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Multizeta values for function fields: A survey

par Dinesh S. THAKUR

In memory of David M. Goss

Résumé. Nous donnons une vue d’ensemble des développements
récents concernant la compréhension des valeurs multi-zêta pour
les corps de fonctions.

Abstract. We give a survey of the recent developments in the
understanding of the multizeta values for function fields.

1. Introduction

The birth of calculus led to a development of a new bag of tools for
the treasure hunt that followed for discovering nice evaluations for many
interesting infinite sums. While many mathematicians tried and “failed”
the problem of evaluating (the zeta values) ζE(s) :=

∑∞
n=1 1/ns for integers

s > 1, Euler “half succeeded” by his breakthrough result evaluating it, for
even such s, in terms of known quantities such as π, Bernoulli numbers and
factorials. He also discovered the correct evaluations for its values (defined
rigorously only much later by analytic continuation proved by Riemann)
at non-positive integers s, and even at some fractions, while checking the
functional equation that he conjectured, which was proved much later by
Riemann. Partly motivated by attempts to understand the remaining values
at odd integers s > 1, he introduced (for r = 2) multizeta values

ζE(s1, . . . , sr) :=
∑

n1>···>nr>0

1
ns1

1 . . . nsr
r
∈ R ,

for positive integers si, with s1 > 1 and discovered interesting relations
such as ζE(3) = ζE(2, 1) and sum-shuffle relations.

The last three decades witnessed a huge resurgence of interest in de-
veloping understanding of these multizeta values again, as their relations
with various fundamental objects and structures in mathematics and math-
ematical physics were discovered. They occur in the Grothendieck–Ihara
program to study the absolute Galois group of the rational number field
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through the fundamental group of the projective line minus three points
and other moduli spaces, and in the related studies of iterated exten-
sions of Tate motives. They also occur in various Feynman path inte-
gral calculations that show up in physics. We refer the reader to papers
on this subject by Broadhurst, Brown, Cartier, Deligne, Drinfeld, Ecalle,
Furusho, Gangl, Goncharov, Hoffman, Ihara, Kaneko, Kreimer, Racinet,
Terasoma, Unver, Waldschmidt, Zagier, Zhao, Zudilin to mention just a
few names. (See [55], its extensive bibliography, [24] and the reference site
www.usna.edu/Users/math/meh/biblio.html maintained by Hoffman).

Number theorists often study number fields and function fields (over
finite fields) together [23, 47] for various reasons. The zeta story in the
function field context was developed in two independent directions. The
first direction was taken up by Artin, who studied complex valued zeta
associated to function fields in his thesis, by essentially interpreting “n”
in the zeta definition as the number of residue classes modulo n and thus
replacing it by qd which is the number of residue classes mod “a” (i.e., the
norm) for a polynomial a of degree d over a finite field of q elements. This
has been developed into standard algebraic geometry definitions in much
more generality. The functions you get are rational functions of qs. In [47,
5.10], multizeta with this line of thought were introduced and evaluated
fully as explicit rational functions (of several variables). We ignore this
direction in this survey and refer the reader to [33, 47].

The second direction was taken by Carlitz, who studied around 1935 (now
called) the Carlitz zeta values in the completion of the function field (at the
“usual” infinite place), and produced an analog of Euler’s result at “even”
(see §2.2 for the definition) positive integers. David Goss, around 1975, gen-
eralized, developed analytic continuation, found evaluation at non-positive
integers and its connection to the class group components of cyclotomic
fields etc. This produces rich transcendental functions in contrast to the
rational functions of the first case.

The author was fortunate to learn about the rich interconnections of
the multizeta with various fundamental structures in the lecture course
by Deligne at the Institute for Advanced Study in 2000–2001 and at the
Arizona Winter School in 2002. This led him to develop the multizeta in
the function field context, by generalizing both the directions mentioned
above, but we will only concentrate on the second one below.

