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Dedicated to the memory of Professor David Goss

Résumé. Dans cet article nous définissons la notion de polylo-
garithme multiple fini de Carlitz et montrons que chaque valeur
de zêta multiple finie définie sûr un corps de fonctions rationnelles
Fq(θ) est une combinaison linéaire des valeurs des polylogarithmes
multiples finis de Carlitz evalués en des points entiers. Cela est
complètement compatible avec la formule des MZVs de Thakur
établie dans [6].

Abstract. In this paper, we define finite Carlitz multiple poly-
logarithms and show that every finite multiple zeta value over the
rational function field Fq(θ) is an Fq(θ)-linear combination of finite
Carlitz multiple polylogarithms at integral points. It is completely
compatible with the formula for Thakur MZV’s established in [6].

1. Introduction

Let A := Fq[θ] be the polynomial ring in the variable θ over the finite
field Fq of q elements with characteristic p, and k be the quotient field of A.
We denote by k∞ the completion of k with respect to the place at infinite.
We denote by A+ the set of monic polynomials in A.

Let N be the set of positive integers. The characteristic p multiple zeta
values (abbreviated as MZV’s) were introduced by Thakur [18]: for s =
(s1, . . . , sr) ∈ Nr,

(1.1) ζA(s1, . . . , sr) :=
∑ 1

as1
1 . . . asrr

∈ k∞ ,

where a1, . . . , ar run over all monic polynomials in A satisfying
degθ a1 > degθ a2 > · · · > degθ ar ≥ 0 .

The values above play the positive characteristic analogue of classical multi-
ple zeta values (see [25]), and they are in fact non-vanishing by Thakur [19].
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One knows further that MZV’s occur as periods of certain mixed Carlitz–
Tate t-motives (see [3]).

In the seminal paper [2], Anderson and Thakur introduced the nth tensor
power of the Carlitz module and established a deep connection between
ζA(n) and the nth Carlitz polylogarithm for each positive integer n. The
nth Carlitz polylogarithm is the function field analogue of the classical nth
polylogarithm defined by the series

Lin(z) :=
∞∑
i=0

zq
i

Lni
,

where L0 := 1 and Li := (θ − θq) . . . (θ − θq
i) for i ∈ N. When n = 1,

the series above is the Carlitz logarithm (see [5, 12, 18]). What Anderson
and Thakur showed is that ζA(n) is a k-linear combination of Lin at some
integral points in A.

Inspired by the classical multiple polylogarithms (see [22, 25]), the first
author of the present paper defined for each s = (s1, . . . , sr) ∈ Nr the sth

Carlitz multiple polylogarithm (abbreviated as CMPL):

(1.2) Lis(z1, . . . , zr) :=
∑

i1>···>ir≥0

zq
i1

1 . . . zq
ir

r

Ls1
i1
. . . Lsrir

.

Note that in the classical setting, there is a simple identity that a multi-
ple zeta value ζ(s) is the specialization of the sth multiple polylogarithm
(several variables) at (1, . . . , 1). Using the theory of Anderson–Thakur poly-
nomials [2] the first author [6] derived an explicit formula expressing ζA(s)
as a k-linear combination of Lis at some integral point (see Theorem 3.6)
generalizing Anderson–Thakur’s work to arbitrary depth.

The study of this paper is inspired by the work of Kaneko and Zagier [13]
on finite multiple zeta values, which are in the Q-algebra

A :=
(∏

p

Z/(p)
)/(⊕

p

Z/(p)
)
,

where p runs over all prime numbers. In analogy with A, it is natural
to define the k-algebra Ak (see (2.1)). One then naturally defines a finite
version of Thakur MZV’s (1.1), which we (also) call finite multiple zeta
values (abbreviated as FMZV’s) denoted by ζAk(s). See (2.2) for the defi-
nition and note that Thakur also defines FMZV’s in [17] (see also a variant
in [16]). In this paper we define a finite version of CMPL’s (1.2), called
finite Carlitz multiple polylogarithms (abbreviated as FCMPL’s) and de-
noted by LiAk,s(z1, . . . , zr) for s ∈ Nr (see (3.1) for the precise definition).
We then have that the FCMPL’s satisfy the stuffle relations (see §3.1). The
main result in this paper is to establish an explicit formula expressing each
FMZV ζAk(s) as a k-linear combination of LiAk,s at some integral points
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(see Theorem 3.7). It is interesting that the formula for ζAk(s) completely
matches with the formula for ζA(s) (cf. Theorem 3.6 and Theorem 3.7), and
its proof highly relies on the theory of Anderson–Thakur polynomials [2].

At the end of the introduction, we give a list of some interesting problems
for future research.

