seems a non-trivial result.

Under these preparations, we shall show Theorem 1.1. Take a prime
q ∈ S. By using [12, Theorem 3.1] and the fact that q ≡ 1 (mod p), we see
that X{q}(Qc) is non-trivial and finite. From Corollary 2.3, XS(Qc) has a
non-trivial finite Λ1-submodule. �

Second proof of Theorem 1.1. Recall that F (T ) is prime to T . Then it is
well known that

|XS(Qc)Γ| · pνp(F (0)) = |XS(Qc)Γ|
(see, e.g., [28, Exercise 13.12]). We shall compute both νp(F (0)) and
|XS(Qc)Γ| to show that XS(Qc)Γ is non-trivial.
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Since

F (0) =
(

r∏
i=1

{
1− (1 + p)Pi

}ni)
/
{

1− (1 + p)Pr
}

and νp(1− (1 + p)Pi) = i, we see that

νp(F (0)) =
(

r∑
i=1

nii

)
− r.

Note that only one prime ramifies in Qc/Q, and it is totally ramified. Hence,
we can see that
(2.1) XS(Qc)Γ ∼= XS(Q)
(see the below remark 2.5). It is easy to see that

νp(|XS(Q)|) =
r∑
i=1

nii.

These computations imply that |XS(Qc)Γ| = pr > 1. Then we can conclude
that XS(Qc) contains a non-trivial finite Λ1-submodule. �

Remark 2.5. The proof of (2.1) is quite similar to the case of (usual)
unramified Iwasawa modules (see, e.g., [28, Chapter 13]). Note also that
more general results are already stated in some earlier papers, e.g., [1,
15]. (However, it seems that a few places of Section 3 of [1] need slight
correction.)

3. Question 1.2 for imaginary quadratic fields in which p splits

Let k be an imaginary quadratic field, and k̃/k the unique Z⊕2
p -extension.

We put Γ2 = Gal(k̃/k), and Λ2 = Zp[[Γ2]]. In this section, let S be a finite
set of finite primes of k which does not contain any prime lying above p
and satisfying (C1.2).

We shall give some sufficient conditions such that XS(k̃) has a non-trivial
pseudo-null submodule. In the rest of this section, we assume the following:
(C3.1) p splits into two distinct primes p and p′ in k.

Firstly, we shall show Theorem 1.3 (stated in Section 1).

Proof of Theorem 1.3. This also can be shown by imitating the original
argument given in [4]. (We remark that XS(kc) is finitely generated as a
Zp-module (see [12]), and both XS,p(k̃) and XS,p(k̃) are finitely generated
Λ2-modules.) It is sufficient to confirm the following facts. In this proof, we
will use a “Zp-extension” k̃/kc.

(a) The equality MS,p(kc) = LS(kc) holds under the assumption that
S1 = ∅ (cf. [4, Lemma 2]).
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(b) XS,p(k̃) has Λ2-rank 1, and does not have a non-trivial pseudo-null
Λ2-submodule.

(c) XS,p(k̃) does not have a non-trivial pseudo-null Λ2-submodule.
Note that under the assumption that S1 = ∅, we see that bothMS,p(kc) and
LS(kc) are Galois extensions over Qc. Hence Gal(kc/Qc) acts on XS,p(kc).
As usual, we can decompose

XS,p(kc) ∼= XS,p(kc)+ ⊕ XS,p(kc)−

with respect to the action of Gal(kc/Qc). We also see that XS,p(kc)+ is
isomorphic to XS†,p(Qc), where S† is the set of rational primes lying below
S. In this case, we can see that XS†,p(Qc) = X∅,p(Qc) because S1 = ∅ (see
also the proof of [12, Lemma 3.2]), and then it is trivial. From this, we
can use the argument given in the proof of [4, Lemma 2], and then (a)
follows. The assertion (b) is well known (see, e.g., [21, Théorème 3,1], [11,
Theorem 4], [20, 9.3.2 Corollary]). Finally, we can see (c) from (b) by using
arguments given in [27] and [4]. The remaining part of the proof is quite
similar to that of the original proof given in [4] (when S = ∅). �

Remark 3.1. In the above proof, the assumption that S1 = ∅ is crucial.
Actually, the assertion (a) does not hold for general S (see Section 6).

Similar to Corollary 2.3, we can obtain the following:

Corollary 3.2. Assume that k and p satisfy (C3.1), and S satisfies (C1.2).
Assume also that S1 = ∅. If there exists a subset S′ of S (including the case
when S′ = ∅) such that XS′(k̃) has a non-trivial pseudo-null Λ2-submodule,
then XS(k̃) also has.

In particular, if X∅(k̃) is not trivial and GGC holds, then XS(k̃) has a
non-trivial pseudo-null Λ2-submodule for every S which satisfies S1 = ∅.
For example, when the class number of k is prime to p and the Iwasawa
λ-invariant of the cyclotomic Zp-extension kc/k is greater than 1, these
conditions are satisfied from Minardi’s result [17, Proposition 3.A].

We shall give a sufficient condition such that XS(k̃) has a non-trivial
pseudo-null submodule. Let kp/k be the unique Zp-extension unramified
outside p. Minardi [17] used kp/k to give a sufficient condition for the
validity of GGC. We also use this Zp-extension, however, our argument is
somewhat different from Minardi’s one.

