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Journal de Théorie des Nombres
de Bordeaux 29 (2017), 1059–1082

Rigid τ -crystals

par Ben HEUER

In memory of David Goss

Résumé. Nous présentons un analogue en égale charactéristique
des F -isocristaux sur un anneau parfait, que nous appelons τ -
crystaux rigides. Nous introduisons des polygones de Newton pour
les τ -crystaux rigides, et nous montrons que ceux-ci peuvent être
étudiés au moyen des τ -crystaux formels, qui sont analogues aux
F -crystaux. Ainsi, nous démontrons un analogue du théorème de
Grothendieck–Katz pour les τ -crystaux rigides qui proviennent
d’un modèle formel.

Abstract. We present an equicharacteristic analogue of F -iso-
crystals over perfect rings, which we call rigid τ -crystals. We in-
troduce Newton polygons for rigid τ -crystals and show how these
can be studied via formal τ -crystals, the natural analogue of F -
crystals. This leads to an analogue of the Grothendieck–Katz the-
orem for rigid τ -crystals that admit a formal model.

1. Introduction
F -crystals are objects in function field arithmetic that are closely related

to p-divisible groups: Let k be a field of characteristic p > 0. For an elliptic
curve E over k, instead of the Tate module Tl(E) for l = p one studies the
p-divisible group of E. These are categorically anti-equivalent to so-called
Dieudonné-modules, which are examples of F -crystals: locally free modules
with a certain Frobenius structure over the Witt vectors of k. There is a
good theory of studying F -crystals up to isogeny via so-called F -isocrystals,
which have deep connections to p-adic representations of étale fundamental
groups of varieties.

In this article we present an equicharacteristic analogue of F -crystals
and F -isocrystals: The Witt vectors W (A) over an Fp-algebra A behave in
many ways like a mixed characteristic analogue of the ring of formal power
series A[[t]] over A. We will consider analogues of F -crystals with W (k)
replaced by k[[t]], which we shall call formal τ -crystals and which are vector
bundles over a formal scheme together with a Frobenius structure.

Manuscrit reçu le 2 novembre 2016, révisé le 26 juin 2017, accepté le 4 juillet 2017.
2010 Mathematics Subject Classification. 14F30, 14G22.
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There is a natural functor from F -crystals to F -isocrystals which is essen-
tially tensoring over Zp with Qp. The analogue of this in equicharacteristic
is passing from k[[t]] to the field k((t)) of formal Laurent series. More pre-
cisely, by a well-known procedure of creating a rigid analytic k((t))-space
from a topologically finite type formal k[[t]]-scheme, we obtain a rigid ana-
lytic object which we call a rigid τ -crystal. We hope that ultimately these
rigid τ -crystals can be used to study representations of étale fundamental
groups with coefficients in Fp((t)), as outlined by Pál in [13].

This article is organised as follows: In the first chapter we introduce rigid
τ -crystals. We discuss results for F -crystals that can be adopted to rigid
τ -crystals immediately, and on the other hand illustrate some arising diffi-
culties. In order to surpass these, we then introduce the natural analogue
of F -crystals in this setting, namely formal τ -crystals. For these the the-
ory of F -crystals carries over without problems. In particular, for formal
τ -crystals we can define Hodge and Newton polygons and these behave
as expected. The goal will be to prove the theorem of Grothendieck–Katz
in this setting: For a formal τ -crystal T on X and λ ∈ R≥0, the locus of
points of X at which the Newton slope of T is ≥ λ is Zariski-closed in X.
Finally, we discuss how our results can be applied to rigid τ -crystals, and
we present some questions this raises about the existence of formal models
of rigid τ -crystals.

Acknowledgements. We would like to thank Ambrus Pál for the supervi-
sion of the project which lead to this article, as well as for many interesting
discussions. We also thank the referee for several useful suggestions and
comments.

This work was supported by the Engineering and Physical Sciences Re-
search Council [EP/L015234/1] and by the EPSRC Centre for Doctoral
Training in Geometry and Number Theory (The London School of Geom-
etry and Number Theory), University College London.

2. Rigid τ -crystals
Throughout let k be a perfect field of characteristic p > 0. Let R = k[[t]]

be the ring of formal power series, which is a discrete valuation ring with
field of fractions K = k((t)), the field of formal Laurent series over k. We
fix an algebraic closure k of k. All unadorned fibre products will be over
Spec k.

2.1. Preliminaries in formal and rigid geometry.

Definition 2.1. Let X be a Noetherian k-scheme. Then the fibre product
X × Spec k[t] is again Noetherian. By base change along the morphism
Spec k → Spec k[t] that corresponds to the reduction t 7→ 0, we get a closed
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immersion

(2.1) X = X × Spec k ↪→ X × Spec k[t] .

We call this map the special fibre. Via the special fibre, we can consider X
as a closed subscheme of X × Spec k[t]. Completion along this subscheme
gives a formal k[[t]]-scheme

Xfor = X × Spec k[t]
∧

.

We collect some properties of Xfor in the following two lemmas.

Lemma 2.2. There is a canonical morphism iX : Xfor → X × Spec k[t] of
locally ringed spaces. The underlying continuous map identifies the topolog-
ical space underlying Xfor with the image of the map X ↪→ X × Spec k[t]
from equation (2.1).

Lemma 2.3. There is a functor X 7→ Xfor from Noetherian k-schemes to
formal k[[t]]-schemes that sends a morphism f : X → Y to a morphism ffor
with the following properties:

(1) When we identify the underlying topological spaces of Xfor and X
as well as of Yfor and Y , then as a map of topological spaces, ffor :
Xfor → Yfor coincides with f : X → Y .

(2) We have a commutative diagram of locally ringed spaces

Xfor Yfor

X × Spec k[t] Y × Spec k[t] .

ffor

iX iY

f×id

Proof. This is a special case of results in Sections 10.9.1 and 10.9.2
of [5]. �

Lemma 2.4. In the affine case, the −for-functor has the following form:
(1) Let A be a Noetherian k-algebra, then (SpecA)for = Spf A[[t]] where

we have endowed A[[t]] with the t-adic topology.
(2) Let f : SpecA → SpecB be a morphism of Noetherian k-schemes

induced by f ] : B → A, then ffor : (SpecA)for → (SpecB)for is
induced by the homomorphism of k[[t]]-algebras

B[[t]]→ A[[t]],
∞∑
n=0

bnt
n 7→

∞∑
n=0

f ](bn)tn.

Proof. For the first part, we just need to go through the steps of the −for-
construction: We have

X × Spec(k[t]) = Spec(A[t]) .
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The subscheme along which we then complete corresponds to the morphism
A[t] → A, t 7→ 0. The completion of Spec(A[t]) along the special fibre
will therefore on rings correspond to t-adic completion. We conclude that
Xfor = Spf(A[[t]]).

For the second claim, we first note that the functor − × Spec k[t] sends
f to the map which is induced by the morphism B[t] → A[t] that sends∑N
n=0 bnt

n to
∑N
n=0 f

](bn)tn. The t-adic completion extends this to a map
B[[t]]→ A[[t]] described in the Lemma. �

In order to make the notation consistent, we also refer to A[[t]] as Afor,
so that (SpecA)for = Spf Afor. The following Lemma shows that we can
use Lemma 2.4 to describe Xfor locally. This way we can deduce geometric
properties of Xfor from algebraic properties of A[[t]].