We give a survey of various developments since then due to the efforts
of several mathematicians, focusing not only on the end results and con-
jectures, but also explaining how they arose. This survey has been written
for the readers who are somewhat familiar with the story for the Riemann–
Euler case and curious about the function field case. Thus we describe some

www.usna.edu/Users/math/meh/biblio.html
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technical results only informally, by suggestive terminology, analogies and
references. For the general background on that, we refer to [23, 47, 50].

2. Some basic analogies and the Zeta story

We start by setting up some basic notations and analogies.

2.1. Base rings, fields, places. Let Fq be a finite field of characteristic
p consisting of q elements.

As analogs of the rational number field Q, its archimedean place ∞,
the ring of integers Z (whose primes correspond to the finite places), the
completion R of Q at∞ and its algebraic closure C, which is also complete;
we have the rational function field Fq(t), its usual place∞ corresponding to
the degree valuation with 1/t as an uniformizer, the polynomial ring Fq[t]
(whose irreducible polynomials correspond to the finite places), the (finite
tailed) laurent series field Fq((1/t)), and the completion C∞ of its algebraic
closure respectively.

More generally, we can take any function field K (of one variable over
finite field Fq), ∞ any chosen place of K (taken rational, or equivalently of
degree one usually, we will drop this restriction only in §5.4), the ring of
integers A (consisting of elements of K with only pole at∞, the completion
K∞ (with its residue field F∞) and the completion C∞ of its algebraic
closure.

We will refer to this set-up as the general A case and to the special
case above, as the A = Fq[t] case, where we will also use the same general
notation, when clear from the context. The Euler–Riemann case of the
introduction will be referred to as the real case.

Though most of the definitions and the basic properties below work in
the general case, more substantial results have been established only in
A = Fq[t] case.

2.2. The signs. The set of units or signs Z∗ then corresponds to A∗ =
F∗q = F∗∞ (the last equality, when ∞ is of degree one). The respective
cardinalities 2 and q−1 lead to analog “even” (or q-even) to mean multiples
of q−1 in this context, in place of 2 for the usual notion of even. An integer
which is not “even” is called “odd” (or q-odd). (Note that when q = 2, all
integers are “even”).

An analog of positive (sign 1) integers is monic (sign 1) polynomials.
(Note that whereas the set Z+ of positive integers is closed under addition
and multiplication, the set A+ of monic polynomials is closed for multipli-
cation, and only under addition in different degrees).

For the rest of this section, except for the last subsection, we will restrict
to A = Fq[t] case. We write [n] := tq

n − t.
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2.3. Multiplicative and additive actions. Consider the multiplicative
and additive groups denoted as usual by Gm,Ga respectively. As analog of
(n-th power actions) n 7→ (x 7→ xn) : Z→ End Gm, we have (Carlitz mod-
ule actions) a 7→ (x 7→ Ca(x)) : Fq[t]→ End Ga, defined by Ct(x) = tx+xq,
and C∑ fiti

(x) =
∑
fiC

(i)
t (x) (where C(i)

t denotes i-fold composition).

2.4. Corresponding exponential, and the Carlitz period. The re-
lated notion is the usual exponential ez =

∑
zn/n! satisfying the functional

equations enz = (ez)n with respect to this action and ez = 1 ↔ z ∈ 2πiZ.
The Carlitz analog is e(z) =

∑
zq

n
/dn, with dn = [n][n−1]q . . . [1]qn−1 , sat-

isfying e(az) = Ca(e(z)) (thus implying the formula for dn for n > 0, from
its empty product case d0 = 1 and recursion) and e(z) = 0↔ z ∈ Λ := π̃A,
for some π̃ ∈ C∞ (known [52] to be transcendental over K) considered as
analog of 2πi.

2.5. Carlitz–Tate–Anderson t-motives. In Greg Anderson’s world of
t-motives, which are higher dimensional generalizations of Drinfeld modules
(such as the Carlitz module above), the Carlitz module C plays the role
of the Tate motive Z(1), and its n-th tensor power C⊗n plays the role of
Z(n). See [1, 23, 47].

