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A sum-shuffle formula for zeta values in Tate
algebras

par Federico PELLARIN

Résumé. Nous démontrons une formule de mélange pour des
valeurs zêta multiples dans des algèbres de Tate (en caractéristique
non nulle) introduites dans [9]. Ce résultat se déduit d’un résultat
analogue pour les sommes de puissances tordues et implique que
le Fp-espace vectoriel des valeurs zêta multiples dans les algèbres
de Tate est une Fp-algèbre.

Abstract. We prove a sum-shuffle formula for multiple zeta val-
ues in Tate algebras (in positive characteristic), introduced in [9].
This follows from an analog result for double twisted power sums,
implying that an Fp-vector space generated by multiple zeta values
in Tate algebras is an Fp-algebra.

1. Introduction

Let A = Fq[θ] be the ring of polynomials in an indeterminate θ with
coefficients in Fq the finite field with q elements and characteristic p, and
let K be the fraction field of A. We consider variables ti independent over
K, for all i ∈ N∗ := {1, . . .} the set of positive natural numbers. For Σ ⊂ N∗
a finite subset, we denote by tΣ the collection of variables (ti)i∈Σ, so that
Fq(tΣ), K(tΣ) denote the fields Fq(ti : i ∈ Σ) etc.

We denote by A+ the multiplicative monoid of monic polynomials of A
(in θ) and, for d ≥ 0 an integer, we denote by A+(d) the subset of monic
polynomials of A of degree d. With Σ ⊂ N∗ a finite subset and for all i ∈ Σ,
we denote by χti : A → Fq[tΣ] the unique Fq-linear map which sends θ
to ti (the notation does not reflect dependence on Σ to avoid unnecessary
complication). More generally, we denote by σΣ the semi-character

σΣ : A+ → Fq[tΣ]
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defined by σΣ(a) =
∏
i∈Σ χti(a). The associated twisted power sum of order

k and degree d is the sum:
Sd(k;σΣ) =

∑
a∈A+(d)

a−kσΣ(a) ∈ K[tΣ] .

If Σ = ∅ we recover the power sums already studied by several authors;
see Thakur’s [13] and the references therein. For general Σ these sums have
been the object of study, for example, in the papers [2, 7]. These twisted
power sums are also the basic tools to construct certain zeta values in Tate
algebras, see for example [2, 3, 4, 8]. We set:

ζA(n;σΣ) :=
∑
d≥0

Sd(k;σΣ) ∈ TΣ(K∞) ,

where, for L a complete valued field, TΣ(L) denotes the completion of the
polynomial ring L[tΣ] for the Gauss valuation. In [3, 4], the following result
is proved, where |Σ| denotes the cardinality of Σ:

Theorem 1.1. If |Σ| ≡ 1 (mod q − 1) and s = |Σ| > 1, there exists a
polynomial λ1,Σ ∈ A[tΣ], monic of degree r := s−q

q−1 in θ, such that

ζA(1;σΣ) = (−1)
s−1
q−1

π̃λ1,Σ∏
i∈Σ ω(ti)

,

where π̃ is a fundamental period of Carlitz module, and ω denotes the
Anderson–Thakur function.

We also recall from [8] the formula

(1.1) ζA(1;χt) = π̃

(θ − t)ω(t)
which complements Theorem 1.1 in the case Σ = {1} (and t = t1). One cap-
tivating peculiarity of the above formulas is that they constitute a bridge to
a class of quite simple, although apparently different objects. For example,
the formula (1.1) can be rewritten (see [8]) as

ζA(1, χt) =
∏
i>0

1− t

θqi

1− θ

θqi

,

and shows that ζA(1, χt) is the reduction modulo p of a simple formal
series in 1 + 1

θZ[t][[1
θ ]] (a “Mahler’s series”). The dependency of q, although

unavoidable, is very transparent, as it is only involved in the “raising to
the power q” process, while this is not necessarily visible at the first sight
in the initial definition of ζA(1, σΣ), and neither is in its retranscription as
an Eulerian product

ζA(1, σΣ) =
∏
P

(
1− χt(P )

P

)−1
,
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running over the irreducible polynomials of A+.
A similar phenomenon holds in the case s = |Σ| > 1 of Theorem 1.1

for q big enough. The polynomial λ1,Σ itself, for example, is a polynomial
monic in θ of degree r dependent of q in a very simple way(1), as we have
already pointed out, and it is easy to deduce, from the elegant arguments
presented in [1] (see also the table therein), that the coefficient of θr−1 in
λ1,Σ is equal, for q big enough, to the reduction modulo p of

−es−q+1(tΣ)− es−2(q−1)(tΣ)− · · · − eq(tΣ)−
∑
i∈Σ

ti ∈ Z[tΣ] ,

where en(tΣ) is the elementary symmetric polynomial of degree n in the
variables tΣ (this for s ≥ 2q − 1 and s ≡ 1 (mod q − 1), while in the case
s = q, we have λ1,Σ = 1). These phenomena ultimately arise because certain
universality features of sequences of power sums hold, and more generally,
the same principles govern the behavior of twisted power sums (see [13]
and [7]).

In this paper, we analyze another aspect of the above principles. We shall
show (Theorem 2.3) that any product ζA(1, σU )ζA(1, σV ) (U, V ⊂ N∗, U ∩
V = ∅) of such zeta values satisfies a sum-shuffle product formula, and this
will be again deduced from properties of twisted power sums (Theorem 3.1).
We deduce that a certain Fp-vector space of multiple zeta values in Tate
algebras also has a structure of Fp-algebra (Theorem 2.5). The formula of
Theorem 2.3 is submitted to universal rules very similar to those of the
above remarks: we can say, loosely, that they “almost lift to characteristic
zero”.

2. The result

Before presenting the results, we have to now introduce multiple twisted
power sums and multiple zeta values in our context.

Definition 2.1. Let Σ ⊂ N∗ be a finite subset. If U, V are two subsets of
Σ such that U ∩ V = ∅, we denote by U t V their union. Now, suppose
that for an integer r > 0, we have subsets Ui (i = 1, . . . , r) such that
Σ = U1 t · · · t Ur. Further, let d be a non-negative integer. We have the
multiple twisted power sum of degree d associated to this data:

Sd

(
σU1 σU2 · · · σUr
n1 n2 · · · nr

)
= Sd(n1;σU1)

∑
d>i2>···>ir≥0

Si2(n2;σU2) · · ·Sir(nr;σUr) ∈ K[tΣ] .

The integer
∑
i ni is called the weight and the integer r is called its depth.

(1)The arithmetic properties of λ1,Σ still remain deep and mysterious, as pointed out for
example in the papers [4, 1], and the dependence becomes more unpredictable if q is small.
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We can write in both ways Sd(n;σΣ) = Sd
(σΣ
n

)
. Observe also that, if

Σ = ∅, then σΣ = 1 the trivial semi-character.

Sd

(
1 1 · · · 1
n1 n2 · · · nr

)
= Sd(n1, n2, . . . , nr) ∈ K,

in the notations of Thakur.
With n1, . . . , nr ≥ 1 and the semi-characters σU1 , . . . , σUr as above, we

introduce the associated multiple zeta value

ζA

(
σU1 σU2 · · · σUr
n1 n2 · · · nr

)
:=
∑
d≥0

Sd

(
σU1 σU2 · · · σUr
n1 n2 · · · nr

)
∈ TΣ(K∞) .