Lemma 2.5. Let X be a finite type k-scheme and let ∪iUi be a cover of X
by affine open subschemes. Then each (Ui)for can be interpreted as an affine
open formal subscheme of Xfor. We thus obtain a cover Xfor = ∪i(Ui)for of
affine open formal subschemes.

Proof. When we follow through the steps of the −for-construction, we first
obtain a cover of X × Spec k[t] by affine open subsets Ui × Spec k[t]. After
formal completion, we can interpret (Ui)for as an affine formal subscheme of
Xfor by Proposition 10.8.5 in [5]. On the underlying topological subspaces,
this corresponds to the inclusion of the open subset Ui ⊆ X. Since the Ui
cover X, this shows that we indeed get a cover Xfor = ∪(Ui)for. �

The way that rigid geometry comes in relies on the fact that the resulting
scheme Xfor is topologically of finite type over k[[t]]. This is a consequence
of the following identity:

Proposition 2.6. Let A = k[X1, . . . , Xn]. Then Afor is the Tate algebra
over k[[t]] in the variables Xi with respect to the t-adic norm:

Afor = k[X1, . . . , Xn][[t]] = k[[t]]〈X1, . . . , Xn〉 .

Proof. This is a matter of rearranging variables and the proof in fact works
for polynomial rings over any k-algebra R. Therefore, by induction, it is
enough to prove the case n = 1. So let f ∈ R[X][[t]], f =

∑
fnt

n. We can
write each fn ∈ R[X] as a power series fn =

∑∞
m=0 am,nX

m with am,n ∈ R
such that for all n we have am,n = 0 for m large enough. Now rearrange:

f =
∞∑
n=0

( ∞∑
m=0

am,nX
m

)
tn =

∞∑
m=0

( ∞∑
n=0

am,nt
n

)
Xm

=
∞∑
m=0

gmX
m where we set gm :=

∞∑
n=0

am,nt
n ∈ R[[t]] .
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This is a power series in the variable X with coefficients in R[[t]]. The
condition that for any n there are only finitely many m with non-trivial
am,n is now equivalent to the t-adic absolute value of the coefficients gm
converging to 0. This proves that f is an element of R[[t]]〈X〉. The converse
follows by reversing this argument. �

Corollary 2.7. If A is a finite type k-algebra, then Afor is an algebra
topologically of finite type over k[[t]].

Proof. Let a ⊆ A = k[X1, . . . , Xn] be an ideal and consider the map A[[t]]→
(A/a)[[t]]. It is continuous, surjective and moreover open as one can see from
the projective limit topology. This shows that (A/a)[[t]] is isomorphic as a
topological algebra to a quotient of A[[t]] = k[[t]]〈X1, . . . , Xr〉 and hence is
topologically of finite type over k[[t]]. �

Corollary 2.8. Let X be a finite type k-scheme. Then the formal k[[t]]-
scheme Xfor is topologically of finite type, Noetherian and separated.

Proof. It is clear from Lemma 2.2 that Xfor is quasi-compact. Since X ×
Spec k[t] is Noetherian, it follows that Xfor is Noetherian by Corollaire
10.8.6 in [5]. Lemma 2.5 gives a finite cover of Xfor by affine formal schemes
which by Corollary 2.7 are topologically of finite type. This shows that Xfor
is topologically of finite type. Finally, X × Spec k[t] is separated and thus
its completion Xfor is separated by Proposition 10.15.7 in [5]. �

Proposition 2.9. Let A = k[X1, . . . , Xn], then A((t)) is the Tate algebra
A((t)) = k[X1, . . . , Xn]((t)) = k((t))〈X1, . . . , Xn〉 .

Proof. We can proceed like we did in the proof of Corollary 2.7,
but now allowing the index n of am,n to be negative. Alternatively, one
can also use Corollary 2.7 and use that k[[t]]〈X1, . . . , Xn〉 ⊗k[[t]] k((t)) =
k((t))〈X1, . . . , Xn〉. See [3, §7.4] for more details. �

Corollary 2.10. Let A be a finite type k-algebra. Then A((t)) is an affinoid
k((t))-algebra.

Proof. We can write A((t)) as the localisation S−1A[[t]] at the multiplicative
set S = {tn|n ∈ N}. By Corollary 2.7 we have A[[t]] = k[[t]]〈X1, . . . , Xn〉/a
for some ideal a ⊆ k[[t]]〈X1, . . . , Xn〉. Since localisation is exact, this shows
that A((t)) is a quotient of S−1(k[X1, . . . , Xn][[t]]). The latter equals
k((t))〈X1, . . . , Xn〉 by Proposition 2.9. �

The above result generalizes as follows. Recall that R = k[[t]] is a discrete
valuation ring with fraction field K = k((t)). In this situation, we have the
following construction:

Proposition 2.11. There is a functor −rig from topologically finite type
formal R-schemes X to rigid K-spaces which assigns to an affine formal
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scheme Spf B the affinoid K-space (Spf B)rig = Sp(B ⊗R K). The rigid
space Xrig is called the generic fibre of X.
Proof. One first constructs this functor on affinoid spaces by showing that
B ⊗R K is an affinoid K-algebra. In the case we are interested in, this
is Corollary 2.10. Since in our case all formal R-schemes of interest are
separated by Corollary 2.8, we may proceed as follows: Choose an affine
cover X = ∪iUi. Then since X is separated, the intersection Ui∩Uj is affine
again. We can now define Xrig by glueing the affinoid spaces (Ui)rig along
the affinoid subspaces (Ui ∩ Uj)rig. Finally, one shows that this space does
not depend on the affine cover up to canonical isomorphism. See [3, §7.4]
for details of the construction in general. �

Corollary 2.12. We obtain a functor from finite type k-schemes to rigid
K-spaces

X 7→ Xfor 7→ (Xfor)rig .

We also denote this functor by −rig.
Proof. For a finite type k-scheme X, Corollary 2.8 says that Xfor is a topo-
logically finite type k[[t]]-scheme. Therefore the −rig-construction applies to
Xfor. �

Corollary 2.13. In the affine case, the −rig-functor can be described as
follows:

(1) Let SpecA be a finite type k-scheme, then (SpecA)rig = SpA((t)).
(2) Let f : SpecA → SpecB be a morphism of finite type k-schemes

induced by f ] : B → A, then frig : (SpecA)rig → (SpecB)rig corre-
sponds to the morphism of K-algebras

f ]rig : B((t))→ A((t)),
∑

bnt
n 7→

∑
f ](bn)tn.

Proof. We know from Lemma 2.4 that (SpecA)for = Spf A[[t]]. Therefore,
by construction of the −rig-functor, the space (SpecA)rig = (Spf A[[t]])rig is
the affinoid K-space associated to A((t)). Since in the affine case we have
f ]rig = f ]for ⊗R id : Bfor ⊗R K → Afor ⊗R K, the claimed description of f ]rig
follows from Lemma 2.4. �

For consistency of notation, we also refer to A((t)) as Arig, so that
(SpecA)rig = SpArig.
Lemma 2.14. Let X be a formal scheme and let X = ∪iUi be a cover by
affine open formal subschemes. Then we can identify each (Ui)rig with an
affinoid open subspace of Xrig and we obtain an admissible cover Xrig =
∪i(Ui)rig by affinoid open subspaces.
Proof. We know from Corollary 2.13 that the (Ui)rig are going to be affinoid.
The claim then follows from the fact that Xrig is constructed by glueing the
affinoid spaces (Ui)rig. See [3, Proposition 5.3.5] for more detail. �
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Proposition 2.15. If SpecA ⊆ X is an affine open subset, we can identify
(SpecA)rig = Sp(Arig) with an affinoid open subspace of Xrig. Moreover,
if (SpecAi)i∈I is an affine open cover of X, then (Sp((Ai)rig))i∈I is an
admissible affinoid cover of Xrig.