We put Γp = Gal(kp/k), and Λp = Zp[[Γp]]. We can see that both XS(kp)
and XS,p(kp) are finitely generated torsion Λp-modules. Take a topological
generator γp of Γp, and fix an isomorphism Λp → Zp[[T∗]] with γp 7→ 1 +T∗.
As usual, we also consider XS(kp) and XS,p(kp) as Zp[[T∗]]-modules.
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Lemma 3.3. Suppose that k and p satisfy (C3.1). Assume that S satis-
fies (C1.2), and p is totally ramified in kp/k. Then

XS(kp)Γp ∼= Gal(MS,p(kp)/LS(kp))Γp .

Proof. The proof is quite similar to that of Lemma 2.1 (and hence it is also
based on Ozaki’s argument). It is sufficient to check the following assertions.

(a) XS,p(kp) has no non-trivial finite Λp-submodule.
(b) The prime lying above p is unramified in MS,p(k)/kp.
(c) XS,p(kp)Γp is finite.

The assertion (a) can be shown by using the argument given in [9, p. 91–
94]. By using class field theory, we see that the Zp-rank of XS,p(k) is 1. The
assertion (c) follows from this. Note that the inertia subgroup of XS,p(k)
for p is a cyclic Zp-module. Since p is ramified in kp/k, the assertion (b)
follows. (Remark also that (c) implies that a generator of the characteristic
ideal charΛpXS,p(kp) ⊆ Zp[[T∗]] is not divisible by T∗.) �

Corollary 3.4. Suppose that k and p satisfy (C3.1). Assume that S satis-
fies (C1.2), and p is totally ramified in kp/k.

(1) XS(kp) contains a non-trivial finite Λp-submodule if and only if
Gal(MS,p(kp)/LS(kp)) is not trivial.

(2) If there exists a subset S′ of S such that XS′(kp) has a non-trivial
finite Λp-submodule, then XS(kp) also has.

(3) Assume that S1 = ∅. If there exists a subset S′ of S such that
XS′(kp) has a non-trivial finite Λp-submodule, then XS(k̃) has a
non-trivial pseudo-null Λ2-submodule.

Proof. Recall the argument given in Section 2. Let XS(kp)fin be the maxi-
mal finite Λp-submodule of XS(kp). Then we can show that XS(kp)Γp ∼=
(XS(kp)fin)Γp . By using Lemma 3.3 and Nakayama’s lemma, the asser-
tion (1) follows. The proof of (2) is similar to that of Corollary 2.3, hence
we omit it here. We will show (3). Assume that XS′(kp) has a non-trivial
finite Λp-submodule. By (1), we see that Gal(MS′,p(kp)/LS′(kp)) is not
trivial. Since every prime lying above p does not ramify in k̃/kp, we see
that MS′,p(kp)LS(k̃)/LS(k̃) is a non-trivial extension. This implies that
Gal(MS,p(k̃)/LS(k̃)) is not trivial because S′ ⊂ S. The assertion follows
from Theorem 1.3. �

For an integer n ≥ 0, let kpn be the nth layer of kp/k.

Corollary 3.5. Suppose that k and p satisfy (C3.1). Assume that S sat-
isfies (C1.2), and p is totally ramified in kp/k. We denote by DS(kpn) the
decomposition subgroup of XS(kpn) for the prime lying above p. If there exists
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a subset S′ of S such that DS′(kpn1) is not trivial for some n1 ≥ 0, then the
following assertions hold.

(1) XS(kp) has a non-trivial finite submodule.
(2) Moreover, if S1 = ∅, then XS(k̃) has a non-trivial pseudo-null sub-

module.

Proof. We will only show the assertion (1), because (2) directly follows from
this and Corollary 3.4(3).

We mention that some standard tools obtained in the studies of Green-
berg’s conjecture for totally real fields (e.g., [8, 23]) are also usable for our
situation (see also [5] for the case of kp/k with S′ = ∅).

Let m be the product of all prime ideals of k contained in S′. (We identify
a finite prime of k and the corresponding prime ideal of Ok. We put m = Ok
when S′ = ∅.) We denote by mn the extension of m in kpn. Let AS′(kpn) be
the Sylow p-subgroup of the ray class group of kpn modulo mn. (If S′ = ∅,
then AS′(kpn) is the Sylow p-subgroup of the ideal class group.) By class
field theory, we see that XS′(kpn) is isomorphic to AS′(kpn) because S′ does
not contain any prime lying above p. Under this isomorphism, DS′(kpn) can
be identified with the subgroup of AS′(kpn) which consists of the classes
containing a power of the prime ideal lying above p.

We put

BS′(kpn) = {c ∈ AS′(kpn) | cγ = c for γ ∈ Gal(kpn/k)}

(cf. [8]). Recall that p is totally ramified in kpn/k, and it is the unique
ramified prime. From this, we can see that |BS′(kpn)| = |AS′(k)| (see also [8,
p. 269]). Hence |BS′(kpn)| is bounded with respect to n. Since DS′(kpn) is
contained in BS′(kpn), the order of DS′(kpn) is also bounded.