The sum thus converges in the Tate algebra TΣ(K∞) where K∞ is the
completion Fq((1/θ)) of K at the infinity place. Explicitly, we have:

(2.1) ζA

(
σU1 σU2 · · · σUr
n1 n2 · · · nr

)
=
∑
d≥0

∑
a1,...,ar∈A+

d=degθ(a1)>···>degθ(ar)≥0

σU1(a1) · · ·σUr(ar)
an1

1 · · · a
nr
r

.

Again, the integer
∑
i ni is called the weight of the above multiple zeta value

and the integer r is called its depth. These elements of the above considered
Tate algebras have been introduced and first discussed in [9].

2.1. Non-vanishing of our multiple zeta values. To ensure that our
multiple zeta values generate a non-trivial theory, we must now prove that
they are not identically zero; this is the purpose of Proposition 2.2 below.
The tools we use will be also crucial in other parts of the paper.

In [9, Proposition 4] it was proved that the multiple zeta values (2.1)
in TΣ(K∞), seen as functions of the variables ti ∈ C∞ (for i ∈ Σ), where
C∞ denotes the completion of an algebraic closure of K∞, extend to en-
tire functions C|Σ|∞ → C∞. We denote by EΣ(K∞) the sub-K∞-algebra of
TΣ(K∞) whose elements extend to entire functions as above, so that all
the multiple zeta values as in (2.1) belong to this sub-algebra. We also de-
note by τ : TΣ(K∞)→ TΣ(K∞) the unique continuous, open Fq[tΣ]-linear
endomorphism which reduces to the map c 7→ cq when restricted over K∞.
Then, τ induces an Fq[tΣ]-linear endomorphism of EΣ(K∞).

We further have:

Proposition 2.2. Let us consider Σ ⊂ N∗ a finite subset as above, and
subsets U1, . . . , Ur such that Σ = U1 t · · · tUr. If j ∈ Σ, we write ij for the
unique integer i ∈ {1, . . . , r} such that j ∈ Ui. Let us consider n1, . . . , nr
positive integers, and let us denote by f the multiple zeta value in (2.1).
Let N be a non-negative integer. Let us also consider, for all i = 1, . . . , r
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and j ∈ Ui, non-negative integers ki,j (hence, i = ij). We suppose that for
all i = 1, . . . , r,

(2.2) qNni >
∑
j∈Ui

qki,j .

Then, the evaluation
τN (f)

tj=θq
kij ,j

j∈Σ

∈ K∞ ,

well defined, is equal to the multiple zeta value of Thakur

ζA

qNn1 −
∑
j∈U1

qk1,j , . . . , qNnr −
∑
j∈Ur

qkr,j

.
In particular, the multiple zeta values as in (2.1) are all non-zero.

Proof. Here and in the following, the evaluation is operated after the ap-
plication of the operator τN (note that these operations do not commute).
Since f is entire by the remarks preceding the proposition, the evaluation
is well defined in K∞ independently of the hypothesis on N and the ki,j ’s.
That the evaluation is a multiple zeta value of Thakur follows from the men-
tioned conditions, observing that if a ∈ A = Fq[θ], then a(θqk) = a(θ)qk for
all k ∈ Z.

Thakur’s multiple zeta values are known to be non-zero (see [13, The-
orem 4]). In particular, setting ki,j = 0 for all i, j, it is always possible to
find N such that (2.2) holds. This implies that f , and the multiple zeta
values as in (2.1) are all non-zero. �

2.1.1. Example. In the case of r = 1, we have that, for all N ≥ 0 and
ki ≥ 0 for i ∈ Σ such that qN −

∑
i∈Σ q

ki > 0,

(2.3) τN (ζA(1, σΣ))
ti=θq

ki

i∈Σ
= ζA

qN −∑
i∈Σ

qki

 ∈ K∞ .
Since for each m ∈ N∗ there exists N, ki ≥ 0 (for i ∈ Σ) with m = qN −∑
i∈Σ q

ki , there also exists, for m given, Σ ⊂ N∗ a finite subset (actually,
infinitely many finite such subsets) such that the Carlitz zeta value ζA(m) ∈
K∞ comes from an evaluation of ζA(1, σΣ) of the same type as in (2.3). More
generally, a similar property holds for the multiple zeta values of Thakur.

2.2. The result. We prove, in this paper, a sum shuffle formula for prod-
ucts

ζA(1, σU )ζA(1, σV ) ,
with U t V = Σ ⊂ N∗:
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Theorem 2.3. The following formula holds, for all Σ ⊂ N∗ and UtV = Σ:

ζA

(
σU
1

)
ζA

(
σV
1

)
− ζA

(
σΣ
2

)
= ζA

(
σU σV
1 1

)
+ ζA

(
σV σU
1 1

)
−

∑
ItJ=Σ

|J |≡1 (mod q−1)
J⊂U or J⊂V

ζA

(
σI σJ
1 1

)
.

The reader will notice the universality phenomenon mentioned above:
the coefficients of the right-hand side of the above formula are 0, 1,−1 and
they are determined upon a simple divisibility by q − 1 condition, and the
position I, J of the subsets of Σ relative to U, V . We will use techniques
of Thakur in [12] and some linear algebra over Fp to show the existence
of the coefficients. To compute them, as it is easily verified that they are
uniquely determined, we will use the sum-shuffle formula of Chen [6], which
also arises in several ways from our formula by specialization. We recall this
result.

Theorem 2.4 (Chen). For all n,m > 0,

ζA(m)ζA(n)− ζA(m+ n) =
∑

0<j<m+n
q−1|j

fjζA(m+ n− j, j) ,

where
fj = (−1)m−1

(
j − 1
m− 1

)
+ (−1)n−1

(
j − 1
n− 1

)
.

It is further possible to deduce, by quite standard methods (applying a
twisted Frobenius endomorphism a certain amount of times and specializing
some variables), the following:

Theorem 2.5. For all Σ ⊂ N∗ a finite subset, the Fp-subvector space of
TΣ(K∞) generated by the multiple zeta values (2.1) is an Fp-algebra.

3. sum-shuffle relations

We follow the main idea of Thakur in [12], where he proves a sum-shuffle
formula for the product of two power sums and he deduces from this result
that the Fp-sub-vector space of K∞ generated by his multiple zeta values
ζA(n1, . . . , nk) is an Fp-algebra (this is the case Σ = ∅). Thakur’s result
thus relies in universal families of sum-shuffle relations for power sums
products that he proves by reducing to the case of one-degree power sums
(the case of d = 1), a technique which is also naturally suggested by the
philosophy of “solitons”. We follow the principles of this proof. The main
difference between this part of our proof and Thakur’s is situated in the
case of d = 1, which presents new structures.
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3.1. Sum-shuffle formulas for power sums. We shall prove:
Theorem 3.1. Let U, V be subsets of Σ such that U t V = Σ. Then, the
following formula holds

Sd

(
σU
1

)
Sd

(
σV
1

)
− Sd

(
σΣ
2

)
= −

∑
ItJ=Σ

|J |≡1 (mod q−1)
J⊂U or J⊂V

Sd

(
σI σJ
1 1

)
, d ≥ 0 .