Proof. This is immediate from Lemma 2.5 and Lemma 2.14. �

2.2. Lifting morphisms. By functoriality, a morphism of finite type k-
schemes f : X → Y gives rise to a morphism frig : Xrig → Yrig of rigid K-
spaces. We would like to produce a similar result for the absolute Frobenius
morphism σ : X → X as well as for geometric points ϕ : Spec k → X.
However, in general we cannot expect any morphism f : X → Y to induce
a map frig : Xrig → Yrig of locally G-ringed spaces. To illustrate a possible
difficulty, let A and B be k-algebras and let f : B → A be any ring
homomorphism. While we do have a natural map

f⊗̂ id : B((t))→ A((t)) ,
it is not even clear that maximal ideals pull back to maximal ideals under
this map if f is not k-linear or if A or B are not of finite type.

2.2.1. Lifting the absolute Frobenius morphism.

Lemma 2.16. Let X be a finite type k-scheme. Then the absolute Frobenius
on X extends to a morphism τ : Xfor → Xfor of locally ringed spaces which
on affine open subsets SpecA ⊆ X restricts to the morphism τ : Spf Afor →
Spf Afor corresponding to the map

τ ] : A[[t]]→ A[[t]] ,
∑

ant
n 7→

∑
apnt

n.

Proof. Consider X as a Noetherian Fp-scheme. Then since X×k Spec k[t] =
X ×Fp SpecFp[t] as Fp-schemes, we obtain the same formal Fp[[t]]-scheme
Xfor from both −for as a functor on k-schemes, as well as from −for as a
functor on Fp-schemes. When we consider σ : X → X as a morphism of
Fp-schemes, we obtain a map τ : Xfor → Xfor of formal Fp[[t]]-schemes. On
affine X, Lemma 2.4 then shows that τ ] is of the desired form. �

An analogous result holds for the −rig-functor:

Proposition 2.17. Let X be a finite type k-scheme. Then the absolute
Frobenius on X lifts to a morphism τ : Xrig → Xrig of locally G-ringed
spaces which for an affine open subset SpecA ⊆ X restricts to the map
τ : SpecArig → SpecArig that corresponds to the morphism

τ ] : A((t))→ A((t)),
∑

ant
n 7→

∑
apnt

n.

As with the Frobenius morphism, we also simply write τ for τ ]. Since
the −rig-construction only works for morphisms of k-schemes, the approach
for the −for-functor fails in this case. Instead we use the following Lemma:
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Lemma 2.18. Let X be an affine finite type k-scheme and let σ denote the
Frobenius morphism on k. Denote by σX the k-scheme X with structure
map X → Spec k σ−→ Spec k. Then (σX)rig is the rigid K-space with the
same underlying locally G-ringed space as Xrig, but with a K-space structure
given by the structure map Xrig → SpK τ−→ SpK.

Proof. Let X = SpecA, then σX = Spec(σA) where σA is the k-algebra
with structure map k

σ−→ k → A. We then have Xrig = SpArig and
(σX)rig = Sp(τArig) where τArig denotes the ring Arig with K-algebra
structure K

τ−→ K → A((t)). Since τArig and Arig have the same ring
structure, it is clear that the underlying sets of (σX)rig and Xrig coincide.
Furthermore, by our running assumption that k is perfect, the functor τ−
is a category equivalence from affinoid K-algebras to affinoid K-algebras.
Therefore, when we apply τ− to the diagram describing the universal prop-
erty of affinoid subdomains, we see that a subspace U ⊆ Xrig is an affinoid
subdomain if and only if U ⊆ (σX)rig is an affinoid subdomain. Moreover,
if B is the affinoid algebra of the affinoid space representing morphisms
with image in U ⊆ Xrig, then the same argument shows that τB is the
affinoid algebra of the affinoid space representing morphisms with image in
U ⊆ (σX)rig.

This shows that the structure G-sheaf of (σX)rig is just the structure
G-sheaf of Xrig but with the K-algebra structure changed via the map
τ : K → K as claimed. �

Proof of Proposition 2.17. Choose an affine cover ∪iUi of X. Then as we
have seen in Proposition 2.11, the space Xrig can be constructed from glue-
ing the affinoid spaces (Ui)rig along the affinoid spaces (Ui ∩ Uj)rig and we
get an admissible cover Xrig = ∪i(Ui)rig by Lemma 2.15. When we con-
struct the desired morphism on each (Ui)rig, the morphisms will agree on
intersections (Ui∩Uj)rig. Indeed, the Ui∩Uj are affine and thus Lemma 2.18
implies that the morphisms are uniquely determined on (Ui ∩Uj)rig by the
description of τ ] in Proposition 2.17. Therefore, we can glue all morphisms
to give the desired map Xrig → Xrig.

We may therefore assume without loss of generality that X is affine. The
absolute Frobenius morphism of X gives a commutative diagram

X X

Spec k Spec k .

σ

σ

When we interpret σ as a morphism σX → X of finite type k-schemes, we
can apply the −rig-functor to it and obtain a morphism τ : (σX)rig → Xrig
of rigid K-spaces. When we then forget the K-space structure and just
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consider τ as a morphism of locally G-ringed spaces, we can identify the
underlying G-ringed spaces of (σX)rig and Xrig by Lemma 2.18 to get the
desired morphism of locally G-ringed spaces τ : Xrig → Xrig.

Finally, to see that the map τ ] is as described in the proposition, we
just need to apply Corollary 2.13 to the morphism τ : (σX)→ X of affine
k-schemes. �

2.2.2. Lifting geometric points. Another type of morphism that can
be lifted from k-schemes to give a morphism of the corresponding locally
G-ringed spaces are closed k-points, where k is an algebraic closure of k.
While every such point factors through Spec k′ for some finite extension k′
of k, it will be desirable to pull back rigid τ -crystals to Sp k((t)) due to
Dieudonné’s Theorem (Corollary 2.37).

Lemma 2.19. Let X be a finite type k-scheme and let φ : Spec k → X be
a geometric point of X. Then φ can be canonically lifted to a morphism of
locally G-ringed K-spaces

φrig : Sp k((t))→ Xrig .

Proof. When we show the result for affine X, then in general we can restrict
the codomain of φ to an affine subset U ⊆ X and thus obtain a map
Sp k((t))→ Urig ⊆ Xrig.