• Connection bwteen Thakur MZV’s and FMZV’s (cf. [13]).
• Non-vanishing problems for FMZV’s (cf. [4, 19]).
• Logarithmic and period interpretation of FCMPL’s and FMZV’s
(cf. [2, 3]).
• Transcendence theory for FCMPL’s and FMZV’s (cf. [1, 6, 7, 8, 9,
10, 14, 15, 23, 24]).
• Relation between FCMPL’s and t-motives (cf. [2, 3, 6]).

Acknowledgements. We are grateful to M. Kaneko for his excellent lec-
ture series on MZV’s, which inspire this project. We thank D. Thakur and
J. Yu for their useful comments, and thank the referee for his or her sugges-
tions, which greatly improve the exposition of this paper. The project was
initiated when the second author visited NCTS and he would like to thank
NCTS for their kind support. This article is dedicated to Prof. David Goss
for his great contributions on the arithmetic of function fields.

2. Finite multiple zeta values

2.1. The definition of FMZV’s. Following Kaneko and Zagier, we de-
fine the k-algebra

(2.1) Ak :=
(∏
P

A/(P )
)/(⊕

P

A/(P )
)
,

where P runs over all monic irreducible polynomials in A. Note that the
k-algebra structure of Ak comes from the fact that two elements of Ak are
identical if they only differ in finitely many components, so that one can
define (ax)P arbitrary for a ∈ k, x ∈ Ak if P divides the denominator of
a. In analogy with classical finite MZV’s, one considers the following finite
version of (∞-adic) Thakur MZV’s denoted by ζAk(s1, . . . , sr) for any r-
tuple (s1, . . . , sr) ∈ Nr. One first defines for a monic irreducible polynomial
P ∈ A,

ζAk(s1, . . . , sr)P :=
∑ 1

as1
1 . . . asrr

mod P ∈ A/(P ) ,

where the sum runs over all monic polynomials a1, . . . , ar ∈ A satisfying

degP > deg a1 > · · · > deg ar ≥ 0 .
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One then defines the finite multiple zeta value abbreviated as FMZV (see
also [17]):
(2.2) ζAk(s1, . . . , sr) := (ζAk(s1, . . . , sr)P ) ∈ Ak .
We call r the depth and wt(s) :=

∑r
i=1 si the weight of the presentation

ζAk(s).
The motivation of our study in this paper comes from the identity in [6]

that any (∞-adic) Thakur MZV is a k-linear combination of Carlitz mul-
tiple polylogarithms (abbreviated as CMPL’s) at integral points (general-
ization of the formula of Anderson–Thakur [2] for the depth one case). Our
main result is to establish the same identity for the FMZV’s.

2.2. The algebra of FMZV’s. In [20], Thakur proved that the Fp-vector
space spanned by MZV’s forms an algebra. Using Thakur’s theory [20], one
finds the same phenomenon for FMZV’s in the following theorem. In other
words, the k-vector space spanned by FMZV’s forms a k-algebra that is
defined over Fp.

Proposition 2.3. Let Z ⊆ Ak be the Fp-vector subspace spanned by all
FMZV’s. Then Z forms an Fp-algebra.

Proof. It suffices to show that for arbitrary s ∈ Nr and s′ ∈ Nr′ , there exists
s1, . . . , sm ∈ ∪`N` with wt(si) = wt(s)+wt(s′), and f1, . . . , fm ∈ Fp so that

ζAk(s)P ζAk(s′)P =
m∑
i=1

fiζAk(si)P ∈ A/(P )

for all primes P ∈ A+.
For any r-tuple s = (s1, . . . , sr) and d ∈ N, we put

S<d(s) :=
∑ 1

as1
1 . . . asrr

∈ k ,

where the sum runs over all monic polynomials a1, . . . , ar ∈ A satisfying
d > deg a1 > · · · > deg ar ≥ 0 .

It follows that
(2.4) ζAk(s)P = S<degP (s) mod P .

Note that [21, Cor. 2.2.10] implies that S<degP (s)S<degP (s′) is an Fp-linear
combination of some S<degP (s′′) with wt(s′′) = wt(s) + wt(s′), where the
s′′’s and the coefficients in Fp are independent of degP , whence the desired
result by modulo P . �

Remark 2.5. The authors were informed by Thakur that his student Shuhui
Shi has derived several identities on these FMZV’s with k-coefficients, in-
cluding Proposition 2.3.
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Remark 2.6. The authors were informed by H.-J. Chen that as such the case
above, the techniques in [11] can be used to derive an explicit formula for
the product of two finite single zeta values in terms of linear combinations
of some FMZV’s.