Theorem 2.3 easily follows by taking the sum for d ≥ 0. The identity
is clearly satisfied if d = 0. We first develop some tools involving certain
vector spaces generated by multiples of twisted power sums, then we show
the identity for d = 1.

3.1.1. Fp-subvector spaces of twisted power sums. We note that
θ − θq

θ − λ
= θ − λ+ λq − θq

θ − λ
= 1− (θ − λ)q−1, ∀ λ ∈ Fq .

Hence, for all U ⊂ Σ, using that θq − θ =
∏
λ∈Fq(θ − λ),

(3.1) PU := (θ − θq)S1(1, σU ) = (θ − θq)
∑
λ∈Fq

∏
i∈U (ti − λ)
θ − λ

=

=
∑
λ∈Fq

(1− (θ − λ)q−1)
∏
i∈U

(ti − λ) ∈ A[tU ].

In fact it is, more precisely, a polynomial of Fp[θ][tU ] of degree ≤ q − 1 in
θ (2). The claim on the degree in θ being clear, we indeed observe that PV
is invariant, by construction, under the action of Gal(Facp /Fp).

We will make use of the polynomials B1(σU ) :=
∏
i∈U (ti − θ), U ⊂ Σ.

We have the next:
Lemma 3.2. The remainder of the euclidean division of B1(σU ) by θq − θ
is equal to PU .
Proof. Note that, for λ ∈ Fq fixed, (1 − (θ − λ)q−1)θ=µ = 1 if µ = λ and
equals 0 if θ = µ ∈ Fq \ {λ}. In particular, PU is a polynomial of degree
< q in θ such that, for all µ ∈ Fq, the evaluation at θ = µ returns the value∏
i∈U (ti − µ), which is also the evaluation of B1(σU ) at θ = µ. �

Let VΣ be the Fp-subvector space of Fp[θ][tΣ](< q) (a shortcut for poly-
nomials of degree < q in θ) generated by the polynomials PU with U ⊂ Σ.
We have that VΣ′ ⊂ VΣ if Σ′ ⊂ Σ. In particular, V∅ = 1 · Fp. In Lemma 3.8
we will show that the Fp-vector space VΣ has dimension 2|Σ| but we do not
need this information right now.

(2)It can be proved that the degree in θ of PΣ is exactly q − 1 if |Σ| ≥ q. For this, one can
apply the formula (4.1) and the arguments following it. Since this will not be used in this paper,
we will not give full details about this.
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Let (Dn)n≥0 be the system of higher derivatives of Fp[θ][tΣ] in θ which
is Fp[tΣ]-linear and such that Dn(θm) =

(m
n

)
θm−n. The main result of this

subsection is the following:

Proposition 3.3. For all Σ, the space VΣ is stable under the higher deriva-
tions (Dn)n≥0.

The proof of this proposition occupies the rest of this subsection. We
note, since VΣ ⊂ Fp[θ][tΣ](< q), that it suffices to show that

Dn(VΣ) ⊂ VΣ, n = 1, . . . , q − 1 .

We define, for all n ≥ 0:

V(n)
Σ = VectFp(VU : |Σ \ U | ≥ n) .

Hence, we have

VΣ = V(0)
Σ ⊃ V(1)

Σ ⊃ · · · ⊃ V(|Σ|)
Σ = V∅ = Fp · 1 .

By convention, we set V(n)
Σ = {0} if n > |Σ|. We note that for any U ⊂ Σ

such that Nq < |U | < (N + 1)q there exist polynomials aU0 , . . . , aUN ∈
Fp[θ][tΣ](< q), uniquely determined, such that

(3.2) B1(σU ) = aU0 + aU1 (θ − θq) + · · ·+ aUN (θ − θq)N .

Note that by Lemma 3.2, aU0 = PU . Also, we need the next Lemma:

Lemma 3.4. For all n ≥ 1 and m ≥ 0, Dn((θ − θq)m) is a polynomial of
Fp[θq − θ] of degree ≤ min{m− n

q ,m− 1} in [1] = θq − θ.

Proof. We have D1(θ − θq) = 1, Dq(θ − θq) = −1 and Dn(θ − θq) = 0 for
all n ≥ 1 with n 6∈ {1, q}. The statement is thus clear for m = 1 and the
proof can now be obtained by induction on m ≥ 1. �

We note that, for all n ≥ 1,

(3.3) Dn(B1(σΣ)) = (−1)n
∑
W⊂Σ
|Σ\W |=n

B1(σW ) .
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This follows from Leibnitz’s formula (we set, for simplicity, Σ = {1, . . . , s}):

Dn(B1(σΣ)) = Dn

(∏
i∈Σ

(ti − θ)
)

=
∑

i1+···+is=n
Di1((t1 − θ)) · · · Dis((ts − θ))

=
∑

i1+···+is=n
0≤ij≤1,j=1,...,s

Di1((t1 − θ)) · · · Dis((ts − θ))

= (−1)n
∑
W⊂Σ
|Σ\W |=n

∏
k∈W

(tk − θ) .

Our Proposition 3.3 is a direct consequence of the next reinforced state-
ment:

Proposition 3.5. For all U ⊂ Σ and n,m ≥ 0, we have Dn(V(m)
U ) ⊂

V(m+n)
U . Moreover, if N = b |U |q c, we have aUi ∈ V

(qi)
U for all i = 0, . . . , N ,

where the polynomials aUi are those of the expansion (3.2).

Proof. We proceed by induction on s := |Σ|. In fact, the proof makes use of
two nested induction processes; they are not complicated, but in order to
avoid confusion, we shall refer to the first induction hypothesis and to the
second induction hypothesis. The statement is satisfied for s = 0, 1, . . . , q−1.
Indeed, in this case, we have B1(σΣ) = aΣ

0 and we know that B1(σΣ) = PΣ.
The formula (3.3) then implies that VΣ, and hence VU for all U ⊂ Σ, are
stable under the operators D1, . . . ,Dq−1. This implies that Dn(V(m)

U ) ⊂
V(m+n)
U for all U ⊂ Σ and n,m ≥ 0.
We now suppose that s ≥ q, so that N = b sq c ≥ 1. We suppose that the

statement is satisfied for all Σ′ ( Σ (this is our first induction hypothesis).
Let m be an integer between 1 and N . We easily verify, by using Leibnitz’s
formula and using Lemma 3.4, that

Dmq(B1(σΣ))(3.4)

= aΣ
m −Dq−1(aΣ

m) + c
〈m〉
0 + c

〈m〉
1 (θ − θq) + · · ·+ c

〈m〉
N−m(θ − θq)N−m,

where, for all j ∈ {0, . . . , N − m}, c〈m〉j ∈ Fp[θ][tΣ](< q) is an Fp-linear
combination of the polynomials

aΣ
k ,D1(aΣ

k ), . . . ,Dq−1(aΣ
k ) , k = m+ 1, . . . , N ,
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which are in Fp[θ][tΣ](< q). We also note, again for m = 1, . . . , N , by
using (3.3), that

(3.5) Dmq(B1(σΣ)) =
∑
W⊂Σ

|Σ\W |=mq

B1(σW ) ,

and B1(σW ) = aW0 + aW1 (θ − θq) + · · ·+ aWN−m(θ − θq)N−m by using (3.2).
Since m > 0, by the (first) induction hypothesis we have that aWi ∈ V

(qi)
W

and we can write, equating the coefficients of (θ − θq)j for all j in (3.4)
and (3.5) and extracting the constant term, that

(3.6) aΣ
m −Dq−1(aΣ

m) + c
〈m〉
0 ∈ V(mq)

Σ .

