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On a duality formula for certain sums of values of

poly-Bernoulli polynomials and its application
par MAsaANOBU KANEKO, Fumi SAKURAT et HiroruMt TSUMURA

RESUME. Nous prouvons une formule de dualité pour certaines
sommes de valeurs de polynémes poly-Bernoulli qui généralise les
dualités pour les nombres de poly-Bernoulli. On calcule d’abord
deux types de fonctions génératrices de ces sommes, dont la for-
mule de dualité est apparente. Ensuite, nous donnons une preuve
analytique de la dualité du point de vue de notre étude précédente
de fonctions zéta de type Arakawa—Kaneko. Comme application,
nous donnons une formule qui relie les nombres de poly-Bernoulli
aux nombres de Genocchi.

ABSTRACT. We prove a duality formula for certain sums of val-
ues of poly-Bernoulli polynomials which generalizes dualities for
poly-Bernoulli numbers. We first compute two types of generat-
ing functions for these sums, from which the duality formula is
apparent. Secondly we give an analytic proof of the duality from
the viewpoint of our previous study of zeta functions of Arakawa—
Kaneko type. As an application, we give a formula that relates
poly-Bernoulli numbers to the Genocchi numbers.

1. Introduction

Two types of poly-Bernoulli numbers {By(Lk)} and {C’,(lk)} are defined by
the generating series

le( - > tn
(1) le( B i
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for k € Z, where Lig(2) is the polylogarithm function given by

(1.2) Lig(2) = > ;—Z (2| < 1)
m=1

(see Kaneko [10] and Arakawa-Kaneko [2], also Arakawa-Ibukiyama-—

Kaneko [1]). Noting Lij(z) = —log(1 — 2), we see that cV coincides with
the ordinary Bernoulli number B,, defined by

t > "
— 1 - Z Bnmv
n=0

and that B = B,, for n € Zsq with n # 1.

These numbers have been actively investigated and many interesting
properties and formulas for them have been discovered (see, for example,
[4, 5, 6, 8, 9, 11]). Of them we highlight the following duality formulas
obtained by the first-named author:

(1.3) B =B,
—— —m—1
(1.4) ol=h =iy

for any l,m € Z>(, which can be shown by considering their generating
functions in two variables (see [10, Theorem 2| and [11, §2]).

The poly-Bernoulli polynomials are defined by
eimt le;(l — e_t) > (k’) t"

=y B

n=0

et

(1.5)

n!
(see Coppo—Candelpergher [7]). It can be easily checked that
BP(©0)=B". BP1)=CcP,

BW(z) = 3 (~1)" (j)BJ(. Jgn=i.
j=0

The main purpose of this paper is to generalize the duality formulas (1.3)
and (1.4) as follows: the identity

n n
(1.6 > m B ) =y m B )

j=o L =0 L
holds for any [,m,n € Z>( (see Corollary 2.2), where {[7;] | n,j € Z>o}
are the Stirling numbers of the first kind (for the definition, see (2.1)).
In particular, we easily see that (1.6) for the cases of n = 0 and n = 1
coincide with (1.3) and (1.4), respectively. Hence (1.6) can be regarded as
a “one-parameter” generalization of the duality formula for poly-Bernoulli
numbers. It is an interesting question whether this generalization also has
some nice combinatorial interpretations like those described in [4, 5, 6].
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In Section 2, we give an elementary proof of (1.6). In fact, denoting the
left-hand side of (1.6) by 7 (n), we calculate two types of generating
functions of {%7({ l)(n)}l,mzo in two variables (see Theorem 2.1), which
turn out to be symmetric and hence (1.6) follows. In Section 3, we give
an analytic proof of (1.6) from the viewpoint of our previous study of zeta
functions of Arakawa—Kaneko type. The method is similar to that used by
the first-named and the third-named authors in [12]. In the final Section 4,
as an application of Theorem 2.1, we prove the relation

n

Z(—l)lcr(l__ll_l) = _Gn+2 (n S ZZO)
=0

(see Theorem 4.2), where G,, = (2 — 2" B,, (n € Z>¢) is the Genocchi

number (see, for example, Lucas [13, p. 250], also Stanley [14, Exercise 5.8]).
)

This can be regarded as a “C-version” of the known formula for Bfn_ !
(see [3, Proposition]):

n

SENBI) =0 (nezs).
=0

2. A generalization of the duality formula

Let ["] and {*} (n,m € Zx¢) be the Stirling numbers of the first and the
second kind determined respectively by the following recursion relations:

m - m - m ~0 (mn£0),
R e

0 n 0
(s (2] merm
{ngl}:{mil}+m{;} (n>0, m>1).