2.6. The Carlitz zeta values. The Carlitz zeta values ζ(k) are defined
for positive integers k as

ζ(k) =
∑
a∈A+

1
ak
∈ K∞ .

2.7. The Carlitz analog of Euler result. Since the Carlitz exponential
is an entire function with simple zeros exactly at Λ := π̃A, the standard
non-archimedean analysis shows that e(z) = z

∏
(1− z/λ), where the prod-

uct is over non-zero λ ∈ Λ. Making parallel with the analogous product
formula of the sine function that Euler discovered in this process, and tak-
ing the logarithmic derivative to turn the product into sum, we see by the
comparison of the coefficients of both the sides of

z

e(z) = 1−
∑

λ∈Λ−{0}

z/λ

1− z/λ = 1−
∞∑
n=1

∑
λ

(
z

λ

)n
= 1 +

∑
n “even”

ζ(n)
π̃n

zn

the Carlitz analog [11] of the Euler result that ζ(n)/π̃n ∈ K for “even” n.
Interestingly, in the function field case, we can handle all n’s, as we will

see below.
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2.8. Logarithm, polylogarithms, and tensor power logarithms.
Consider the Carlitz “logarithm” function `(z) =

∑
zq

k
/`k which is the

inverse power series of the Carlitz exponential (Concretely, `k =
∏k
i=1(−[i]),

with the empty product case interpreted as `0 = 1 as usual). Similarly, there
is a (canonical co-ordinate) “logarithm” [7, 47] logn(z1, . . . , zn) associated to
C⊗n which is a deformation of naive n-th polylogarithm Ln(z) =

∑
zq

k
/`nk .

2.9. Algebraic incarnation of ζ(n). In [7], we expressed ζ(n) as the
logarithm of an explicit algebraic point (torsion exactly when n is “even”)
on C⊗n, or equivalently as a period of an explicit extension of C⊗n by the
trivial module. We also gave an expression in terms of K-linear combina-
tions of polylogarithms evaluated at integral arguments.

2.10. Transcendence implications. Jing Yu’s fundamental work prov-
ing various transcendence results for exponential, logarithms in the context
of Drinfeld modules and t-motives combined with the above expression im-
plied the following theorem.

Theorem 2.1 ([53, 54]). For all positive integers n, ζ(n)’s are transcen-
dental over K. For all “odd” positive integers n, ζ(n)/π̃n and v-adic zeta
values ζv(n) are transcendental, where v is any finite prime of A.

After 15 years, there was a fundamental advance in transcendence theory
due to the works of Anderson, Brownawell, Papanikolas, Yu and Chang [5,
16, 37] proving roughly (analog of the Grothendieck period conjecture in
this setting) that the algebraic relations between the periods of t-motives
(e.g., gamma, zeta or multizeta values) come from the structural relations
between the motives involved, and using it to get several interesting special
values results.

Theorem 2.2 ([16]). All the algebraic relations between π̃ and ζ(n)’s (posi-
tive integers n) come from the Euler–Carlitz relation at “even” n mentioned
above and ζ(kp) = ζ(k)p, special in characteristic p. Thus, for example, all
the ζ(n)’s and π̃ are algebraic independent, if we choose n’s “odd” not di-
visible by p.

For an exposition of the concepts involved, see [50, §6]. We will just say
here that in right circumstances, the number of algebraic independent pe-
riods is the dimension of the corresponding motivic Galois group accessible
through Frobenius-difference Galois theory applied to the matrices defining
the t-motives.

2.11. General A, L-functions etc. In the general case, the Carlitz mod-
ule is replaced by the sign normalized rank one Drinfeld A-modules, or even
more general objects [23, 47].
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In [2, 3, 46], some aspects were generalized to the general A case. There
are many recent generalizations and interesting important results in differ-
ent directions due to Taelman, Papanikolas, Pellarin, Perkins, Angles, Ngo
Dac, Tavares Riberio, Fang, Derby, see [9, 10, 20, 22, 36, 38, 41, 43] and
other papers on arXiv.

Now we turn to the multizeta story.