3. Finite Carlitz multiple polylogarithms and the main result

In what follows, for any tuple s ∈ Nr we define its associated finite Carlitz
multiple polylogartihm (abbreviated as FCML)

LiAk,s : kr → Ak .
Fixing any r-tuple s = (s1, . . . , sr) ∈ Nr and an r-tuple of independent
variables z = (z1, . . . , zr), we define the quotient ring

Ak,z :=
(∏
P

A[z]/(P )
)/(⊕

P

A[z]/(P )
)
,

where P runs over all monic irreducible polynomials in A and
A[z] = A[z1, . . . , zr] .

We then define
(3.1) LiAk,s(z) := (LiAk,s(z1, . . . , zr)P ) ∈ Ak,z ,
where

LiAk,s(z1, . . . , zr)P :=
∑

degP>i1>···>ir≥0

zq
i1

1 . . . zq
ir

r

Ls1
i1
. . . Lsrir

mod P ∈ A[z]/(P ) .

We note that P does not divide (θqi − θ) if and only if degP - i, and hence
LiAk,s(z) is well-defined in Ak,z. Furthermore, LiAk,s(u) is well-defined in
Ak for any u = (u1, . . . , ur) ∈ kr since LiAk,s(u)P is defined in A/(P ) for
those P not dividing the denominators of u1, . . . , ur. Such as the ∞-adic
case, we call r the depth and wt(s) the weight of the presentation LiAk,s(u).

3.1. Stuffle relations. Let z′ = (z′1, . . . , z′r′) be an r′-tuple of variables
independent from the zi’s of z. For each prime P ∈ A+ we consider the
natural multiplication map

A[z]/(P )×A[z′]/(P )→ A[z, z′]/(P ) ,
which induces the following map
(3.2) Ak,z ×Ak,z′ → Ak,(z,z′) .
We denote by

LiAk,s(z) · LiAk,s′(z
′) ∈ Ak,(z,z′)

the image of (LiAk,s(z),LiAk,s′(z′)) ∈ Ak,z ×Ak,z′ under the map (3.2).
Note that since the indexes of the finite sum LiAk,s(z)P are in the total

ordered set Z≥0, the classical stuffle relations (for multiple polylogarithms)
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work here by componentwise multiplication. We describe the details as the
following.

Given s = (s1, . . . , sr) ∈ Nr and s′ = (s′1, . . . , s′r′) ∈ Nr′ . Let r′′ be a
positive integer with max {r, r′} ≤ r′′ ≤ r+r′, and let N and N ′ be subsets
of {1, 2, . . . , r′′} such that |N | = r, |N ′| = r′ and N ∪ N ′ = {1, 2, . . . , r′′}.
For such a triple α = (r′′, N,N ′), we define an index s′′α = (s′′1, . . . , s′′r′′) and
an r′′-tuple z′′α = (z′′1 , . . . , z′′r′′) of monomials of variables as follows. Write
N = {n1, n2, . . . , nr} and N ′ = {n′1, n′2, . . . , n′r′} with n1 < n2 < · · · < nr
and n′1 < n′2 < · · · < n′r′ . Then we define

s′′i :=


sj (i = nj and i 6∈ N ′)
s′j′ (i 6∈ N and i = n′j′)
sj + s′j′ (i = nj and i = n′j′)

and

z′′i :=


zj (i = nj and i 6∈ N ′)
z′j′ (i 6∈ N and i = n′j′)
zjz
′
j′ (i = nj and i = n′j′)

for each 1 ≤ i ≤ r′′. One observes from the definition that FCMPL’s satisfy
the stuffle relations which are analogous to the classical case (cf. [22]):

(3.3) LiAk,s(z) · LiAk,s′(z
′) =

∑
α

LiAk,s′′α(z′′α) ,

where α runs over all triples as above.
For example, for r = r′ = 1 (3.3) yields

LiAk,s(z) · LiAk,s′(z
′) = LiAk,(s,s′)(z, z

′) + LiAk,(s′,s)(z
′, z) + LiAk,s+s′(zz

′) .
For r = 1, r′ = 2, one has

LiAk,s(z) · LiAk,(s′1,s′2)(z′1, z′2)
= LiAk,(s,s′1,s′2)(z, z′1, z′2) + LiAk,(s′1,s,s′2)(z′1, z, z′2)

+ LiAk,(s′1,s′2,s)(z
′
1, z
′
2, z) + LiAk,(s+s′1,s′2)(zz′1, z′2)

+ LiAk,(s′1,s+s′2)(z′1, zz′2) .

Remark 3.4. From the stuffle relations above, we see that the product of
LiAk,s(u) and LiAk,s′(u′) is an Fp-linear combinations of some FCMPL’s of
the same weight wt(s) + wt(s′) at rational points over k.