The next step is to prove, by induction on m = N − g, g = 0, . . . , N − 1,
that aΣ

m = aΣ
N−g ∈ V

(mq)
Σ (this is our second induction process).

We suppose that m = N , so that g = 0. Then, in (3.6), we see that
c
〈N〉
0 = 0. Hence, aΣ

N −Dq−1(aΣ
N ) ∈ V(Nq)

Σ . If degθ(aΣ
N ) < q− 1 we are done,

as in this case, Dq−1(aΣ
N ) = 0. Otherwise, note that Dq−1(Dq−1(aΣ

N )) = 0.
Since N > 0, the (first) induction hypothesis implies that V(Nq)

Σ is Dq−1-
stable (observe that this space is Fp-spanned by subspaces VW withW ( Σ
which are Dn-stable for all n = 1, . . . , q−1 by the first induction hypothesis,
as the variousW are such that |W | < s). ApplyingDq−1 to aΣ

N−Dq−1(aΣ
N ) ∈

V(Nq)
Σ we obtain that Dq−1(aΣ

N ) ∈ V(Nq)
Σ and summing we get that aΣ

N ∈
V(Nq)

Σ as desired.
The second inductive process is similar (we use the same trick of applying

Dq−1 as above). We suppose by (second) induction hypothesis that aΣ
m+1 ∈

V((m+1)q)
Σ , . . . , aΣ

N ∈ V
(Nq)
Σ , so that aΣ

m+1, . . . , a
Σ
N ∈ V

((m+1)q)
Σ (and we have,

by the first induction hypothesis, that V((m+1)q)
Σ is (D1, . . . ,Dq−1)-stable).

In (3.6), we observe that c〈m〉0 ∈ V((m+1)q)
Σ . Therefore aΣ

m−Dq−1(aΣ
m) ∈ V(mq)

Σ
so that, the same trick as above yields that aΣ

m ∈ V
(mq)
Σ and this, for all

m = 1, . . . , N . For m = 0 we have observed that aΣ
0 = PΣ so our property

that aΣ
m ∈ V

(mq)
Σ for m = 0, . . . , N is completely checked.

The last step of the proof is to show that VΣ is (D1, . . . ,Dq−1)-stable and
that Dn(V(m)

Σ ) ⊂ V(m+n)
Σ . All we need to show, thanks to the first induction

hypothesis, is that Dn(aΣ
0 ) ∈ V(n)

Σ for n = 1, . . . , q − 1. Let k be an integer
between 1 and q − 1. We have, by using (3.2) and Lemma 3.4:

Dk(B1(σΣ)) = Dk(aΣ
0 ) +Dk(aΣ

1 (θ − θq) + · · ·+ aΣ
N (θ − θq)N )

= Dk(aΣ
0 ) + e

〈k〉
0 + e

〈k〉
1 (θ − θq) + · · ·+ e

〈k〉
N−1(θ − θq)N−1,
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where the elements e〈k〉j are polynomials of Fp[θ][tΣ] which are Fp-linear
combinations of elements Dj(aΣ

l ) with j = 0, . . . , q − 1 and l = 1, . . . , N .
Since these elements are in V(q)

Σ by what we have seen above, and since
this latter space is Dj-stable for j = 1, . . . , q − 1 by the first induction
hypothesis, we obtain in particular that e〈k〉0 ∈ V(q)

Σ . Combining with (3.3)
and comparing the coefficients of (θ−θq)l for all l, we deduce that Dk(aΣ

0 ) ∈
V(k)

Σ ⊂ VΣ. Any element x of VΣ is a combination
∑
i xi with xi ∈ VUi .

Hence, Dn(VΣ) ⊂ V(n)
Σ for all n. Let now x be an element of V(r)

Σ . Then,
x =

∑
i xi with xi ∈ VUi and |Σ \ Ui| ≥ r, so that Dn(xi) ∈ V(n)

Ui
⊂ V(n+r)

Σ .
We deduce that Dn(V(r)

Σ ) ⊂ V(n+r)
Σ . �

We deduce, from the above proof, that for all U ⊂ Σ,

D1(PU ) = −
∑
i∈U

PU\{i} +Q, ∃ Q ∈ V(2)
U .

3.1.2. The case of d = 1 in the Theorem 3.1: existence of certain
coefficients fI,J . We have that (∆ designates the diagonal subset):

PU,V := (θ − θq)(S1(1, σU )S1(1, σV )− S1(2, σΣ))

= (θ − θq)

 ∑
λ,µ∈Fq

∏
i∈U (ti − λ)
θ − λ

∏
j∈V (tj − µ)
θ − µ

−
∑
ν∈Fq

∏
k∈Σ(tk − ν)
(θ − ν)2


= (θ − θq)

∑
(λ,µ)∈F2

q\∆

∏
i∈U (ti − λ)

∏
j∈V (tj − µ)

(θ − λ)(θ − µ)

= −
∑

(λ,µ)∈F2
q\∆

∏
i∈U

(ti − λ)
∏
j∈V

(tj − µ)

 ∏
ν 6∈{µ,λ}

(θ − ν) ∈ Fp[θ][tΣ] ,

which is, in particular, a polynomial of degree ≤ q − 2 in θ (again, we use
Gal(Facp /Fp)-invariance, which is easily checked, to prove that the coeffi-
cients are in Fp). We now compute:

PU,V = (θ − θq)
∑

(λ,µ)∈F2
q\∆

∏
i∈U (ti − λ)

∏
j∈V (tj − µ)

(θ − λ)(θ − µ)

= (θ − θq)
∑
λ∈Fq

∏
i∈U (ti − λ)
θ − λ

∑
µ∈Fq\{λ}

∏
j∈V (tj − λ+ λ− µ)
(θ − λ+ λ− µ︸ ︷︷ ︸

=:η

)
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= (θ − θq)
∑
λ∈Fq

∏
i∈U (ti − λ)
θ − λ

∑
η∈F×q

∏
j∈V (tj − λ+ η)
(θ − λ+ η)

= (θ − θq)
∑
λ∈Fq

∏
i∈U (ti − λ)
θ − λ

∑
η∈F×q

∑
MtW=V

∏
j∈W (tj − λ)η|M |

(θ − λ)(1 + η
θ−λ) .