So assume that X = SpecA is affine. Then φ on global sections gives
a morphism φ] : A → k. Since A is a finite type k-algebra, we can find a
finite extension k′ of k for which we can decompose φ] into a map A→ k′

followed by an embedding k′ ↪→ k.
Since the rigid k((t))-space Sp k((t)) and the rigid k((t))-space Sp k′((t))

are each just a point, the embedding k′((t)) ↪→ k((t)) gives a canonical
map of locally G-ringed K-spaces Sp k((t)) → Sp k′((t)). The composition
Sp k((t)) → Sp k′((t)) → SpA((t)) then gives the desired morphism of
locally G-ringed K-spaces. �

2.3. Definition of rigid τ -crystals. Let X be a finite type k-scheme
and let F be a vector bundle on the rigid space Xrig. Here by a vector
bundle we mean a coherent locally free OXrig-module. We have seen in
Proposition 2.17 that the absolute Frobenius morphism σ : X → X lifts to
a morphism of locally G-ringed spaces τ : Xrig → Xrig. So we can pull-back
F along τ to obtain a coherent OXrig-module τ∗F on Xrig, which is again
locally free and thus a vector bundle on Xrig.

Definition 2.20. Let X be a finite type k-scheme. A rigid τ -crystal on X
is a pair (F , F ) consisting of the following data:

(1) a vector bundle F on Xrig,
(2) an isomorphism F : τ∗F → F of vector bundles on Xrig.
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A morphism of τ -crystals f : (F , F ) → (F ′, F ′) on X is a morphism f :
F → F ′ of the underlying vector bundles such that pullback along τ induces
a commutative diagram

(2.2)
τ∗F F

τ∗F ′ F ′.

τ∗f

F

f

F ′

Definition 2.21. Let a ∈ N. By iterating τ we obtain a morphism of locally
G-ringed spaces τa = τ ◦ · · · ◦ τ : Xrig → Xrig. We define a rigid τa-crystal
to be a vector bundle F on Xrig with an isomorphism (τa)∗F → F of vector
bundles on Xrig.

Lemma 2.22. Let T = (F , F ) be a rigid τ -crystal on X. We denote by
F a = F ◦ · · · ◦ F the a-th iteration, that is the composition of a times F
with itself. Then we get a rigid τa-crystal (F , F a) on X which is called a-th
iteration of T .

Proof. For any b ∈ Z≥0, the isomorphism τ∗F → F pulls back along τ b
to an isomorphism (τ b+1)∗F → (τ b)∗F . When we compose these maps for
b = 0, . . . , a− 1 we obtain the desired isomorphism (τa)∗F → F . �

Remark 2.23. For simplicity of the exposition we will often only treat the
case of τa=1-crystals, but everything we present will go through verbatim
for rigid τa-crystals.

Remark 2.24 (Rigid τ -crystals in the literature). The idea of rigid τ -
crystals as presented in this article is due to Ambrus Pál [13]. Other authors
have defined objects which are similar to rigid τ -crystals:

To some extent, rigid τ -crystals resemble Anderson k[t]-motives as stud-
ied by Böckle [1]. These are vector bundles on X × Spec k[t] whereas rigid
τ -crystals live on the generic fibre of the completion of this scheme (see
Remark 3.5 below for more details).

Another related concept are locally free rigid analytic τ -sheaves as intro-
duced by Böckle and Hartl in [2]. These arise from algebraic τ -sheaves via
rigid GAGA after base changing from k to k((t)). So compared to the rigid
τ -crystals studied here, these sheaves have a different Frobenius structure
and an additional variable. The same is true for the σ-modules of Hartl
in [7]. However, σ-modules contain rigid τ -crystals on k[X] as a special
case.

Finally, Hartl in [6] introduces objects which he calls Dieudonné-Fp((t))-
modules, which are a generalisation of rigid τ -crystals in a more general
setting. However, in this more general setting the objects don’t have a rigid
analytic structure, because Proposition 2.10 only holds when X is of finite
type.
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Example 2.25. WhenX = SpecA is an affine k-scheme of finite type, then
a vector bundle on Xrig is associated to a locally free A((t))-module ([4,
Proposition 4.7.2]). The Frobenius structure then amounts to the following:
The sheaf τ∗M̃ will be the one associated toM⊗τA((t)) (this can be proved
exactly like in the scheme case using right-exactness of τ∗ on a sequence
representing M̃ as a coherent sheaf). A rigid τ -crystal is thus the same data
as a locally free A((t))-module M with an isomorphism of A((t))-modules

M ⊗τ A((t)) ∼−→M .

If A is perfect, that is if τ is an isomorphism, this is the same as a τ -linear
isomorphism

F : M ∼−→M such that F (am) = τ(a)F (m) for a ∈ A((t)) and m ∈M .

This situation is analogous to the one for F -isocrystals on a perfect ring A,
where the role of A((t)) is played by W (A)⊗Zp Qp.

To give an explicit example, for k = Fp, any pair (Fp((t))n, F ) where
F ∈ GLn(Fp((t))) defines a rigid τ -crystal.

Example 2.26. An important class of rigid τ -crystals are the standard
Dieudonné-modules on Spec k, as defined in [6]. For coprime m ∈ Z, n ∈ N
consider the K = k((t))-vector space M = k((t))n and the τ -linear map F
determined on the standard basis e1, . . . , en of M by the matrix:

0 · · · 0 tm

1 . . . 0
. . . . . . ...

0 1 0

 : M →M,
n∑
i=1

aiei 7→
n∑
i=1

τ(ai)F (ei) .

It is not hard to see that this map is a τ -linear isomorphism. Thus by
Example 2.25, this indeed defines a rigid τ -crystal on X which we denote
by V(m/n). The same construction also works for rigid τa-crystals when
we choose the same images for the standard basis but extend τa-linearly.

Lemma 2.27. Let φ : Y → X be a morphism of finite type k-schemes
and let T = (F , F ) be a rigid τ -crystal on X. Then the pair φ∗T =
(φ∗rigF , φ∗rigF ) is naturally a rigid τ -crystal on Y . We obtain a functor φ∗−
from rigid τ -crystals on X to rigid τ -crystals on Y .

Proof. Since Frobenius commutes with any map, we get a commutative
diagram

Yrig Yrig

Xrig Xrig .

φrig

τY

φrig

τX
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Therefore, if (F , F ) is a rigid τ -crystal on X, pullback along φ gives an
isomorphism

τ∗Y φ
∗
rigF = φ∗rigτ

∗
XF

φ∗rigF−−−→ φ∗rigF .
We see from this that (φ∗rigF , φ∗rigF ) has the natural structure of a rigid
τ -crystal on Y . This construction gives a functor from τ -crystals on X to
τ -crystals on Y as one can see from applying the functor φ∗rig− to dia-
gram (2.2) in Definition 2.20. �

Remark 2.28. Note that in the proof of Lemma 2.27 we have only used
that φrig is a morphism of locally G-ringed K-spaces. Since a closed point
φ : Spec k → X by Lemma 2.19 induces a morphism of locally G-ringed
K-spaces Sp k((t)) → Xrig as well, the same construction gives a functor
φ∗− from rigid τ -crystals on X to rigid τ -crystals on Spec k.

Definition 2.29. Let T be a τ -crystal on X and let i : U ↪→ X be an open
immersion. We define the restriction T |U to be the τ -crystal i∗T on U .

2.4. Rigid τ -crystals over algebraically closed fields. Recall that k
denotes a perfect field of characteristic p. We can better understand rigid τ -
crystals on Spec k when we shift perspective as follows (we follow Kedlaya,
[10, §14]):

Definition 2.30. A difference field is a pair (L,ϕ) consisting of a field L
and an endomorphism ϕ of L. A difference field is called inversive if ϕ is
an automorphism.