We will mention one more fact. The essential part of the arguments
in this paragraph is due to [22]. For integers m > n ≥ 0, let in,m be
the natural mapping AS′(kpn) → AS′(kpm) which comes from the extension
mapping of ideals. We also consider the restriction mapping pn : XS′(kp)→
XS′(kp)/ωnXS′(kp), where ωn = (1 + T∗)p

n − 1 ∈ Zp[[T∗]]. Since p is the
unique ramified prime in kp/k and it is totally ramified, we can see that

XS′(kp)/ωnXS′(kp) ∼= XS′(kpn) (∼= AS′(kpn))

(see also Remark 2.5). Let XS′(kp)fin be the maximal finite Λp-submodule
of XS′(kp). Then, for all sufficiently large m, we see that the kernel of in,m
is isomorphic to pn(XS′(kp)fin) by using the same argument given in the
proof of [22, p. 218, Proposition]. Hence, if the kernel of in,m is not trivial,
then XS′(kp) has a non-trivial finite submodule.

Under these preparations, we shall show the assertion (1). Recall that
|DS′(kpn)| is bounded with respect to n. Hence, by using a similar argument
as given in [8, p. 267] (the proof of Corollary to Proposition 1), we see that
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the image of DS′(kpn1) by in1,n2 is trivial for a sufficiently large n2(> n1).
This implies that AS′(kpn1) contains a ray class which becomes trivial in
kpn2 . Hence, from the above mentioned fact, XS′(kp) has a non-trivial finite
submodule. By using Corollary 3.4(2), we see that XS(kp) also has a non-
trivial finite submodule. �

When D∅(k) is not trivial (that is, the order of the ideal class of k
containing p is divisible by p) and p is totally ramified in kp/k, then XS(k̃)
contains a non-trivial pseudo-null submodule for every S satisfying (C1.2).
If otherwise, we can obtain the following:

Theorem 3.6. Suppose that k and p satisfy (C3.1). Assume that p is totally
ramified in kp/k. There are infinitely many finite primes q of k such that
X{q}(k̃) contains a non-trivial pseudo-null submodule. In particular, we can
take q such that S1 = ∅ for S = {q}.

Proof. Let q be an odd prime number which is inert in k, and satisfies
q ≡ −1 (mod p). Let q be the unique prime k lying above q. In this case,
we can decompose A{q}(k) ∼= A{q}(k)+⊕A{q}(k)− with respect to the action
of Gal(k/Q). Since q 6≡ 1 (mod p), it follows that A{q}(Q) is trivial. This
implies that A{q}(k) ∼= A{q}(k)−. Since p and p′ are conjugate over Q, if
the subgroup of A{q}(k) generated by powers of p and p′ is non-trivial, then
D{q}(k) is also non-trivial. If we put S = {q}, then S1 = ∅. By Corollary 3.5,
ifD{q}(k) is non-trivial, then we can conclude thatX{q}(k̃) has a non-trivial
pseudo-null submodule. We show that infinitely many such prime numbers
q exist.

Let E{p} be the group of p-units of k, that is, the group of units in Ok[1
p ].

Since p splits in k, the Z-rank of E{p} is 2. Let E{p}/E
p
{p} = (E{p}/E

p
{p})

+⊕
(E{p}/E

p
{p})

− be the decomposition with respect to the action of Gal(k/Q).
We remark that (E{p}/E

p
{p})

− is a non-trivial cyclic group. Let π be an
element of E{p} whose class modulo Ep{p} is trivial in (E{p}/E

p
{p})

+ and
generates (E{p}/E

p
{p})

−. Fix a primitive pth root ζp of unity. We note that
π is not a pth power in k(ζp) because the degree [k(ζp) : k] is prime to p.
By Kummer theory, we have an isomorphism

Gal
(
k
(
ζp,

p
√
π
)
/k(ζp)

) ∼= Hom((E{p}/E
p
{p})

−, 〈ζp〉)

of Gal(k(ζp)/Q)-modules. From natural restriction mappings of Galois
groups, we have an isomorphism

Gal(k(ζp)/Q) ∼= Gal(k/Q)×Gal(Q(ζp)/Q).
Choose an element σ of Gal(k(ζp)/Q) such that σ|k generates Gal(k/Q),
and that σ|Q(ζp) is the complex conjugation. Let F be the subfield fixed
by σ. (Actually, F is the maximal real subfield of k(ζp).) By the choice of
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σ, one sees that k(ζp, p
√
π)/F is abelian, and hence is a cyclic extension of

degree 2p. Let σ̃ be a generator of Gal(k(ζp, p
√
π)/F ).

By the Čebotarev density theorem, there exist infinitely many prime
numbers q such that q splits completely in F and

σ̃ =
[
k(ζp, p

√
π)/F

Q

]

for some prime Q of k(ζp, p
√
π) lying above q, where the right-hand-side is

the Frobenius element of Q at the extension k(ζp, p
√
π)/F . Then one sees

that q is inert in k and that q ≡ −1 (mod p). Let q be the prime of k lying
above q. Since a prime lying below Q is inert in k(ζp, p

√
π)/k(ζp), π mod q

is not in {(Ok/q)×}p. Also, since the p-primary part of (Ok/q)× can be
embedded into A{q}(k), we see that D{q}(k) is not trivial. This completes
the proof. �

4. Question 1.2 for imaginary quadratic fields in which p does
not split

Let k be an imaginary quadratic field. In this section, we shall consider
Question 1.2 for the case when p does not split in k. Let S be a finite set
of finite primes of k which does not contain the prime lying above p. Some
notations defined in Section 3 are also used in this section.