Hence, by developing 1
1+ η

θ−λ
in Fp(( 1

θ−λ)):

PU,V

= (θ − θq)
∑
λ∈Fq

∏
i∈U (ti−λ)
(θ−λ)2

∑
η∈F×q

∑
MtW=V

∏
j∈W

(tj−λ)η|M |
∑
n≥0

(−1)n ηn

(θ−λ)n

= (θ − θq)
∑
λ∈Fq

∏
i∈U

(ti − λ)
∑

MtW=V

∏
j∈W

(tj − λ)
∑
n≥0

(−1)n

(θ − λ)n+2

∑
η∈F×q

η|M |+n

= (θq − θ)
∑

MtW=V
|M |+n>0

|M |+n≡0 (mod q−1)

(−1)nS1(n+ 2, σUtW ) .

We observe that, if n + 2 ≥ q + 1, then ‖(θ − θq)S1(n + 2, σU )‖ ≤ q−1.
Since PU,V ∈ Fp[θ][tΣ](< q−1), we thus see that the part of the sum on the
right for which n ≥ q − 1 is in the maximal ideal M of Fp[tΣ][[1/θ]]. More
precisely:

(3.7) PU,V ≡ (θq−θ)
∑

MtW=V
|M |+n>0,n<q−1

|M |+n≡0 (mod q−1)

(−1)nS1(n+2, σUtW ) (mod M) .

We set, for U ⊂ Σ:

P
(k)
U := (θ − θq)S1(k, σU ) , k ≥ 1 ,

so that P (1)
U = PU in the previous notations.

Lemma 3.6. We have the congruence

P
(1+n)
U ≡ (−1)nDn(PU ) (mod M) , n = 0, . . . , q − 1 .

Proof. If n = 0, the statement is clear. Assume that q > n > 0. By Leib-
nitz’s formula we see that

Dn(PU ) = D1(θ − θq)Dn−1(S1(1, σU )) + (θ − θq)Dn(S1(1, σU ))

= Dn−1(S1(1, σU ))− (−1)nP (n+1)
U .

Now, note that ‖Dn−1(S1(1, σU ))‖ < 1. �
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Hence, combining (3.7), Lemma 3.6 and Proposition 3.3, we see that
PU,V ∈ VΣ .

We have proved (multiply the above by (θ − θq)−1) that, given U, V ⊂ Σ
such that Σ = U t V there exist, for any partition Σ = I t J , an element
fI,J ∈ Fp, so that

(3.8) S1(1, σU )S1(1, σV )− S1(2, σΣ) =
∑

ItJ=Σ
fI,JS1(1, σI)

(the title of this subsection refers to these coefficients). We now claim that,
if fI,J 6= 0, then |I| ≡ |Σ| − 1 (mod q − 1) (that is, |J | ≡ 1 (mod q − 1)).
For this, we consider, for all µ ∈ F×q , the Fq-automorphism

ψµ : Fq(tΣ, θ)→ Fq(tΣ, θ)
which sends ti to µti and θ to µθ. Observe that, for all n ≥ 1,

ψµ(S1(n, σΣ)) =
∑
λ∈Fq

∏
i∈Σ(µti − λ)
(µθ − λ)n

=
∑
λ∈Fq

µ|Σ|
∏
i∈Σ

(
ti − λ

µ

)
µn
(
θ − λ

µ

)n
= µ|Σ|−n

∑
λ′∈Fq

∏
i∈Σ(ti − λ′)
(θ − λ′)n .

Hence, for all µ ∈ F×q and I ⊂ Σ,

ψµ(S1(1, σI)) = µ|I|−1S1(1, σI) .
In particular, if L is the left-hand side of the identity (3.8), we have

ψµ(L) = µ|Σ|−2L, µ ∈ F×q ,
and this proves our claim. For later use, we write the result that we have
reached, in the case d = 1:

Proposition 3.7. If Σ = U t V there exists, for any decomposition Σ =
I t J , an element fI,J ∈ Fp, so that

S1(1, σU )S1(1, σV )− S1(2, σΣ) =
∑

ItJ=Σ
|I|≡|Σ|−1 (mod q−1)

fI,JS1(1, σI)

=
∑

ItJ=Σ
|J |≡1 (mod q−1)

fI,JS1(1, σI) .

Note that the congruence conditions on |J | for the fI,J above could have
been encoded directly in the proof of Proposition 3.3 but we have preferred
to handle them separately to avoid too technical discussions.
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3.1.3. Computation of the coefficients fI,J in Proposition 3.7. We
use the explicit computation of the Fp-coefficients of the sum-shuffle prod-
uct formula for double zeta values of Chen in [6] to compute the coeffi-
cients fI,J .

Lemma 3.8. The Fp-vector space VΣ has dimension 2|Σ| and the polyno-
mials PU , U ⊂ Σ form a basis of it.

Proof. It suffices to show that the elements S1(1, σU ), U ⊂ Σ, are Fp-
linearly independent. First of all, the fractions S1(n) =

∑
λ∈Fq

1
(θ−λ)n ∈

Fp(θ), n = 1, 2, . . . are linearly independent over Fp. Indeed, for each n,
S1(n) has poles of order n at each θ = λ ∈ Fq. Observe that the set map
{U : U ⊂ Σ} → {0, . . . , qs − 1} (Σ = {1, . . . , s}) defined by U 7→

∑
i∈U q

i−1

is injective (it is bijective if and only if q = 2). Thus, the map {U : U ⊂
Σ} → {1, . . . , qs} which sends U to qs −

∑
i∈U q

i−1 is also injective; let G
be its image. Then, the map

{S1(1, σU ) : U ⊂ Σ} ψ−→W := {S1(n) : n ∈ G}

defined by(3)

τ s(S1(1, σU ))
ti=θq

i−1

i=1,...,s
= S1

(
qs −

∑
i∈U

qi−1
)

is injective, and induces an injective Fp-linear map VΣ → VectFp(W). Since
the latter space has dimension 2s = 2|Σ|, the lemma follows. �

In fact, the map ψ defines a K-algebra homomorphism

K[tΣ] ψ−→ K .

In Lemma 3.8, we have seen that ψ induces an isomorphism of Fp-vector
spaces

UΣ := VectFp(S1(1, σU ) : U ⊂ Σ) ψ−→WΣ :=

VectFp

(
S1(n) : n = qn −

s∑
i=1

ciq
i−1, ci ∈ {0, 1}

)
.

If U ⊂ Σ, we write nU = qs −
∑
i∈U q

i−1. The map ψ thus sends S1(1, σU )
to S1(nU ). We have seen that S1(1, σU )S1(1, σV )− S1(2, σΣ) ∈ UΣ, and we
have that

ψ(S1(1, σU )S1(1, σV )− S1(2, σΣ)) = S1(nU )S1(nV )− S1(nU + nV ) ,

(3)We first apply the operator τs, Fq [t]-linear and sending θ to θq , and then, we operate the
indicated specialization.
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because ψ(S1(2, σΣ)) = S1(2qs −
∑
i∈Σ q

i−1) = S1(qs −
∑
i∈U q

i−1 + qs −∑
j∈V q

j−1). Now, we invoke Chen’s explicit formula in [6] which, we recall,
says that

(3.9) S1(nU )S1(nV )− S1(nU + nV ) =
∑

0<n<nU+nV
q−1|n

fnS1(nU + nV − n) ,

where

fn = (−1)nU−1
(
n− 1
nU − 1

)
+ (−1)nV −1

(
n− 1
nV − 1

)
.