3.2. The formula for Thakur MZV’s. Let t, x, y be new independent
variables. We put G0(y) := 1 and define polynomials Gn(y) ∈ Fq[t, y] for
n ∈ N by the product

Gn(y) =
n∏
i=1

(
tq
n − yqi

)
.
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For a non-negative integer n, we express n =
∑
niq

i (0 ≤ ni ≤ q − 1)
as the base q-expansion. We define the Carlitz factorial Γn+1 :=

∏
Dni
i ,

where D0 := 1 and Di :=
∏i−1
j=0(θqi − θqj ) for i ∈ N. For n = 0, 1, 2, . . . , we

define the sequence of Anderson–Thakur polynomials Hn(t) ∈ A[t] by the
generating function identity (see [3, p. 2044])(

1−
∞∑
i=0

Gi(θ)
Di|θ=t

xq
i

)−1

=
∞∑
n=0

Hn(t)
Γn+1|θ=t

xn .

In what follows, we fix an r-tuple of positive integers s = (s1, . . . , sr) ∈
Nr. For each 1 ≤ i ≤ r, we expand the Anderson–Thakur polynomial
Hsi−1(t) ∈ A[t] as

(3.5) Hsi−1(t) =
mi∑
j=0

uijt
j ,

where uij ∈ A satisfying

|uij |∞ < q
siq

q−1 and uimi 6= 0 .
We put

Js := {0, 1, . . . ,m1} × · · · × {0, 1, . . . ,mr}.
For each j = (j1, . . . , jr) ∈ Js, we set

uj := (u1j1 , . . . , urjr) ∈ Ar,
and

aj := aj(t) := tj1+···+jr .

Set Γs := Γs1 . . .Γsr ∈ A. The following formula is established in [6].

Theorem 3.6. For each s = (s1, . . . , sr) ∈ Nr, we have that

ζA(s) = 1
Γs

∑
j∈Js

aj(θ) Lis(uj) .

3.3. The main result. Our main result is to show that the formula above
is valid for the finite level:

Theorem 3.7. For each s = (s1, . . . , sr) ∈ Nr, we have that

ζAk(s) = 1
Γs

∑
j∈Js

aj(θ) LiAk,s(uj) .

For each nonnegative integer i, we let Ai+ be the set of all monic poly-
nomials of degree i in A. For each i ∈ Z and H(t) =

∑
ujt

j ∈ k[t], we
define H(i)(t) :=

∑
uq

i

j t
j . Note here that our notation Hn(t) is different

from Hn(y) defined in [2] (see Remarks 2.4.3 in [3]). To prove the theo-
rem above, we need the following interpolation formula of Anderson and
Thakur [2].
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Lemma 3.8. Fixing s ∈ N, for any nonnegative integer i we have

H
(i)
s−1(θ)
Lsi

= Γs
∑
a∈Ai+

1
as
.

Proof of Theorem 3.7. It suffices to verify the identity for the P -component
of the both sides of Theorem 3.7 for primes P with degP � 0. Let P ∈ A+
satisfy P - Γs. By definition, we have

ζAk(s)P =
∑

a1,...,ar∈A+
degP>deg a1>···>deg ar≥0

1
as1

1 . . . asrr
mod P

=
∑

degP>i1>···>ir≥0
aj∈Aij+

1
as1

1 . . . asrr
mod P

=
∑

degP>i1>···>ir≥0

∑
a1∈Ai1+

1
as1

1
. . .

∑
ar∈Air+

1
asrr

mod P

= 1
Γs

∑
degP>i1>···>ir≥0

H
(i1)
s1−1(θ) . . . H(ir)

sr−1(θ)
Ls1
i1
. . . Lsrir

mod P ,

where the last equality comes from Lemma 3.8.
By (3.5) we have

H
(i1)
s1−1(θ) . . . H(ir)

sr−1(θ) =
m1∑
j1=0

uq
i1

1j1θ
j1 . . .

mr∑
jr=0

uq
ir

rjr
θjr

=
∑

j=(j1,...,jr)∈Js

aj(θ)uq
i1

1j1 . . . u
qir

rjr
.

It follows that

ζAk(s)P = 1
Γs

∑
degP>i1>···>ir≥0

∑
j=(j1,...,jr)∈Js

aj(θ)uq
i1

1j1 . . . u
qir

rjr

Ls1
i1
. . . Lsrir

mod P

= 1
Γs

∑
j=(j1,...,jr)∈Js

aj(θ)
∑

degP>i1>···>ir≥0

uq
i1

1j1 . . . u
qir

rjr

Ls1
i1
. . . Lsrir

mod P

= 1
Γs

∑
j∈Js

aj(θ) LiAk,s(uj)P ,

whence verifying Theorem 3.7. �
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