The difference field we have in mind is the pair (L,ϕ) = (k((t)), τ) with
τ the map defined in Proposition 2.17. This difference field is inversive
because k is perfect.

Definition 2.31. Let (L,ϕ) be a difference field. Then a pair (V, φ) of an
L-vector space V together with a ϕ-linear group homomorphism φ : V → V
is called a difference module over (L,ϕ). Here by ϕ-linearity we mean that
φ(cv) = ϕ(c)φ(v) for all c ∈ L and v ∈ V .

Example 2.32. By Example 2.25, a rigid τ -crystal on Spec k is the same
as a difference module (M,F ) over the difference field (k((t)), τ) for which
F is an isomorphism.

Definition 2.33. We denote by V (m/n) the difference module (M,F )
corresponding to the standard Dieudonné-module V(m/n).

Definition 2.34. Let (L,ϕ) be a difference field. Then the twisted polyno-
mial ring L{T} is the non-commutative polynomial ring in the variable T
over L subject to

Tc = ϕ(c)T for c ∈ L.
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For an L{T}-module V denote by T · : V → V the map which is left-
multiplication by T . Then the functor V 7→ (V, T ·) from L{T}-left modules
to difference modules over (L,ϕ) is an equivalence of categories.

Example 2.35. For any f ∈ L{T}, the cokernel L{T}/L{T}f of multi-
plication by f is a finite L{T}-module. When we look at the definition of
V(m/n) in Example 2.26, we see that the corresponding difference module
is precisely of this form. More precisely, the K{T}-module corresponding
to the difference module V (m/n) is K{T}/K{T}(Tn − tm).

Now assume that k is algebraically closed and consider the inversive
difference field (k((t)), τ). In this situation, there is a version of Dieudonné’s
Theorem for finite difference modules which in the particular case of k((t))
was proved by Laumon [11, Theorem 2.4.5]. We present it here in a more
general adaptation due to Kedlaya [10]:

Theorem 2.36 (Dieudonné–Manin Theorem for rigid τ -crystals). If k is
algebraically closed, then every finite difference module of (k((t)), τa) splits
into the direct sum of difference modules of the form V (mi/ni) for some
uniquely determined sequence of rational numbers m1/n1 ≤ · · · ≤ mk/nk
written in lowest terms.

Proof. This is Dieudonné’s theorem applied to (k((t)), τa) (see [10, Theo-
rem 14.6.3 and Corollary 14.6.4]. Note that this part of §14 of [10] does
apply to our situation despite the characteristic zero assumption in other
sections). The theorem applies because τa induces a power of the abso-
lute Frobenius endomorphism on the residue field k of k((t)). The proof
of Dieudonné’s theorem relies on a decomposition of M into isoclinic sub-
modules ([10, Theorem 14.4.13]), which in turn is proved by showing that
Ext1

L{T}(V1, V2) vanishes for L{T}-modules V1 and V2 of different slopes.
Uniqueness follows from the fact that the V(m/n) are irreducible and non-
isomorphic (for example because the slope can be recovered from the valu-
ation of the determinant). �

Corollary 2.37 (Dieudonné’s theorem for rigid τ -crystals). When k is an
algebraically closed field, every rigid τa-crystal T on k factors into a direct
sum

T ∼=
k⊕
i=1
V(mi/ni)

for some uniquely determined sequence of rational numbers m1/n1 ≤ · · · ≤
mk/nk written in lowest terms.

This result is also stated in [6, Theorem 7.6] and [7, Theorem 1.2.9].

Definition 2.38. We call the ascending sequence λ1, . . . , λr of the numbers
mi/ni, each one occuring with multiplicity ni, the Newton slopes of T . The
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Newton polygon associated to these numbers is defined to be the graph of
the following piecewise linear real function on the interval 0 ≤ i ≤ r: On
integers, it is given by i 7→ λ1 + · · · + λi (where we set 0 7→ 0) and the
function is extended linearly between integers. In other words, λi is the
slope of the Newton polygon on the interval (i− 1, i).

Example 2.39. Recall that a rigid τ -crystal on k is the same as a K{T}-
module M , finite over K = k((t)), for which multiplication by T is an
isomorphism. In the special case that T is given byM = K{T}/K{T}P for
some monic polynomial P ∈ K{T}, the Newton polygon coincides with the
Newton polygon of P ([10, Proposition 14.5.7], which as before applies to
our situation despite the characteristic zero assumption in other sections).
Note that this statement can be seen as a generalisation of Example 2.35.

2.5. Geometric points of τ -crystals. Let X be a k-scheme of finite
type, let T be a τ -crystal on X and let φ : Spec(k) → X be a geometric
point of X. By Lemma 2.19 we get a morphism

φrig : Sp k((t))→ Xrig ,

along which we can pull back T by Remark 2.28. This way we get a τ -crystal
φ∗T on Sp k((t)), which by Theorem 2.37 is determined by its slopes up to
isomorphism.

Definition 2.40. We call the Newton slopes of φ∗T the Newton slopes of
T at φ.

Example 2.41. Recall from Example 2.25 that a rigid τ -crystal over k =
Fp corresponds to a finite K = Fp((t))-vector spaceM and an isomorphism
F ofM . Let χF be the characteristic polynomial of F . Since K{T} = K[T ]
is a principal ideal domain in this case, we see thatM = K[T ]/(de1

1 )⊕ . . .⊕
K[T ]/(den

n ) for some monic polynomials d1, . . . , dn such that de1
1 · · · den

n =
χF . After tensoring with K ′{T} where K ′ = Fp((t)), Example 2.39 implies
that the Newton slopes at Spec k → Spec k are the Newton slopes of χF ,
which are precisely the t-adic valuations of the eigenvalues of F in some
extension of K, with multiplicities.

Remark 2.42. There is no good notion of Hodge slopes for rigid τ -crystals
as the following example illustrates: Let k = Fp be like in Example 2.25, let
M = Fp((t))2 and let F be represented with respect to the standard basis
by the matrix ( t 1

0 t ). Then as discussed in 2.41, the Newton slopes are the
valuations of the zeros of the characteristic polynomial. Here both slopes
are equal to 1. In order to define the Hodge slope of (M,F ), one would
have to choose an Fp[[t]]-sublattice of M and define the Hodge slopes to
be the valuations of the elementary divisors of any matrix representing F .
However, even if lattices stable under F exist, this depends on the choice
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of lattice: While the lattice spanned by the standard basis has minimal
Hodge slope 0 as we can read from the matrix, the basis (1, 0), (0, t) of M
represents F as ( t t0 t ), which has Hodge slopes 1, 1.
2.6. Local freeness on the base. When working with τ -crystals, we
would often like to assume without loss of generality that the underlying
vector bundle F is trivial. For example, one might ask if there is always a
covering X = X1 ∪ · · · ∪Xn such that the τ -crystal T |Xi

that we get from
restricting the base from X to Xi is trivial.
Definition 2.43. We call a rigid τ -crystal T = (F , F ) on X locally free
on the base if there is a covering X = X1 ∪ · · · ∪Xn such that F is trivial
when restricted to (Xi)rig ⊆ Xrig.
Remark 2.44. The analogous notion for F -crystals over a perfect base is
always satisfied. This is immediate when working with vector bundles over
the formal scheme Spf W (A), which as a topological space can be identified
with SpecA. But it is also easy to see algebraically: Given a locally free
W (A)-module M with associated vector bundle F , one can always find
a cover of SpecA by affine subsets SpecB such that the restriction of F
to Spec(W (B)) is free: There are f1, . . . , fr ∈ W (A) generating the unit
ideal such that Mfi

is a free W (A)fi
-module. Then if a1, . . . , ar are the

projections of the fi to A, these will generate the unit ideal in A. We thus
get a cover of SpecA by the SpecAai . The natural map W (A)fi

→W (Aai)
(which is p-adic completion) shows that F is trivial when restricted to
Spec(W (Aai)).