Assuming that the right-hand side of (3.9) belongs to WΣ, it is then equal
to a combination

ψ

(∑
n

fnS1(1, σIn)
)
, In ⊂ Σ ,

and we obtain our result by pulling back this relation, thanks to Lemma 3.8.
So, everything we need to show is that, if fn 6= 0, then n = nJ for some
J ⊂ Σ, and then, compute fn.

We recall that q = pe, e > 0. We now write

nU − 1 =
es−1∑
k=0

cUk p
k , cUk ∈ {1, . . . , p− 1} ,

and similarly for nV etc. so that cUk = p − 1 unless k = ei for i + 1 ∈ U ,
case in which cUk = p − 2. Now, let n be in {1, . . . , nU + nV − 1}, q − 1|n.
Since nU +nV − 1 = 2qs−

∑
i∈Σ q

i−1− 2, we have that n < qs for all q. We
write

n− 1 =
es−1∑
k=0

ckp
k , ck ∈ {1, . . . , p− 1} .

Then
( n−1
nU−1

)
=
∏es−1
k=0

(ck
cU
k

)
by Lucas’ formula, and

( n−1
nU−1

)
6= 0 if and only

if, for all k ≥ 0, ck ≥ cUk . Hence, the latter non-vanishing condition is
equivalent to ck = p− 1 if e - k and if e | k, then ck ∈ {p− 2, p− 1}. This
means that

( n−1
nU−1

)
6= 0 if and only if n = nJ for some J ⊂ Σ. In this case,

we easily check that
( n−1
nU−I

)
=
(nJ−1
nU−I

)
= (−1)|U\J |. Hence,

(−1)nU−1
(
nJ − 1
nU − I

)
= (−1)q

s−
∑

i∈U q
i−1−1(−1)|U\J | = (−1)|U |(−1)|U\J | = (−1)|J | .

Now, observe that fn 6= 0 if and only if either
( n−1
nU−1

)
6= 0 or

( n−1
nV −1

)
6= 0

and, for what seen above, these two terms cannot be simultaneously non-
zero. We conclude that fn 6= 0 if and only if n = nJ with either J ⊂ U
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or J ⊂ V , and if this is the case, then fn = (−1)|J |. Observe also that if
U t V = I t J = Σ, then nU + nV = nI + nJ . Hence, nU + nV − n =
nU + nV − nJ = nI with I t J = Σ, and therefore, the right-hand side
of (3.9) is:∑

0<n<nU+nV
q−1|n

fnS1(nU + nV − n) = −
∑

ItJ=Σ
J⊂U or J⊂V

|J |≡1 (mod q−1)

ψ(S1(1, σI)) ,

and we are done because ψ is injective on UΣ. We have proved:

Proposition 3.9. If Σ = U t V , then

S1(1, σU )S1(1, σV )− S1(2, σΣ) =
∑

ItJ=Σ
|I|≡|Σ|−1 (mod q−1)

fI,JS1(1, σI)

= −
∑

ItJ=Σ
|J |≡1 (mod q−1)
J⊂U or J⊂V

S1(1, σI) .

3.1.4. The case of d ≥ 1 in the Theorem 3.1. In this subsection, we
prove Theorem 3.1. This part follows closely the principles introduced by
Thakur in [12]. For the sake of completeness, we give full details. We denote
by A+(d) the set of monic polynomials of degree d in A and by A+(< d)
the set of monic polynomials of A which have degree < d. For n ∈ A+(d)
and m ∈ A+(< d), we write

Sn,m = {(n+ µm, n+ ν);µ, ν ∈ Fq, µ 6= ν} .

We have that
Sn,m ⊂ A+(d)×A+(d) \∆ ,

where ∆ is the diagonal of A+(d)×A+(d). Further, we recall from [12], the
next:

Lemma 3.10. The following properties hold, for (n,m), (n′,m′) ∈ A+(d)×
A+(< d).

(1) Sn,m ∩ Sn′,m′ 6= ∅ if and only if m = m′ and n = n′+ λm′ for some
λ ∈ Fq.

(2) If Sn,m ∩ Sn′,m′ 6= ∅ then Sn,m = Sn′,m′.
(3) For all (a, b) ∈ A+(d) × A+(d) \ ∆ there exists (n,m) ∈ A+(d) ×

A+(< d) with (a, b) ∈ Sn,m.
Therefore, the sets Sn,m determine a partition of A+(d)×A+(d) \∆.

Proof. See Thakur’s [12]. �

We also have:
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Lemma 3.11. The following properties hold:
(1) S′n,m ∩ S′n′,m′ 6= ∅ if and only if m = m′ and there exists µ, µ′ ∈ Fq

such that n+ µm = n′ + µ′m′.
(2) If S′n,m ∩ S′n′,m′ 6= ∅ then S′n,m = S′n′,m′.
(3) If (a, b) ∈ A+(d)×A+(< d), there exists (n,m) ∈ A+(d)×A+(< d)

such that (a, b) ∈ S′n,m.
Therefore, the sets S′n,m determine a partition of A+(d) × A+(< d) And
S′n,m = S′n′,m′ if and only if Sn,m = Sn′,m′.

Proof. Immediate. �

We thus have two partitions:

S = {S;S = Sn,m, (n,m) ∈ A+(d)×A+(< d)},
S′ = {S′;S′ = S′n,m, (n,m) ∈ A+(d)×A+(< d)}.

3.1.5. End of proof of Theorem 3.1. We recall that Σ = U t V . We
have, for all d ≥ 1:

Sd(1;σU )Sd(1;σV )− Sd(2;σΣ) =
∑

(a,b)∈A+(d)×A+(d)\∆

σU (a)σV (b)
ab

=
∑
S∈S

∑
(a,b)∈S

σU (a)σV (b)
ab

.

We compute, for any choice of S ∈ S, the sum

∑
(a,b)∈S

σU (a)σV (b)
ab

.

We note, for all U ⊂ Σ, as σU is a product of injective Fq-algebra homo-
morphisms, that it extends in an unique way to a group homomorphism
σU : K× → Fq(tΣ)×. In particular, for all U ⊂ Σ, we have the identi-
ties: σU (n + µm) = σU (m)σU

(
n
m + µ

)
for all µ ∈ Fq. We thus have, with

S = Sn,m and with ψn,m the substitution θ 7→ n
m , ti 7→ χti( nm), i ∈ Σ:

∑
(a,b)∈S

σU (a)σV (b)
ab

=
∑

µ,ν∈Fq
µ6=ν

σU (n+ µm)σV (n+ µm)
(n+ µm)(n+ νm)

= σU (m)σV (m)
m2

∑
µ,ν∈Fq
µ6=ν

σU ( nm + µ)σV ( nm + ν)
( nm + µ)( nm + ν)
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= σU (m)σV (m)
m2 [S1(1;σU )S1(1;σV )− S1(2;σΣ)]ψn,m

= −σU (m)σV (m)
m2


∑

ItJ=Σ
|I|≡|Σ|−1 (mod q−1)

J⊂U or J⊂V

S1(1;σI)


ψn,m

,

by Proposition 3.9. Hence,∑
(a,b)∈S

σU (a)σV (b)
ab

= σΣ(m)
m2

∑
ItJ=Σ

|I|≡|Σ|−1 (mod q−1)
J⊂U or J⊂V

∑
µ∈Fq

σI
(
n
m + µ

)
n
m + µ

=
∑

ItJ=Σ
|I|≡|Σ|−1 (mod q−1)

J⊂U or J⊂V

∑
µ∈Fq

σI(n+ µm)σJ(m)
(n+ µm)m

=
∑

ItJ=Σ
|J |≡1 (mod q−1)
J⊂U or J⊂V

∑
(a,b)∈S′

σI(a)σJ(b)
ab

,

where S′ = S′n,m. Summing over all S ∈ S induces a sum over all S′ ∈ S′.
Since∑
S′∈S′

∑
(a,b)∈S′

σI(a)σJ(b)
ab

=
∑

(a,b)∈A+(d)×A+(<d)

σI(a)σJ(b)
ab

= Sd

(
σI σJ
1 1

)
,

and the Theorem follows.