(See for example, [1, Definitions 2.2 and 2.4].)
As mentioned in Section 1, we let

(2.2) B0 (n) = znj m B9 (n)

for [,m,n € Z>o. Note that
#5000 =BLY, #01) = oY,

(2.1)

+n
m

] (n>0, m>1),

and
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The first main result of this paper is the following theorem.

Theorem 2.1. For n € Z>q, we have

(2.3) gnioﬂﬁfl)( T ?,in, = +£!itj+y)n+1
and
(2.4) Z ZO% Zy (+n)! Qj(2)Q;(y),
where o
Q;(X) = X (J € Z>0)-

(1=X)(1-2X)---(1-(+1X)

From (2.3) or (2.4), we immediately obtain the following result which
contains (1.3) and (1.4) as the special cases n =0, 1.

Corollary 2.2. Forl,m,n € Z>q, it holds %’T(n_l)(n) = %’l(_m) (n), namely

(2.5) zn:[ ]B< —1=3) (n) = i [Z]B}‘m‘”(n).

7=0
To prove Theorem 2.1, we start with the following lemma.

Lemma 2.3 (Takeda [15]). For n,r € Z>¢ with r > n,
O e D Ea T
(2.7) Z{j}w_ Z{m:—n}tm

|
=0 m=0 m:

Proof. We sketch the proof of this lemma.
As for (2.6), we use the induction on n > 0. The case of n = 0 reduces
to the well-known identity

et —1)m > [n]t?
( m!) :nzm{m}n!’

(See for instance [1, Proposition 2.6].) Assume (2.6) for the case of n, and
compute its derivative. Then, for » > n + 1, we have

nent(et _ 1)r—n N e(n+1)t(et _ 1)r—n—1
(r—mn)! (r—m-—1)!

-£ger i)

m=0 2:0 r
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By the induction hypothesis, we obtain
6(n—l—l)t(et _ 1)7"—71—1
(r—m-—1)!

_ i i(_l)nﬂ- ln] {m + i+ l}tm B ne"t(et -1

oS 7 r m) (r—mn)!
— i %(_l)n—iﬂ-l n m 4+ ﬁ
7—1 r m)

m=0 i=1
m-+1| t™
T m!

-n Z (_1)n7i [7;
=0

m=01
+1 ,
£ Famn (| o)
oyt 1—1 7 T m!
_i%l(_l)n_iﬂwrl mti| "
N ; i r ml’
m=0 =0

Therefore we complete the proof of (2.6).
As for (2.7), similar to the above proof, considering the derivative of (2.7),
we inductively obtain the assertion. O

Next we show the following proposition which is a certain generalization
of the known result for ordinary poly-Bernoulli numbers given by the first-
named author [10, Theorem 1].

Proposition 2.4. For m,n € Z>¢ and k € Z,

(2.8) B(k)( ) nil i( 1)mtng—icl (g—D!'n m+i
. n)= — - 7 .
" =1 i= ¢ il |ln+qg—1
g=1 i=0
Proof. By definition, we have
_ Ll (]_ — e_t) _ > _ (e—t _ 1)q—1
¢ Lilg B ¢ .
¢ nﬁ_e " Zl(_l)q T F
q:

Using (2.6) with » — ¢ — 1 and ¢ — —t on the right, we obtain
ot Lik(1 — et

1—et
S S Syl ] ne e
= - . B .
oy e q il|n+qg—1[m!

Comparing the coefficients of t™/m! on both sides and noting {HT;_Zl} =0
when g > m + 1, we complete the proof. O
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Now we give the proof of Theorem 2.1.

Proof of Theorem 2.1. First we will prove (2.3). Substituting (2.8) with
k — —l — j into (2.2), we obtain

D(p - (AL 1ymnta=i=l | 1+j m+1
Ao = 2 [ oo

q=1 i=0

With this we compute the generating function

Fa ZZ%( Qb=

ZZZHZ

i ; +1 xt y™
w S (_1ymtrta—i-1, ) A | ™ ry-
Z( ) (g )'a il |n+qg—1[1 m!

oo m+1 L P I ‘ n — ym
= (_1)m e (_1)n+q—z—leqm(q _ 1)| ' vy
mz::O (1231 jz:%) J ZZ(:] i||n+g—1] ml!