Spec(W (A)) Spec(W (Aa))

SpecA SpecAa .
In the rigid setting, the topological situation is more subtle: The issue is
that there are many admissible open sets U ⊂ Xrig, few of which arise from
open sets on X via rigidification:

Xrig U

X ?

w

Algebraically, the problem in adapting the situation from the Witt vectors
is that in A((t)) we are missing information at the ideal (t) of A[[t]], by
which we mean the following: Given elements f1, . . . , fr ∈ A[[t]] such that
(f1, . . . , fr) = A((t)), we can only conclude that∑

rkfk = tm for some m ∈ N and some rk ∈ A[[t]] .
So the constant terms ak of fk do not necessarily generate the unit ideal in
A. Consequently, ∪iD(ai) might not be a cover of X and therefore it is not
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clear that the cover Xrig = ∪D(fk) can be refined by a cover ∪iD(ai)rig =
∪iXrig|D(ai) of restrictions.

Remark 2.45. In some situations the above difficulties do not arise be-
cause all τ -crystals are actually free. For example, the analogue of the
Quillen–Suslin theorem holds for Tate algebras [12]. This shows that any
vector bundle on (Ank)rig is free. Also the existence of a Frobenius structure
is a significant additional information: For example, for the punctured open
unit disc, all vector bundles with Frobenius structure are trivial [8].

3. Formal τ -crystals
In the analogy between F -crystals and τ -crystals, the right replacement

of the Witt vectors W (A) is the ring A[[t]] of formal power series: Both
are adic rings with residue ring A whose projection map has a multiplica-
tive section. In this chapter, we will show that F -crystals have a natural
analogue over A[[t]], which we call formal τ -crystals. For these much of the
F -crystal theory carries over. Furthermore, formal τ -crystals are to rigid
τ -crystals what F -crystals are to F -isocrystals: There is a natural rigidifi-
cation functor which transforms formal τ -crystals into rigid τ -crystals.

Let X be a scheme of finite type over k. Let X = Xfor be the formal
scheme from Definition 2.1. Recall from Lemma 2.16 that the Frobenius on
X lifts to a morphism τ : X→ X.
Definition 3.1. A formal τ -crystal on X is a pair (F, F ) consisting of

(1) a vector bundle F on X (whereby we mean a locally free coherent
OX-module),

(2) a morphism F : τ∗F → F of vector bundles such that cokerF is a
t-torsion OX-module.

Definition 3.2. We define a formal τa-crystal to be a vector bundle F on
X with a map F : (τa)∗F → F of vector bundles such that cokerF is a
t-torsion OX-module.
Remark 3.3. As for rigid τa-crystals, everything we show for formal τ -
crystals will go through analogously for formal τa-crystals. Iterates will
prove useful in the proof of 3.26.
Lemma 3.4. Let a ∈ N. Let T = (F, F ) be a formal τ -crystal on X and
let F a = F ◦ · · · ◦F be the a-th iteration, that is the composition of a times
F with itself. Then we get a formal τa-crystal Ta := (F, F a) on X, which
is called a-th iteration of T.
Remark 3.5. Formal τ -crystals are a special case of Hartl’s Dieudonné-
Fp[[t]]-modules as defined in [6]. They are also very closely related to π-
adic ϕ-sheaves as introduced by Taguchi and Wan [14], although formal
τ -crystals also require cokerF to be t-torsion.
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Moreover, formal τ -crystals are related to Anderson A-motives: If X is
a finite type k-scheme, then there is a natural functor from Anderson k[t]-
motives to formal τ -crystals. Here by an Anderson k[t]-motive we mean
a pair (M, F ) of a vector bundle M on X × Spec k[t] and a morphism
F : (σ × id)∗M → M such that cokerF is supported on the subscheme
X ↪→ X×Spec k[t] induced by the reduction k[t]→ k. The latter condition
implies that cokerF is t-torsion.

As in Definition 2.1, we can complete X × Spec k[t] along X. This also
gives a completion functor F 7→ F̂ from coherent sheaves on X × Spec k[t]
to coherent sheaves on Xfor which sends M to a vector bundle M̂ and
(σ × id)∗M to τ∗M̂. By functoriality, F gives a map

F̂ : τ∗M̂ → M̂ .

The cokernel of F̂ will be ̂cokerF since completion of coherent sheaves is
an exact functor. In particular, coker τ is a t-torsion OXfor-module. This
shows that (M̂, F̂ ) is a formal τ -crystal.
Lemma 3.6. In the case that X = SpecA is an affine k-scheme of finite
type, we can identify the underlying topological space of Xfor = Spf A[[t]] with
SpecA. Under this identification, there is a finitely generated A[[t]]-module
M such that for any a ∈ A, we have F(D(a)) = M ⊗A[[t]] Aa[[t]].
Proof. This is Theorem A for topologically finite type formal schemes with
the appropriate notion of associated sheaves (see [3, §8.1]). �

Remark 3.7. More precisely, in the situation of Lemma 3.6, vector bundles
on Xfor correspond to locally free A[[t]]-modules: When f ∈ A[[t]] is such
that Mf is free, and a is the constant term of f , then M ⊗ Aa[[t]] is a
free Aa[[t]]-module. This shows that locally free modules give rise to vector
bundles on Xfor. Conversely, use that for any (a1, . . . , ak) = A the map
A[[t]]→

∏
Aai [[t]] is faithfully flat.

Remark 3.8. Consequently, in the case that X = SpecA is an affine
k-scheme of finite type, a formal τ -crystal is a locally free A[[t]]-module
M together with a τ -linear morphism F : M → M which becomes an
isomorphism after tensoring with −⊗Fp[[t]] Fp((t)). This is analogous to the
definition of F -crystals over a perfect ring (cf. [9]), with −⊗Zp Qp replaced
by −⊗Fp[[t]] Fp((t)).

Example 3.9. Recall the rigid τ -crystal V(m/n) on k((t)) from Exam-
ple 2.25. When we take the k[[t]]-span of the standard basis, then F maps
the resulting lattice into itself as long as m ≥ 0. So by Remark 3.8, any
m/n ∈ Q≥0 gives a formal τ -crystal V(m/n) on k[[t]].
Remark 3.10. The pullback of a formal τ -crystals can be defined like
for rigid τ -crystals in Lemma 2.27. In particular, we can study a formal
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τ -crystal (F, F ) on X at a geometric point of X. Also we can define the
restriction (F, F )|U to an open subset U ⊆ X. Lemma 3.6 tells us that
on an affine base X = SpecA, the restriction (F, F )|D(a) to an affine open
subset D(a) ⊆ SpecA on modules is given by passing from F(X) = M to
F(D(a)) = M ⊗Aa[[t]].