Minardi [17] gave examples such that the unramified Iwasawa module
X∅(k̃) has a non-trivial pseudo-null submodule when p is inert in k by
showing that the decomposition subgroup for a prime lying above p is
not trivial. (See also [2].) The same idea can be applicable to our tamely
ramified case.

Throughout this section, we assume that k and p satisfy the following
condition.

(C4.1) p does not split in k.

Let K be an intermediate field of k̃/k. For a prime P of K lying above
p, we denote by DS(K)P the decomposition subgroup of XS(K) for P. Put
DS(K) =

∑
PDS(K)P, where P runs over all primes lying above p. (Note

that there are only finitely many primes lying above p in K.) The following
lemma plays a fundamental role in this section.

Lemma 4.1. Assume that k and p satisfy (C4.1). Let S be a finite set of
primes of k satisfying (C1.2). Then the following assertions hold.

(1) (See also [17].) DS(k̃) is a pseudo-null Λ2-module.
(2) For a finite subextension F/k contained in k̃, if DS(F ) is not trivial,

then XS(k̃) contains a non-trivial pseudo-null submodule.
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Proof. Note that DS(k̃) is a Λ2-submodule and it is finitely generated as a
Zp-module. Hence (1) follows.

We shall show (2). Let k′ be the inertia field of k̃/k for the unique prime
p lying above p. We remark that p splits completely in k′, because k′/k
is an unramified abelian p-extension and the order of p in the ideal class
group of k is not divisible by p. Of course, every prime lying above p is
totally ramified in k̃/k′. From this fact, if DS(F ) is non-trivial, then DS(k̃)
is also. Combining with the result in (1), we obtain (2). �

In particular, if DS(k) is not trivial, then XS(k̃) has a non-trivial pseudo-
null submodule. Apart from this, we can obtain the following:

Proposition 4.2. Assume that k is Q, or an imaginary quadratic field
satisfying (C4.1). Assume also that k 6= Q(

√
−3) if p = 3. Let q be a

finite prime of k satisfying Nq ≡ 1 (mod p). When k is an imaginary
quadratic field, suppose that q is a principal ideal generated by q. Let K/k
a Zp-extension which is totally ramified at the prime lying above p. For an
integer n ≥ 0, we denote by Kn the nth layer of K/k. Let D{q}(Kn) be the
decomposition subgroup of X{q}(Kn) for the unique prime lying above p. If
X{q}(K) has a non-trivial finite Zp[[Gal(K/k)]]-submodule, then D{q}(Kn)
is not trivial for some n ≥ 0.

To show this proposition, we mainly use the techniques given in [8] (es-
pecially, the proof of Theorem 1). However, our case is slightly complicated.
We need some lemmas. Put Gn = Gal(Kn/k), and fix a generator γ of Gn.
In the following, we denote by (a) the principal ideal of Kn generated by a.

Lemma 4.3. Let the assumptions be as in Proposition 4.2. We put
Vn = {a ∈ K×n | (a) is prime to (q)}, V ′n = {a ∈ K×n | a ≡ 1 (mod (q))}.
Then, both H1(Gn, Vn) and H1(Gn, V ′n) are trivial.

Proof. The assertion essentially comes from Hilbert’s Theorem 90. We de-
note by NKn/k the norm mapping from Kn to k. Take a ∈ Vn satisfying
NKn/ka = 1, then there exists an element b of K×n satisfying bγ−1 = a.
We write (b) = QA such that Q is a product of prime ideals lying above q
and A is prime to (q). Since (bγ−1) is prime to (q), we see that Qγ = Q.
From this, we can write Q = (q)m with an integer m. Hence c = bq−m

is contained in Vn and satisfies cγ−1 = a. This implies that H1(Gn, Vn) is
trivial.

To show the remaining part, we consider the following exact sequence.
0→ V ′n → Vn → (OKn/(q))× → 0.

We claim that H1(Gn, (OKn/(q))×) is trivial. Let Kd be the decomposition
field of Kn/k for q (0 ≤ d ≤ n). Take a prime q′ of Kd lying above q, and
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denote by q′n the extension of q′ in Kn. Then, by using Shapiro’s lemma,
we see

H1(Gn, (OKn/(q))×) ∼= H1(Gal(Kn/Kd), (OKn/q′n)×).
Since q′ does not decompose in Kn, the right hand side is trivial. The claim
follows. We also see that Ĥ0(Gn, (OKn/(q))×) is trivial (where Ĥ0 is the
0th Tate cohomology group). This implies that H1(Gn, V ′n) ∼= H1(Gn, Vn),
and then H1(Gn, V ′n) is also trivial. �

Lemma 4.4. Let the assumptions be as in Proposition 4.2. We put
Sn = {(a) | a ∈ V ′n}.

Then H1(Gn, Sn) is trivial.