4. Further properties of the fractions S1(1, σΣ)

There are completely explicit formulas for S1(1, σΣ) that have not been
used yet. One easily proves:

(4.1) S1(0, σΣ) =
∑
λ∈Fq

∏
i∈Σ

(ti − λ) =
b |Σ|
q−1 c∑
j=1

e|Σ|−j(q−1)(tΣ) ,

where en(tΣ) is the n-th elementary polynomial in the variables tΣ. Then,
we have the following formula, whereWi = Σ∪Vi with Vi a set with exactly
i elements, such that Σ ∩ Vi = ∅, and where ξi is the map “substitution of
ti with 0” (a K-algebra homomorphism), for all i ∈ Vi:

S1(1, σΣ) =
q−1∑
j=1

(−θ)jξq−1−j(S1(0, σWq−1−j )) .
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In particular, if |U | ≥ q the coefficient of θq−1 in S1(1, σU ) (as a polynomial
in θ) is proportional to S1(0, σU ). We have seen, in Lemma 3.8, that the
fractions S1(1, σU ), U ⊂ Σ are linearly independent over Fp. In the oppo-
site direction, there are non-trivial linear forms between the polynomials
S1(0, σU ).

Proposition 4.1. For all N ≥ 1 and b ≥ q, The elements S1(0, σV ) ∈
Fp[tΣ] for V ⊂ Σ with |V | = b and |Σ| = b + pN − 1 are non-zero and
linearly dependent over Fp.

Proof. The non-vanishing is clear because b ≥ q. Observe, for 0 ≤ a ≤ b ≤
c = |Σ| (recall ea(tV ) =

∑
U⊂V
|U |=a

∏
i∈U ti) the relation:

∑
V⊂Σ
|V |=b

ea(tV ) =
∑
V⊂Σ
|V |=b

=
∑
U⊂V
|U |=a

(∏
i∈U

ti

) ∑
U⊂V⊂Σ
|V |=b

1 =
(
c− a
b− a

) ∑
U⊂V
|U |=a

(∏
i∈U

ti

)
,

which holds in any commutative ring R[tΣ]. If vp(
(c−a
b−a
)
) > 0 (with vp the p-

adic valuation of Q), then this yields a non-trivial Fp-linear relation among
the elementary symmetric polynomials ea(tV ) ∈ Fp[tΣ] for V ⊂ Σ. Looking
at the identity (4.1), if

vp

((
c− b+ j(q − 1)

j(q − 1)

))
> 0, ∀ j = 1, . . . ,

⌊
b

q − 1

⌋
,

then

(4.2)
∑
V⊂Σ
|V |=b

S1(0, σV ) = 0 .

Since p− 1 | q − 1, if

(4.3) vp

((
c− b+ j(p− 1)

j(p− 1)

))
> 0 , ∀ j = 1, . . . ,

⌊
b

p− 1

⌋
,

then (4.2) holds. We recall that, for p a prime number and n, k integers
with n ≥ k ≥ 0, vp(

(n
k

)
) is the sum of the carry over in the base-p sum of

k and n− k. Hence, vp(
(n
k

)
) > 0 if there is at least one carry over. In (4.3)

for fixed j, we take n = c− b+ j(p− 1) and k = j(p− 1). We choose N ≥ 1
an integer, and we set c− b = pN − 1 = (p− 1)

∑N−1
i=0 pi. We have, at once,

k, n−k < pN . Hence, for all j, there is carry over in the sum of k+ (n−k).
Finally, if we choose |Σ| = c = pN − 1 + b and |V | = b, we are done. �
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5. Linear relations over K(tΣ) for few variables

We denote by ld the product (θ − θq
d)(θ − θq

d−1) · · · (θ − θq) and by
bd(t) the product (t− θ)(t− θq) · · · (t− θqd−1). In particular, with the usual
conventions on empty products, b0 = l0 = 1.

We collect, in this subsection, some explicit linear dependence relation
for our double zeta values in Tate algebras with |Σ| small. First of all, we
observe:

Lemma 5.1. We have:

(5.1) Sd(1, σI) =
∏
i∈I bd(ti)
ld

, I ⊂ Σ = {1, . . . , q} , |I| < q .

Proof. This formula was first observed by Rudolph Perkins. We can deduce
it from the formula (5) of [9] (see also the preprint [10]), where it is proved,
for Σ = {1, . . . , q}:

(5.2) Fd+1(1, σΣ) :=
d∑
i=0

Si(1, σΣ) = l−1
d

∏
i∈Σ

bd(ti) , d ≥ 1 .

Observe that, since I ( Σ, Sd(1, σI) ∈ K[tI ] is, for d ≥ 1, the coefficient of∏
j∈Σ\I t

d
j in the polynomial Fd+1(1, σΣ) ∈ K[tΣ]. From this and from the

definition of the polynomials bd, we obtain the formula of the lemma for
d ≥ 1, while the result for d = 0 is obvious. �

Additionally, we recall from [9, Lemma 8], the formula:

(5.3) Fd(1, χt) =
d−1∑
j=0

Sj(1, χt) =
d−1∑
j=0

bj(t)
lj

= bd(t)
(ti − θ)ld−1

= τ(bd−1)(t)
ld−1

, d > 0 ,

where τ is the Fq[t]-linear endomorphism of K[[t]] which associates to a for-
mal series

∑
i fit

i the formal series
∑
i f

q
i t
i. This formula is easily proved by

induction, and occurs in several other references in function field arithmetic.
The simplest example of linear relation is the so-called Euler–Thakur

relation, holding for Σ = ∅. Thakur proved the formula

(5.4) ζA(1, q − 1) = ζA

(
1 1
1 q − 1

)
= 1
θ − θq

ζA(q) .

This can be viewed, up to certain extent, as an analogue of the famous
formula ζ(2, 1) = ζ(3) by Euler. We recall the proof. We apply τ to both
left- and right-hand sides of (5.3). We get the identity

d−1∑
j=1

τ(bj)(t)
lqj

= τ(bd)(t)
(t− θq)lqd−1

, d ≥ 1 .
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Since (τ(bi)(t))t=θ = li for all i, we get the identity
d−1∑
j=0

1
lq−1
j

= ld
(θ − θq)lqd−1

= 1
lq−1
d−1

.