One of the technical advantages of formal τ -crystals over rigid τ -crystals
is that formal τ -crystals are always locally free on the base:

Proposition 3.11. Let (F, F ) be a formal τ -crystal on SpecA. Then we
can find a cover SpecA = ∪iD(ai) such that (F, F )|D(ai) is a trivial bundle.

Proof. This is a consequence of Remarks 3.7 and 3.10. �

If we were only interested in affine X, we could equivalently define formal
τ -crystals via locally free A[[t]]-modules to emphasise the analogy with F -
crystals. With this definition, we could copy the proof of local triviality
from Remark 2.44.

3.1. The rigidification functor. The condition on F is of course chosen
in such a way that given a formal τ -crystal (F ,F ) on X, the generic fibre
from Lemma 2.11 gives a rigid τ crystal (Frig, Frig).

Lemma 3.12. Rigidification of the underlying spaces X 7→ Xrig gives rise
to a rigidification functor that assigns to a formal τ -crystal T on X a rigid
τ -crystal Trig on X.

Proof. By definition, for any finite type k-scheme X, the −rig-functor sends
Xfor to Xrig. We can define a similar functor on vector bundles, which on
an affine formal scheme Spf A[[t]] sends the vector bundle associated to
the locally free A[[t]]-module M to the locally free A((t))-module M ⊗A[[t]]
A((t)) = M ⊗Fp[[t]] Fp((t)). The morphism F : M → M is sent to the map
F⊗id onM⊗Fp[[t]]Fp((t)). This is an isomorphism since −⊗Fp[[t]]Fp((t)) kills
all t-torsion. We conclude that (M,F ) corresponds to a rigid τ -crystal. �

Definition 3.13. A morphism of formal τ -crystals is called an isogeny if
it becomes an isomorphism after rigidification.

3.2. Newton and Hodge slopes. By the Dieudonné–Manin classifica-
tion of τ -crystals on k (Corollary 2.37), we can classify formal τ -crystals
on k up to isogeny:

Corollary 3.14. Every formal τ -crystal T on k is isogeneous to a direct
sum of formal crystals of the form V(mi/ni) from Example 3.9 for some
unique ascending sequence of non-negative rational numbers m1/n1 ≤ · · · ≤
mk/nk written in lowest term.
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Proof. By 2.37, the rigid τ -crystal Trig splits into a direct sum of crystals
of the form V(mi/ni) for some uniquely determined sequence of rational
numbers m1/n1 ≤ · · · ≤ mk/nk. Each of these have to be non-negative: If
a/b is negative, then V(a/b) has no k[[t]]-sublattice that is fixed by F and
therefore can’t come from a formal τ -crystal.

It remains to find an isomorphism ψ : Trig → ⊕ki=1V(mi/ni) that restricts
to a morphism T→ ⊕ki=1V(mi/ni). We begin by choosing any isomorphism
ψ of the rigid τ -crystals. The vector bundle underlying T corresponds to a
free module over k[[t]], and we choose a basis to identify it with k[[t]r. Using
the canonical basis for the module V (mi/ni), the morphism ψ is then a
map k((t))r → k((t))r commuting with the respective τ -semilinear maps
on both sides. It is represented by a matrix U with coefficients in k((t)).

Since τ(t) = t, the τ -semilinear morphisms are in fact Fp((t))-linear.
Thus if we multiply ψ by a power td such that tdU has coefficients in
k[[t]], the morphism tdψ still commutes with the τ -semilinear maps but now
restricts to a morphism k[[t]]r → k[[t]]r. This induces the desired isogeny
T→ ⊕ki=1V(mi/ni). �

Definition 3.15. Given a geometric point φ : Spec k → X, we define the
Newton slopes of T at φ to be the unique sequence of numbers m1/n1 ≤
· · · ≤ mk/nk that we get from applying Proposition 3.14 to φ∗T, each one
counted with multiplicity ni.

Lemma 3.16. Let X be a finite type k-scheme and let T be a formal τ -
crystal on X. Let φ : Spec k → X be a geometric point. Then when we
rigidify φ∗T over k[[t]], the result will be the same as when we first rigidify
T and then pull back along φrig : Sp k((t))→ Xrig:

(φ∗T)rig = φ∗(Trig) .
In particular, the Newton slopes of T coincide with those of Trig.

Proof. By choosing an affine open subset of X containing the image of φ,
we can without loss of generality assume that X = SpecA is affine. Then
we get a commutative diagram

k((t)) A((t))

k[[t]] A[[t]] .

φ]
rig

φ]
for

Since pull back of sheaves corresponds to push forward of modules, this
proves the claim. �

One way that formal τ -crystals help to understand rigid τ -crystals is
that they provide a setting to study the analogue of Hodge slopes of an
F -crystal, as we shall now explain.
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Let φ : Spec(k) → X be a closed point of X and let R = k[[t]]. If T =
(F, F ) is a formal τ -crystal on X, then the τ -crystal φ∗T = (φ∗forF, φ

∗
forF )

corresponds to a locally free R-module M , which is necessarily free since
R is a principal ideal domain. In particular, we can consider M as an R-
sublattice of the K-vector space M ⊗R K corresponding to the underlying
vector bundle of φ∗Trig.

Definition 3.17. If A is any matrix over k[[t]] representing φ∗forF , we define
the Hodge slopes σ1 ≤ · · · ≤ σr of T at φ to be the t-valuations of the
elementary divisors of A, counted with multiplicity. We associate a Hodge
polygon to these numbers like in Definition 2.38.

Remark 3.18. The theory of elementary divisors tells us that the Hodge
slopes are independent of the choice of k[[t]]-basis. An alternative charac-
terisation of Hodge slopes is that σ1 + · · ·+ σm is the minimal valuation of
all m×m-minors of A (see [10, 14.5.1]). In particular, the smallest Hodge
slope σ1 is the minimal valuation of all entries of A.

We are now ready to adopt some results of Katz from §1 of [9] for formal
τ -crystals. In what follows we fix a formal τ -crystal T = (F, F ) of rank r on
Spec k. By Corollary 2.37, the rigid τ -crystal T = Trig factors into a direct
sum of standard Dieudonné-modules V(m/n).

In the F -crystal setting, one can use this to “diagonalize” F , which can
be adapted as follows. Let N = r! and consider the finite extension K ′ =
k((t1/N )) of K. This is a valued field with valuation ring R′ = k[[t1/N ]].
We can base change T to R′ by pulling back along Spf R′ → Spf R. The
resulting formal τ -crystal T′ corresponds to the R′-module M ′ = M ⊗R R′
with morphism F ′ = F ⊗ τ . The slopes of T and T′ are related as follows:

Lemma 3.19. If the rigid τ -crystal T has Newton slopes λ1, . . . , λr, then
after base change along ϕ : k((t))→ k((t1/N )), the τ -crystal ϕ∗T has inte-
gral slopes Nλ1, . . . , Nλr.

Proof. It suffices to prove this for T = V(m/n). By Example 2.35,
M = K{T}/K{T}P for P = Tn − tm .