Proof. We can obtain the following exact sequence
0→ E′n → V ′n → Sn → 0,

where E′n is the group of units in Kn which are congruent to 1 modulo
(q). Since the unit group of k is finite and its order is prime to p, we see
Ĥ0(Gn, E′n) is trivial. Then there is a surjective homomorphism

H1(Gn, V ′n)→ H1(Gn, Sn).
The assertion follows from Lemma 4.3. �

Lemma 4.5. Let the assumptions be as in Proposition 4.2. We denote by
A{q}(Kn) the Sylow p-subgroup of the ray class group of Kn modulo (q).
We put

B{q}(Kn) = {c ∈ A{q}(Kn) | cγ = c},
B′{q}(Kn) = {c ∈ A{q}(Kn) | c contains an ideal A satisfying Aγ = A}.

Then B{q}(Kn) = B′{q}(Kn).

Proof. We can imitate the argument given in the proof of [8, Theorem 1].
(We use the previous lemma instead of Hilbert’s Theorem 90.)

It is sufficient to show that B{q}(Kn) ⊆ B′{q}(Kn). Take a ray class
c ∈ B{q}(Kn) and an ideal A contained in c. Then Aγ = (a)A with some
a ∈ V ′n. We also see that (NKn/ka) = (1). By lemma 4.4, there exists an
element b ∈ V ′n satisfying (b)γ−1 = (a). Then the ideal A(b−1) is invariant
under γ, and contained in the same ray class c. The assertion follows. �

Let i0,n be the mapping which comes from the extension mapping of
ideals from A{q}(k) to A{q}(Kn) (see also Section 3).

Lemma 4.6. Let the assumptions be as in Proposition 4.2. If X{q}(K) has
a non-trivial finite submodule, then the kernel of i0,n is not trivial for some
n > 0.
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Proof. This can be shown by using the arguments given in [22] and [23].
However, we need a slight modification.

We put Γ∗ = Gal(K/k). In our situation, we obtain the isomorphisms
X{q}(K)Γ∗

∼= X{q}(k) ∼= A{q}(k).

Let p0 : X{q}(K)→ X{q}(K)Γ∗ be the restriction mapping. For a sufficiently
large n, we see that the kernel of i0,n is isomorphic to p0(X{q}(K)fin), where
X{q}(K)fin is the maximal finite Zp[[Γ∗]]-submodule of X{q}(K) (see the
proof of [22, p. 218, Proposition]).

We shall consider the following exact sequence.
0→ X{q}(K)fin → X{q}(K)→ X{q}(K)/X{q}(K)fin → 0.

By taking the Γ∗-invariant and the Γ∗-coinvariant of each term, we obtain
the following exact sequence.

(X{q}(K)/X{q}(K)fin)Γ∗ → (X{q}(K)fin)Γ∗ → X{q}(K)Γ∗ .

Since X{q}(K)Γ∗ is finite, we can show that (X{q}(K)/X{q}(K)fin)Γ∗ is
trivial, and then the right homomorphism is injective. This implies that
p0(X{q}(K)fin) is not trivial. As a consequence, the kernel of i0,n is also not
trivial for some n. �

Proof of Proposition 4.2. The following proof uses the ideas given in [8,
p. 269]. Assume that X{q}(K) has a non-trivial finite submodule. Then, by
Lemma 4.6, the kernel of i0,n is not trivial for some n > 0. We fix such
n. Since the prime lying above p is totally ramified in K/k, we can see
that |B{q}(Kn)| = |A{q}(k)| (see also the proof of Corollary 3.5). We also
remark that |A{q}(k)| > 1 under the assumptions of this proposition, hence
B{q}(Kn) is not trivial. As noted in Section 3, D{q}(Kn) can be identified
with the subgroup of A{q}(Kn) generated by the ray class containing the
prime ideal lying above p. By using Lemma 4.5, we see

|B{q}(Kn)| = |B′{q}(Kn)| = |i0,n(A{q}(k))D{q}(Kn)|.

Since |i0,n(A{q}(k))| is smaller than |B{q}(Kn)|, we see that D{q}(Kn) is not
trivial. �

We will show Theorem 1.4 (stated in Section 1).

Proof of Theorem 1.4. For a non-negative integer n, let Qc
n be the nth layer

of Qc/Q. Take a prime q ∈ S1, and denote by q the prime number lying
below q. Then {q} satisfies the condition (C1.1).

Let D{q}(Qc
n) be the decomposition subgroup of X{q}(Qc

n) for the unique
prime lying above p. Note that X{q}(Qc) is non-trivial and finite by [12,
Theorem 3.1]. Hence we can apply Proposition 4.2, and then we see that
D{q}(Qc

n) is not trivial for a certain n.
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Under the condition (C1.3), we see that L{q}(Qc
n)k is contained in LS(kcn),

where kcn is the nth layer of kc/k. Hence the non-triviality of D{q}(Qc
n) im-

plies the non-triviality of the decomposition subgroup DS(kcn) of XS(kcn)
for the unique prime lying above p. Then, by using Lemma 4.1 (ii), we
can obtain the assertion. (We remark that this proof also works for the
case that k = Q(

√
−3) and p = 3, because we use Proposition 4.2 only for

Qc/Q.) �

For Question 1.2, the remaining case is when S1 = ∅. For this case, we
can obtain a result which is similar to Theorem 3.6. (The proof is more
complicated because we consider the initial layer of ka/k. See also [13,
Remark 4.7].)