By the well-known identity (z), = z(z +1) -~ (z +n—1) = 374 []]27,
this is equal to

co m—+1 n . m

n m—+1 Y
> 2 (DT (=) (g = e [ { 1}
m=0 q=1 =0 n+q-

:ZZ TL+7’ % (7‘+1) T'(T+1)

r=01i=0

n i m+il| (—y)™
i| = \n+r| m! ~
Note that m may run over all non-negative integers in the last sum be-

cause {’::;} =0 for O < m < r — 1. Hence, by (2.7) and the formula

Sl [ ]{ } = (=1)"8mn (Omn is the Kronecker delta, see [1, Propo-
sition 2.6]), we have

= S,

rOzOgD

— Z n+r (r+1)z 7“‘(7“4-1)”

" & ile (e ¥ —1)"tr9
ZZ []{g} (n+7r—g)!

9=01i=g

]{ }e 9Y(e=¥ —1)n+r—9
i (n+7r—g)!
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a n (e Y — 1)n+r—g
_ - n+r (r+1 T" T‘ + 1 €
) D
— nye Z era: o 7’ + 1)
=e WePn! Z(ez —etY)r (n + r)
r=0 n
nle®tv

(ex +e¥ — €x+y)n+1 :

This completes the proof of (2.3).
Next we will prove (2.4). From (2.3), we have

nle* Ty
(= (e - e — Do

=n/! e““ryz (3 —;n) (e® — 1) (e¥ — 1)
j=0
= (i+n 1 d . d -
— ol o N\ Y oy 1\J+L
n%( n )(j+1>2dx(e D g

o o i+n\[l4+1) [m+1]zty™
- SO

J=01=j m=j

Fn(w7y) -

Hence, noting {jlill}{zl:f =0 for j > min(l,m), we obtain
29) A0 mirim)n' (G1? JHn\Jl+1][m+1
. - = 2 (5! N 1Y (

By the identity (see [1, Proposition 2.6])

tm+1 © n n
Qm(t) = (1—t)(1—2t)---(1 = (m+ 1)) N n:%; {m—|— 1}t

and (2.9), we have

it G +n)! Qi(x)Q;(y)
7=0

R

J
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00 oo min(l,m) .
22 > (m)( n ){j+1 i1 (TY

Thus we complete the proof of (2.4). O
From (2.3), we immediately obtain the following.

Corollary 2.5.

oo 00 o ea:—i—y

:Ey "
ZZZ%( l'm'n‘:ew—key—e”y—z'

=0 m=0n=0

3. An analytic proof of the duality formula for 2V (n)

In this section, we give an analytic proof of the duality formula (Corol-

lary 2.2) for 2V (n) by using a certain zeta function.
Arakawa and the first-named author [2] defined the zeta function

1 oo Lik(l — e_t)
= — e — 2dt (R 0
&k (s) F(s)/o et — 1 (Re(s) > 0)
for k € Z>1, which can be continued to C as an entire function. In partic-
ular, &1(s) = sC(s + 1). It is known that

§(—m) = (=1)"CR
for m € Z>¢ (see [2, Theorem 6]). Note that they further study a multiple
version of & (s).
Recently the first-named and the third-named author [12] defined an-
other type of Arakawa—Kaneko zeta function by
1 oo Lik(l — €t)
=— [ ¢TIt
Uk(s) F(S) /0 1— et
for s € C and k € Z, which interpolates the poly-Bernoulli numbers of
B-type, that is,

(3.1) ne(=m) = BlY  (m € Lx).

We emphasize that ni(s) is defined for any k € Z while £ (s) is defined for
k € Z>1. In fact, investigating n_x(s) (k € Z>¢), they gave an alternative
proof of (1.3) (the case r = 1 of [12, Theorem 4.7]).

Here we briefly recall this technique (for the details, see [12, Section 4]),
and consider its generalization as follows. Let

Glu,t):= 1- e“(ul —et)
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and

(3.2) Flu,s) = F(S)(e;_l) /C £71G (u, 1) dt

where C is the well-known contour, namely the path consisting of the pos-
itive real axis (top side), a circle C; around the origin of radius & (which is
sufficiently small), and the positive real axis (bottom side) (see, for exam-
ple, [16, Theorem 4.2]). We can write the integral as

(3.3) Flu,s) = F(ls) / TG (u, 1) dt+r(s)(621m_1) / £1G (u, ) dt

€

Suppose Re(s) > 0 and let € — 0. Then

1 [ . e u™
(3.4) Fl.9) = 55 /0 #571G(u, ) dt = gon_m(s)m,
because
(3.5) G(u, Z Liom(1— s

t
— ¢ o

(see [12, Lemma 5.9]). We also see that

ev et

3.6 t = — E =t 1 — e ¥ l*li
(3:6) G(ut) = l—e¥(l—¢et) 1—et(l—-ev) P e (l—e™)
Substituting (3.6) into the second member of (3.4), we have

Lis(1—e™) & u™
: =5 - J - § B
(3.7) Flu,s) 1—eu " oml’

m=0

where we define Lis(z) and {Br({z)}ng by replacing k by s € C in (1.1)

and (1.2), respectively. Comparing (3.4) and (3.7), we have

(3.8) N-m(s) = BY.