Therefore, with Fd(q − 1) =
∑d−1
j=0 Sj(q − 1) and for all d ≥ 1:

Sd(1, q − 1) = l−1
d Fd(q − 1)

= l−1
d−1l

−q+1
d−1

=
l−qd−1
θ − θq

= Sd−1(q)
θ − θq

.

Summing over d ≥ 1 we get the identity.
We also deduce, from (5.3), for Σ = {1, . . . , s} with s ≤ q:

(5.5) Sd

(
σΣ\{i} χti

1 1

)

= Sd(1, σΣ\{i})
d−1∑
j=0

Sj(1, χti) = 1
ti − θ

∑
d≥1

∏
j∈Σ bd(tj)
ldld−1

, i ∈ Σ .

We immediately obtain:

Lemma 5.2. If |Σ| < q and if i, j are distinct elements of Σ, then

ζA

(
σΣ\{i} σ{i}

1 1

)
= tj − θ
ti − θ

ζA

(
σΣ\{j} σ{j}

1 1

)
.

For the next example of linear relation, we have a similar lemma.

Lemma 5.3. We suppose that s = |Σ| ≤ 2q − 1. We write Σ = U t V =
U ′ t V ′ with |U | = |U ′| = q and |V | = |V ′| = r. Then, we have

ζA

(
σV σU
1 q

)
=
∏
i′∈U ′(ti′ − θ)∏
i∈U (ti − θ)

ζA

(
σV ′ σU ′
1 q

)
.

Proof. From (5.2) we deduce the following formula:

Fd(1, σU ) :=
d−1∑
i=0

Si(1, σU ) = l−1
d−1

∏
i∈U

bd−1(ti) , d ≥ 1 ,

and a similar formula holds for U ′. Therefore

Fd(q, σU ) := τ(Fd(1, σU )) =
d−1∑
i=0

Si(q, σU ) = l−qd−1

∏
i∈U bd(ti)∏
i∈U (ti − θ)
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and analogously for U ′. Since by the formula (5.1)

Sd(1, σV ) =
∏
i∈V bd(ti)
ld

and similarly for V ′, we get the identity

Sd

(
σV σU
1 q

)∏
i∈U

(ti − θ) =
∏
i∈Σ bd(ti)
ldl

q
d−1

= Sd

(
σV ′ σU ′
1 q

) ∏
i∈U ′

(ti − θ) .

Summing over d ≥ 1 proves the lemma. �

By using Proposition 2.2, note that, for Σ = {1, . . . , q}:

τ

(
ζA

(
σΣ\{i} σ{i}

1 1

))
t1=···=tq=θ

= ζA(1, q − 1) , i = 1, . . . , q ,

τ

(
ζA

(
σΣ
2

))
t1=···=tq=θ

= ζA(q) .

It would be nice to see Euler–Thakur’s identity arising as specialization
of a linear relation between the above multiple zeta values, but this does
not correspond to the correct intuition. We have already seen that the
values ζA

(
σΣ\{i} σ{i}

1 1

)
for i = 1, . . . , q generate a K(tΣ)-subvector space of

dimension 1. In the opposite direction, we show:

Lemma 5.4. Assuming that Σ = {1, . . . , s} ⊂ {1, . . . , q} and that s > 0,
the values

ζA

(
σΣ\{s} χts

1 1

)
, ζA

(
σΣ
2

)
are linearly independent over K(tΣ).

Proof. We suppose by contradiction that there exist two polynomials U, V ∈
A[tΣ], not both zero, such that

UζA

(
σΣ\{s} χts

1 1

)
= V ζA

(
σΣ
2

)
.

We can suppose that either ts − θ - U , or ts − θ - V . Evaluating the
above identity at ts = θ and applying the same techniques of the proof of
Proposition 2.2 (we only evaluate one variable) we thus get
(5.6) (Uts=θ)(ζA(1, σΣ\{s})− 1) = (Vts=θ)ζA(1, σΣ\{s}) .
This implies that 1, ζA(1, σΣ\{s}) are linearly dependent over K(tΣ\{s}).
However, this is impossible. To see this, we again use Proposition 2.2 (or
rather, the arguments of §2.1.1). We set X = Uts=θ ∈ K[tΣ\{s}] and Y =
Vts=θ ∈ K[tΣ\{s}]; they are not both identically zero. Since the subset
{(θq−k1 , . . . , θq

−ks−1 ) : k1, . . . , ks−1 ∈ N} is Zariski-dense in the affine space
As−1(K1/p∞) (where we recall that p is the characteristic of Fq and K1/p∞
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denotes the subfield of C∞ generated by the subfields Fq(θ1/pk), k ≥ 0), we
can choose k1, . . . , ks−1 ≥ 1 such that

X
ti=θ−q

ki

i∈Σ\{s}

, Y
ti=θ−q

ki

i∈Σ\{s}

∈ K1/p∞

are not both zero. There exists N ≥ max{ki : i ∈ Σ \ {s}} an integer such
that m := qN −

∑
i∈Σ\{s} q

N−ki > 0. Indeed, Since ki ≥ 1 for all i, we have∑
i∈Σ\{s} q

N−ki ≤ |Σ \ {s}|qN−1 < qN because of the assumption on the
cardinality of Σ, which is ≤ q.

Then, applying the Fq[tΣ\{s}]-linear operator τN on both right- and left-
hand sides of (5.6) we obtain the identity:

τN (X)(ζA(qN , σΣ\{s})− 1) = τN (Y )ζA(qN , σΣ\{s}) .

Substituting ti = θq
N−ki for i ∈ Σ \ {s} we thus obtain an identity in K∞:

α(ζA(m)− 1) = βζA(m) ,

where

α = τN (X)
ti=θq

N−ki

i∈Σ\{s}

=

X
ti=θq

−ki

i∈Σ\{s}

qN ∈ K
and similarly, β = τN (Y )

ti=θq
N−ki ,i∈Σ\{s} ∈ K, and α, β are not both zero.

Now, since m > 0, the Carlitz zeta value ζA(m) is non-zero. In fact, it is
known that it does not belong to K (this is, for instance, a microscopic con-
sequence of [5, Main Theorem]). But this contradicts the identity obtained,
implying that 1, ζA(m) are linearly dependent over K. �

Remark 5.5. The Lemma 5.4 can be proved in a more elegant way after
having noticed that ζA

(
σΣ\{s} χts

1 1

)
and ζA ( σΣ

2 ) generate a submodule of
finite index of a variant of Taelman’s unit module as in [11, 4] and in the Ph.
D. Thesis of Demeslay [7]. Also, the use of deep transcendence results can
be avoided by studying carefully sequences of evaluations of these functions
which return elements of K the denominators of which can be proved to be
unbounded. The details will appear elsewhere in a more general setting.
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Afterword. David Goss suddenly and unexpectedly passed away on April
4, 2017, after the two papers contributed here were completed. Having
read preliminary versions of them, he had given me precious advice and
indicated intriguing paths of investigation. The memory of his enthusiasm,
generosity, and encouragements is still vivid. The intense energy that he
irradiated remains a valuable source of motivation for me, and I will be
forever grateful.
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