Theorem 4.7. Suppose that k and p satisfy (C4.1). Assume that k 6=
Q(
√
−3) if p = 3. Let ka/k be the anti-cyclotomic Zp-extension. Assume

that ka/k is totally ramified at the unique prime lying above p. Then there
exist infinitely many rational primes q satisfying all of the following condi-
tions.

(1) q ≡ −1 (mod p), and q is inert in k,
(2) X{q}(k̃) contains a non-trivial pseudo-null submodule, where q is

the unique prime of k lying above q.

Proof. We use some notations given in the proof of Theorem 3.6. For a
non-negative integer n, let kan be the nth layer of ka/k. Suppose that k 6=
Q(
√
−p) or p ≡ 1 (mod 4). It follows that ka1 and Q(ζp) are linearly disjoint.

It is known that Gal(ka1/Q) is a dihedral group of order 2p. Then we choose
σ ∈ Gal(ka1(ζp)/Q) so that σ|ka1 has order 2, and that σ|Q(ζp) is the complex
conjugation. Suppose that k = Q(

√
−p) and p ≡ 3 (mod 4). It follows that

ka1 ∩Q(ζp) = k. Then we choose σ ∈ Gal(ka1(ζp)/Q) so that σ has order 2,
and that σ|Q(ζp) is the complex conjugation. It follows that σ|ka1 also has
order 2.

Let En be the group of units of kan, and E1/E
p
1 = (E1/E

p
1)+⊕ (E1/E

p
1)−

the decomposition of E1/E
p
1 with respect to the action of σ. Since ka1 is

not a CM-field, we see that (E1/E
p
1)− is not trivial. Pick a unit ε ∈ E1\Ep1

such that εσ mod Ep1 = ε−1 mod Ep1 . Similar to the proof of Theorem 3.6,
we have an isomorphism

Gal(ka1(ζp, p
√
ε)/ka1(ζ)) ∼= Hom(〈ε mod Ep1〉, 〈ζp〉)

as 〈σ〉-modules. Let F be the fixed field of 〈σ〉. By the choice of σ, we see
that ka1(ζp, p

√
ε)/F is abelian, and hence is a cyclic extension of degree 2p.
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Let σ̃ be a generator of Gal(ka1(ζp, p
√
ε)/F ). By the Čebotarev density the-

orem, there exist infinitely many prime ideals Q of ka1(ζp, p
√
ε) such that

σ̃ =
[
ka1(ζp, p

√
ε)/F

Q

]
.

Let q be the prime number lying below Q. We also may assume that q splits
completely in F . By the choice of σ, it follows that q is inert in k and that
q ≡ −1 (mod p). Let Q0 be the prime of ka1 lying below Q. It follows that
ε mod Q0 6∈ ((Oka1/Q0)×)p. Let q be the prime ideal of k generated by q. To
see the assertion, we claim that X{q}(k̃) contains a non-trivial pseudo-null
submodule.

First, we assume that the unramified Iwasawa module X∅(ka) contains a
non-trivial finite submodule. Then, similar to Proposition 4.2, we can show
that D∅(kan) (the decomposition subgroup of X∅(kan) for the unique prime
lying above p) is not trivial for some n. (Note that this fact essentially comes
from the arguments given in the proofs of [8, Theorem 1] and Lemma 4.6.
We briefly explain this here. Define A∅(k), A∅(kan), B∅(kan), and B′∅(k

a
n)

similarly (for the ideal class group). Since the order of the group of units
in k is prime to p, we see that |B∅(kan)| = |B′∅(k

a
n)|. Let i0,n(A∅(k)) be the

image of the mapping induced by the extension of ideals to A∅(kan). Then,
|A∅(k)| = |B∅(kan)| = |B′∅(k

a
n)| = |i0,n(A∅(k))D∅(kan)|.

We note that A∅(k) is not trivial in this case (this follows from Iwasawa’s
result given in [14]). Moreover, we see that |i0,n(A∅(k))| is smaller than
|A∅(k)| for some n by using the argument given in the proof of Lemma 4.6.)
Hence, we also obtain the fact that D{q}(kan) is not trivial. Then the claim
follows from Lemma 4.1. The assertion of this theorem has been shown for
this case.

In the following, we assume that X∅(ka) does not contain a non-trivial
finite submodule. Let I (resp. In) be the kernel of the restrictionX{q}(ka)→
X∅(ka) (resp. X{q}(kan) → X∅(kan)). We put Γn = Gal(ka/kn). Note that
in our situation, X∅(ka)Γn

∼= X∅(kan) and X{q}(ka)Γn
∼= X{q}(kan). By the

assumption, we see that X∅(ka)Γn is trivial because it is a finite submodule
of X∅(ka).

From these facts, we obtain the following exact sequence
0→ IΓn → X{q}(kan)→ X∅(kan)→ 0.

Hence we see that IΓn
∼= In.

Let Rn be the Sylow p-subgroup of (Okan/q)×. We put R = lim←−Rn,where the inverse limit is taken with respect to the norm mapping. Since q
is inert in k, q splits completely in ka/k. We put Λa = Zp[[Γ0]]. Then, as a
Λa-module, R is isomorphic to R = Λa/(pc), where c = νp(q2 − 1) ≥ 1. By
class field theory, there is a surjective Λa-module homomorphism R → I,
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and let J be its kernel. Under the isomorphism R ∼= R, J corresponds to a
submodule J of R.