Letting s = —k € Z<o in (3.8) and using (3.1) and (3.3), we obtain B,(;m) =
(=k)

Next we generalize this result. Let

= ntZ[lawgut) (TLGZZ()).

Note that Go(u,t) = G(u,t). We prove the following.

Lemma 3.1. For n € Z>,

o0

e s = LR

m=1
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Proof. We give the proof by induction on n. As for n = 0, (3.9) coincides
with (3.6).
Using (2.1), we can check that

0
%gn(l% t) = e_tgnJrl (uv t) - ngn(uv t) :

Hence we have
_ (9 )
gn+1(u7 t) =e€ (8@6 gn(u7 t) + ngn(ua t)

t —nu — (m+n—1)! —mt —u\ym—2_—u
:e(e mzzz((;_m!)e (1—e )™ 2 )

Replacing m by m + 1, we have the assertion. O

Similar to (3.2), let

Fnlu, s) = F(S)(e217rz‘s —1) /Cts_lgn(u,t) dt

1 > 1 .
F(S)/E t 1gn<U,t)dt+1_W7m_1)/t 1Qn(u,t)dt.

€

Assume n > 1. First, for Re(s) > 1, let ¢ — 0 in (3.10). Then we obtain
from (3.9) that

e N (m+n—1)!
I'(s) (m—1)!

(3.11)  Fluss) = (1—e—U)m—1/ = Temmt gy
m=1 0

e i (m+n—1)---(m+1)m
1—e ms

(I—e)™

m=1

_ i | —n Lls—j (1 — ™)
N ] 1—e ¥

=0 L
-3 3 s
m=0 j—=0 L/ m:
Secondly, by (3.5), we have
J 1 & u™
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Hence we obtain from (1.5) that

nt Ll—m—j et) u™m
0= 33 [t bl

=0 j=0 e m)!
- ZZ{ ] () gy ST
m=0 k=0 j=0 ktoml
Hence, letting s — —I for [ € Z>( in (3.10), we have
) o 1 —1-1
(3.12) Folus 1) = Jim, sy / [ Gt ar

=ZZH )

m=0 5=0
Comparing the coefficients of (3.11) with s = — and (3.12), we obtain the
proof of Corollary 2.2.

Remark 3.2. As a continuation of the observation stated in [12, Section 4],
we first found the duality formula (2.5) by the method described in this
section. And then we gave its elementary proof presented in Section 2.

4. A formula relating poly-Bernoulli numbers with Genocchi
numbers

In this section, we prove the C-type version of the following known result
for Bﬁn_ l):

Proposition 4.1 ([3, Proposition]). For any n € Z>1, we have

n

> (1B = 0.

=0

If we consider the C-version of the left-hand side of this identity, the
value is not 0 but turns out to be the Genocchi number. The Genocchi
numbers {Gy, }n>0 are defined by the generating series

2t & "
= = E :G -
e+1 = "n

(See, for example, Lucas [13, p. 250], also Stanley [14, Exercise 5.8]). Note
that the relation with Bernoulli numbers

Gn=(2-2"""YB, (n€cZs)
holds and G, is an integer for all n. The first several values of G,, are
0,1,-1,0,1,0, =3,0, 17,0, —155, 0, ...

The second main result of this paper is the following.
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Theorem 4.2. For any n € Z>q, we have

(4.1) S (-n'eth Y = —Ghgo.
=0

Remark 4.3. We may write the identity as

S (DI = G
=0

because Céo) =0 forn > 1 and C(()O) = 1. However, because of the dual-
ity (1.4), we state and prove the identity as given in the theorem.

The rest of this section is devoted to the proof of Theorem 4.2.
The generating function of the left-hand side of (4.1), which we denote
by f(z), is obtained from (2.4) by specializing n =1 and y = —a:

2) =33 B (-1t = 33 (-1 Ve,
m=0[=0 n=0[=0

Let g(x) be the generating function of the sequence {—G,}72 :

Z Gpx" Z 2"t _9)B,x"

n=0
=—z+2® -2t +325 1728 + ...