After base change to K ′, we still have M ′ = K ′{T}/K ′{T}P , but the
Newton slopes have changed: By Example 2.39, they are the Newton slopes
of P with respect to K ′. We have vK′ |K = N · vK , so the Newton slopes
are now N ·m/n with multiplicity n. This is integral because we have set
N = r! and because n is smaller or equal to the rank r of T . �

Remark 3.20. In other words, Lemma 3.19 says that the Dieudonné-
module M decomposes over K ′ into a direct sum of one-dimensional stan-
dard Dieudonné-modules. In particular, we can find a K ′-basis of M ′ of
“eigenvectors” of F , for which F ′(vi) = tλivi.
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Proposition 3.21. The Newton slopes of a formal τ -crystal on Spec k can
be equivalently characterised as the unique rational numbers λ1 ≤ · · · ≤
λr ∈ 1

NZ for which there is an R′-basis of M ′ with respect to which F ′ can
be represented by a matrix of the following form:t

λ1 ∗ ∗
. . . ∗

0 tλr

.
Proof. By Remark 3.20, we can find v ∈M ′ ⊗R′ K such that F (v) = tλ1v.
After rescaling v by the minimal power of t such that v ∈M ′, use that R′ is
a discrete valuation ring to extend v to an R′-basis ofM ′. We then proceed
inductively with the free R′-module M ′/R′v. Since (M ′/R′v) ⊗R′ K ′ =
(M ′ ⊗R′ K ′)/K ′v, the slopes of M ′/R′v will be λ2, . . . , λr. �

Corollary 3.22. If T is a formal τ -crystal on X and φ is a closed point
with Newton slopes λ1 ≤ · · · ≤ λr then the formal τa-crystal Ta has Newton
slopes aλ1 ≤ · · · ≤ aλr at φ.

Remark 3.23. In general it is not clear from the Hodge slopes of T what
the Hodge slopes of Ta are. But our later results will imply that 1/a times
the Hodge slopes of Ta converges to the Newton slopes of T (see also [10,
Proposition 14.5.8]). This is one way that iterates of crystals are useful.

Proposition 3.24 (“Hodge above Newton”, Mazur). The Hodge-polygon
lies above the Newton polygon. Both have the same start and end point.

Proof. The start point coincides by definition. That both polygons have the
same endpoint follows from Lemma 3.21: For both polygons, the height of
the end point will be the valuation of the determinant. Finally, it is clear
from Remark 3.18 and Proposition 3.21 that σ1 ≥ λ1. The general case
follows from this one using symmetric powers, see [10, Corollary 14.5.4]. �

Proposition 3.25 (Katz). Let T = (F, F ) be a formal τ -crystal of rank r
on X and let λ ≥ 0 be a real number. Then for n large enough, the following
are equivalent for φ : Spec k → X:

(1) all Newton slopes of T at φ are ≥ λ.
(2) all Hodge slopes of Tn+r−1 at φ are ≥ nλ.

Proof. In light of Proposition 3.21, Corollary 3.22 and Proposition 3.24,
Katz’ argument in [9] (split into §1.4.3 and the first paragraph of §2.3.1)
goes through unchanged. The proof is not hard but a bit technical, so we
choose not to reproduce it here. �

3.3. Grothendieck–Katz for formal τ -crystals. We finally come to
the main theorem of this article, an analogue of §2.3 in [9] for rigid τ -
crystals, which says something about how the local information of slopes
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behaves globally. We first prove the result for formal τ -crystals and then
deduce that it holds for rigid τ -crystals that admit a formal model.

Theorem 3.26 (Grothendieck–Katz for formal τ -crystals). Let T = (F, F )
be a formal τ -crystal on X and let λ ≥ 0. Then the set of closed points of
X at which all Hodge slopes are ≥ λ is Zariski-closed in X. The same holds
true for Newton slopes.

Proof. With the preparations of the last section at hand, Katz’ argument
carries over with only minor modifications, as we shall now demonstrate.

By Proposition 3.25, the theorem follows for Newton slopes when we
show it for Hodge slopes. Since the statement of the theorem is local on
X, we may assume without loss of generality that X = SpecA is affine.
Furthermore, by Proposition 3.11, we can cover X = ∪iUi by affine open
subsets such that on restrictions T|Ui

the underlying vector bundle is trivial.
So we can further assume that F is a trivial vector bundle.

Let M be the free A[[t]]-module corresponding to F. Choose any A[[t]]-
basis of M and let T = (Ti,j)1≤,i,j,≤r be the matrix representing F with
respect to this basis. If φ : A → k is any closed point of A, then φ∗F will
be represented by the matrix φfor(T ) = (φ(Ti,j)for)1≤i,j≤r.

By Remark 3.18, the minimal Hodge slope is now the minimal valuation
of all entries of φ(T ). By Lemma 2.4, the lift φfor : A[[t]]→ k[[t]] of φ to Xfor
can be described as follows:

Ti,j =
∞∑
k=0

T
(k)
i,j t

k 7→ φfor(Ti,j) =
∞∑
k=0

φ(T (k)
i,j )tk .

In particular, by Remark 3.18, the minimal Hodge slope at φ will be ≥ λ
if and only if

φ(T (k)
i,j ) = 0 for all 1 ≤ i, j ≤ n and for all 0 ≤ k < λ.

Equivalently, φ is in the Zariski-closed subset V ((T (k)
i,j )i,j,k) of SpecA. �

Theorem 3.27. Let T be a formal τ -crystal on X and let T = Trig be the
associated rigid τ -crystal. Let λ ≥ 0. Then the set of closed points of X at
which all Newton slopes of T are ≥ λ is Zariski-closed in X.

Proof. Since pulling back along points commutes with −rig by Lemma 3.16,
this is an immediate consequence of the theorem of Grothendieck–Katz for
formal τ -crystals. �

4. Open questions
In light of Theorem 3.27 we now wonder which rigid τ -crystals arise from

a formal τ -crystal. It is clear that not every rigid τ -crystal is the rigidifi-
cation of a formal τ -crystal: Formal τ -crystals always have non-negative
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Newton slopes. If a rigid τ -crystals T has some closed point at which the
Newton polygon has a negative slope, for example T = V(m/n) for m < 0,
it is clear that T cannot arise directly from rigidification of a formal τ -
crystal. However, this can be resolved by rescaling the τ -crystal in the
following sense:
Definition 4.1. A rigid τ -crystal T = (F , F ) has a formal model if there
is a formal τ -crystal T for which Trig is isomorphic to T after possibly
multiplying F by a power of t.

Since multiplying F by tn means shifting all Newton slopes of T by n, the
Grothendieck–Katz Theorem 3.27 more generally holds for rigid τ -crystals
that admit a formal model.
Remark 4.2. There is a weaker assumption one can put in place under
which Grothendieck–Katz for rigid τ -crystals still follows from the analogue
for formal τ -crystals, namely that the τ -crystal locally on the base admits
a formal model. Since formal models for free τ -crystals always exist, this
is equivalent to the rigid τ -crystal being locally free on the base. Of course
one could ask whether both conditions are actually equivalent:
Question 4.3. Does a τ -crystal always have a formal model if it is locally
free on the base?

The above is essentially a question of when local formal models glue
together. More generally, we ask the following question:
Question 4.4. Which rigid τ -crystals admit a formal model?
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