We claim that J is not contained in pR. By taking the Γ1-coinvariant
of the following exact sequence

0→ J → R→ I → 0

and using the fact that IΓ1
∼= I1, we obtain the exact sequence

JΓ1 → R1 → I1 → 0.

Assume that J is contained in pR. Then we can see that the image of JΓ1
is contained in Rp1. This implies that

I1 ⊗ Fp ∼= R1 ⊗ Fp ∼= F⊕pp ,

as Fp-vector spaces. On the other hand, since ε (which is taken in the
second paragraph of this proof) is not a pth power in R1, the Fp-dimension
of I1 ⊗ Fp is at most p− 1. It is a contradiction. The claim follows.

The above claim implies that R/J is finite. Hence we see that I is finite.
Note that I is not trivial because I0 ∼= Gal(L{q}(k)/L∅(k)) is not trivial.
Hence X{q}(ka) contains a non-trivial finite submodule. By Proposition 4.2,
we can show that D{q}(kan) is not trivial for some n. Consequently, by
using Lemma 4.1, we see that X{q}(k̃) contains a non-trivial pseudo-null
submodule. The theorem completely follows. �

Remark 4.8. Let k be an imaginary quadratic field, and assume that p
does not split in k. One can show that if X∅(k̃) is non-trivial and pseudo-
null, then XS(k̃) contains a non-trivial pseudo-null submodule for every
finite set S of finite places of k. We shall give an outline of the proof.
Under the assumption, by using [24, Theorem 2(ii)], we see that there is
a Zp-extension K/k such that X∅(K) is finite and the unique prime of
k lying above p is totally ramified. If X∅(K) is trivial (this implies the
triviality of X∅(k)), then X∅(k̃) is also trivial (this can be shown by using
Iwasawa’s result given in [14]), and hence this contradicts our assumption.
Thus,X∅(K) is not trivial. LetKn be the nth layer ofK/k. In this situation,
it can be shown that D∅(Kn) is non-trivial for some n. (See the third
paragraph of the proof of Theorem 4.7. Note that we may assume that k 6=
Q(
√
−3) when p = 3.) Since L∅(Kn) is an intermediate field of LS(Kn)/Kn,

we see that DS(Kn) is also non-trivial. Then the assertion follows from
Lemma 4.1(2).

Remark 4.9. We mention about the computational results given in [13,
Section 5]. (Some of those results are related to Question 1.2 via Lem-
ma 4.1.) After that paper was published, a problem was found in the com-
puter programs. However, the values stated in the tables of [13, Section 5]
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seem correct (it has not been completely confirmed yet). The details will
be reported elsewhere.

5. Application to the structure of the Galois group of the
maximal pro-p extension unramified outside S

There is an application of GGC to “non-abelian Iwasawa theory”.
M. Ozaki obtained the following result: if p splits in an imaginary qua-
dratic field k and GGC holds for k and p, then the Galois group of the
maximal unramified pro-p extension over kc cannot be a non-abelian free
pro-p group. (This is mentioned in [25, p. 34] without proof. After that, the
first author [3] gave a more general result including Ozaki’s one.) In this
section, we shall consider its S-ramified analog.

Firstly, let S be a finite set of finite primes of Q, and assume that S
does not contain p. Let LS(Qc) be the maximal pro-p extension over Qc

unramified outside S. We put XS(Qc) = Gal(LS(Qc)/Qc). Then XS(Qc) is
the maximal pro-p abelian quotient of XS(Qc). Note also that XS(Qc) is
a finitely generated pro-p group because XS(Qc) is finitely generated as a
Zp-module. From Theorem 1.1, we can see the following:

Corollary 5.1. Assume that S satisfies the condition (C1.1). Then XS(Qc)
is not a free pro-p group.

Next, let k be an imaginary quadratic field. (We do not add any assump-
tion on the splitting of p.) Let S be a finite set of finite primes of k, and
assume that S does not contain any prime lying above p. We define XS(kc)
similar to the above. It also can be shown that XS(kc) is a finitely generated
pro-p group.

Corollary 5.2. Assume that S satisfies both (C1.2) and (C1.3). (Note
that the condition (C1.3) is unrelated to the splitting of p.) If S1 6= ∅, then
XS(kc) is not a free pro-p group.

Proof. Under the assumptions, Gal(kc/Qc) acts on XS(kc), and we decom-
pose

XS(kc) ∼= XS(kc)+ ⊕XS(kc)−

with respect to its action. We can see that XS(kc)+ ∼= X
S†1

(Qc), where S†1
is the set of rational primes lying below S1. Note that S†1 satisfies (C1.1).
Assume that S1 6= ∅. Then S†1 is also not empty, and we see that X

S†1
(Qc)

contains a non-trivial finite Λ1-submodule by Theorem 1.1. Hence XS(kc)
also contains a non-trivial element of finite order. Then the assertion fol-
lows. �

When p splits in k, we can obtain one more result. The following is an
S-ramified version of a result given in [3].



552 Satoshi Fujii, Tsuyoshi Itoh

Proposition 5.3. Assume that p splits in k, and S satisfies (C1.2). If
XS(k̃) contains a non-trivial pseudo-null Λ2-submodule, then XS(kc) is not
a free pro-p group.