Then, our assertion (4.1) can be rewritten as

g(z) = 2* f(z) —

It is convenient for our purpose to make a shift and define

filz) = 2?f(x), gi(x) = zg(x).
With these, our goal is to prove the identity

g1(z) = zfi(z) —

To show this, we proceed as follows. We first show that the power series
g1(x) is a unique element of z Q[z] satisfying the functional equation

T 203 (z — 2
(4.2) 9 (1 — 23;) =g1(z) + (1(_33)2)

and then show that the right-hand side z f;(x) — 2% also satisfies the same
functional equation, thereby proving the theorem by the uniqueness.

The first step is carried out in a similar manner as in the proof of the
following proposition of Don Zagier.
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Proposition 4.4 ([1, Proposition A.1 in Appendix]). The power series

oo
_ Z B :L,n—i-l
= n

n=0

is the unique solution in x Q[x] of the equation
x
(4.3) b (1—1‘) = pi(z) +

Since g1(z) = 3°0,(2" — 2)B2"t! = B1(2z) — 2B1(x), the iden-
tity (4.2) is easily derived from (4.3) by replacing = by z/(1 — z) and
applying (4.3) again. The proof of the uniqueness, which we state as the
lemma below, is postponed to the end of this section.

Lemma 4.5. Suppose
o0
= Z dpz™™ € x Q[x]
n=0

satisfies (4.2), i.e

x 223 (z — 2)
(4.4) h<12x> =)+ =
then we have
(4.5) dp = (2" —2)B,, (n € Zso).

Now we are going to prove the series fo(x) := xf1(x) — 22 satisfies the
same functional equation
223(z — 2)

x

(4.6) f2(1—2a:> :f2(m)+w
By (2.4) (n =1 and y = —x), we have
oy (CD7 G D) e
file) =2 f(w) = ;) HJH (1—-vz)(1+vx) ‘
Let a;(x) be the jth term in the sum on the right,

(1 1)

) = T v g

so that fi(z) = 352 a;j(z). A simple calculation shows that the functional
equation (4.6) is equlvalent to the functional equation

B 23(3 — 6z + 22?)
f1(1—2 >(1_2x>f1(“)+ (1 —2)2(1 - 22)

for fi(z). This follows then from the next lemma, because the right-hand
side of (4.7) is in 22"5Q[z] and n can be arbitrary large.
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Lemma 4.6. For any n € Z>q, we have

(4.7) J‘; <6Lj (1”“") (- Zx)aj(:v)) _ 2(”315?;)265 * 2:1;)

— 2z

2z 1+ (n+2)z
 l-2 1—-(n+3)x

x ((n+3)(@ = 1)? = (n+2)(22 — 1)) anya ().

Proof. The proof is by induction on n > 0, and is a straightforward calcu-
lation which we omit. U

Proofs of Lemma 4.5 and Theorem 4.2. Because of the binomial expan-

sion
(1 _ 21,)—71—1 _ Z <n +]> le»j’
=0\ J
the left-hand side of (4.4) is equal to

00 e8] ’rl-l-j il e m (m I _—
SS (e § (E C)ee)

n=0 j=0 \ J m=0 \n—
On the other hand, since

223(z — 2)
(1—x)?

the right-hand side of (4.4) is equal to

o o
Z dm$m+1 -9 Z m$m+1.
m=0 m=2

Comparing the coefficients, we have dyp = 0 and

mz_:l (m) 2", = —2m  (m > 2).

n=0 n

4 o0
_ 2 _ +1
= -2+ 2% +1—1'7(1—SL‘)2_72 E max" T,
m=2

Therefore, since this recursion (with dyp = 0) uniquely determines the num-
bers d,, (n > 1), we only need to prove

(4.8) mi:l <m) 2m=m(2"t —2)B, = —2m  (m >2)

n=0 n

in order to establish (4.5). By using the standard recursion

mzl<’2>3n=0 (m>2),

n=0
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as
Z " 2" "B, =m+ B, (m>2).
n

n=0

This can be easily verified by manipulating the generating function:

and

2:(:_2: 2: m—n
el?—l'e 4 — \n 2 Bn m!
m=0 \n=0
(oo} m o0 m
x 2% . T T T
_— = 1 —_— = E - — E B,,,— .
er —1 € z(e” + )+e”—1 m:1m m!+m:0 mm!+x

This completes the proof of Lemma 4.5, and thus Theorem 4.2 is proved. [
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