Proof. This can be shown by using the arguments given in the proof of [3,
Proposition 2.1]. Hence we omit to state the details. �

6. Appendix: On the structure of XS,p(kc)

Let the notations be as in Section 3. We will consider the assertion (a)
in the proof of Theorem 1.3. We give a result on the structure of XS,p(kc)
for general S.

Proposition 6.1. Assume that k and p satisfy (C3.1), and S satisfies
(C1.2). Let s∞ be the number of primes in kc lying above S (it is finite),
and λ the Zp-rank of X∅(kc) (that is, λ is the Iwasawa λ-invariant of kc/k).
Then, as a Zp-module, XS,p(kc) ∼= Z⊕s∞+λ

p .

Proof. Our proof uses the idea written in some earlier literatures (see,
e.g., [6, 12]), and is inspired by the idea given in [27]. When S = ∅, the
assertion is already shown ([4, Lemma 2]). Hence we may assume that S is
not empty, and we write S = {q1, . . . , qm}. For an integer n ≥ 0, we denote
by kcn the nth layer of kc/k. We shall define some notations as follows.

• Rn(qi) : the Sylow p-subgroup of (Okcn/qi)
× for i = 1, . . . ,m,

• Rn = ⊕mi=1Rn(qi),
• pn : the prime of kcn lying above p,
• kcn,p : the completion of kcn at pn,
• U1

n : the group of principal units of kcn,p,
• E1

n = {ε | ε is a global unit of kcn satisfying ε ≡ 1 (mod pn)},
• E1

n(S)={ε∈E1
n | the order of ε in

⊕m
i=1(Okcn/qi)

× is a power of p},
• En : the closure of the image of E1

n → U1
n,

• En(S) : the closure of the diagonal image of E1
n(S)→ U1

n ⊕Rn.
By using class field theory (see, e.g., [6, III, §1]), we see that the kernel of
the restriction

XS,p(kcn)→ X∅,p(kcn)
is isomorphic to the kernel of

f : (U1
n ⊕Rn)/En(S)→ U1

n/En, (u,x)En(S) 7→ uEn.

(Note that f is surjective.) We mention the fact that E1
n⊗ZZp ∼= En. (That

is, a variation of Leopoldt conjecture holds. See, e.g., [9, p. 94].) We also
note that the index (E1

n : E1
n(S)) is finite and prime to p. From these facts,

we can see that the homomorphism

g : Rn → (U1
n ⊕Rn)/En(S), x 7→ (1,x)En(S)
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is injective, and the image of g coincides with the kernel of f . Then, we
obtain the following exact sequence

0→ Rn → XS,p(kcn)→ X∅,p(kcn)→ 0.
Since each term of the above is profinite, taking the inverse limits (with
respect to the norm for the left term, with respect to the restriction for the
remaining terms), we obtain the following exact sequence
(6.1) 0→ lim←−Rn → XS,p(kc)→ X∅,p(kc)→ 0.
We see that lim←−Rn

∼= Zs∞p as a Zp-module. As noted in the first paragraph
of this proof, we see that X∅,p(kc) = X∅(kc), and hence it is isomorphic to
Zλp as a Zp-module (see, e.g. [28]). Thus, the exact sequence (6.1) splits (as
Zp-modules), and we obtain the assertion. �

We shall give a counterexample of the assertion (a) in the proof of The-
orem 1.3 when S1 6= ∅. Assume that S satisfies both conditions (C1.2),
and (C1.3). Assume also that S1 6= ∅. By Proposition 6.1, we see that the
Zp-rank of XS,p(kc) is s∞ + λ. We can compute the Zp-rank of XS(kc) by
using [12, Theorem 1.4]. (Since S satisfies (C1.3), we can apply this theo-
rem). In fact, by using the value P ′max which is defined in [12], the Zp-rank
of XS(kc) is expressed as

λ+ s∞ − P ′max.

(Recall that s∞ is the number of primes in kc lying above S. See also [12,
p. 1496].) We can see that if S1 6= ∅, then P ′max > 0. This implies that
the Zp-rank of XS(kc) is exactly smaller than s∞ + λ. Hence, under these
conditions, we see that MS,p(kc) 6= LS(kc).

Remark 6.2. Assume that k, p, and S satisfy the assumption of Proposi-
tion 6.1, and S1 = ∅. Then, by using Proposition 6.1 and the fact
that MS,p(kc) = LS(kc), we see that XS(kc) has no non-trivial finite
Zp[[Gal(kc/k)]]-submodule (this also can be shown by using the argument
given in [12]). Hence, an analog of Theorem 1.1 for the cyclotomic Zp-
extension of an imaginary quadratic field does not hold in general.

7. Additional remarks

Let k be an imaginary quadratic field. T. Kataoka obtained a result [16]
which is closely related to our result. That is, he determined the character-
istic ideal of XS(k̃) as a Zp[[Gal(k̃/k)]]-module under some conditions. From
this result, we can find an example of XS(k̃) which is not pseudo-null.

Recall that our second proof of Theorem 1.1 uses the characteristic ideal.
It seems that one can obtain another type criterion for the existence of a
non-trivial pseudo-null submodule of XS(k̃) (under certain situations) from
Kataoka’s result.
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Note added in proof. Concerning Remark 4.9, the values of the tables
in [13] had been confirmed to be correct.
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