3. Definitions related to the multizeta values

Consider the general A case, with an infinite place of degree one. Let
Ad+ denote the set of monic polynomials in A of degree d. For k, ki, d ∈ Z,
consider the power sums (sometimes denoted by Sd(−k) in the references)

Sd(k) =
∑

a∈Ad+

1
ak
∈ K,

and extend inductively to the iterated power sums

Sd(k1, . . . , kr) = Sd(k1)S<d(k2, . . . , kr)

= Sd(k1)
∑

d>d2>···>dr

Sd2(k2) . . . Sdr (kr) ,

where S<d =
∑d−1
i=0 Si as the notation suggests.

For positive integers si, we consider the multizeta values

ζ(s1, . . . , sr) :=
∞∑
d=0

Sd(s1, . . . , sr) =
∑ 1

as1
1 . . . asr

r
∈ K∞ ,

of weight
∑
si and depth r (associated a priori to the tuple si rather than

the value). (Here the second sum is over monic ai ∈ A of strictly decreasing
degrees).

In comparison to the real case, the convergence condition s1 > 1 is not
necessary, and while in that case, the weight, but not depth (as can be seen
from the Euler’s result mentioned in the introduction), is conjecturally well-
defined from the value, in our case the weight is known to be well-defined
(by Chang’s transcendence result mentioned below in Section 9) and depth
is conjecturally (see §6.3 below) well-defined from its value.

Hence, there are 2w−1 convergent multizetas of weight w, in contrast to
2w−2 in the real case.

3.1. Non-vanishing. In the real case, being a sum of positive terms,
multizeta value is clearly non-zero, while this is a subtle issue in a finite
characteristic, especially since the degrees of the power sums Sd(k)’s are
complicated combinatorial functions of d, k because of cancellations. Non-
vanishing was deduced in [48] using some results on these degrees.
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3.2. Motivation and other variants. In contrast to Z, there is no “nat-
ural” order on A to define multizeta by copying Euler, but degree provides
natural partial order, also used by Goss in his analytic continuation and
in [7] for interpolations used for motivic interpretation. This is the main
motivation for the definition, which seems to be justified by the results
below, even though at first sight, not having a total order immediately
destroys (a priori) sum shuffle relations.

If one considers analogy between positive and monic, and interprets
a1 > a2 as saying a1 − a2 is monic, one does not get total order. Vari-
ants of multizeta with such notions, or with the computer science natural
“lexicographic” order notions were also explored in [47, 5.10]. While one
gets some interesting evaluations and relations for these variants also, they
do not seem to be as robust.

4. Mixed t-motives and period interpretation

Theorem 4.1 ([8]). Given multizeta value ζ(s1, . . . , sr), we can construct
explicitly iterated extension of the t-motives C⊗si over Fq[t] which has a
period matrix containing this multizeta value (suitably normalized) as an
entry.

4.1. Special interpolation technique. For the precise definitions of the
concepts involved, we refer to [8, 23, 47]. We just mention here, for the
use below, that the techniques are generalizations of those used in the
zeta case [7], and in particular, involve constructing rational functions on
products of curves which specialize to quantities related to Sd’s on the
graph of the d-th power of Frobenius. The relations of such objects with
Anderson’s t-motives (related to Dtinfeld shtukas) allows the constructions.

4.2. Mechanical proofs of individual relations. As mentioned in
§2.10, the multizeta relations are then motivic, and thus should be re-
ducible to relations between the interpolating functions. Hence a given re-
lation should be mechanically provable, if correct. See [49, §5]. But we do
not yet understand fully the mechanisms of motivic relations at this level,
except in depth one and two (with s2 “even”). See Section 6 for some more
details.

5. Shuffle relations

Understanding the relations between multizeta values thus has many
structural implications.

5.1. Relations between multizeta in the real case. In the real case,
multizeta is given by iterated sum as in the definition and also by iterated
integral of holomorphic forms dz/z’s and dz/(1 − z)’s on projective line
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minus 0, 1,∞. Thus, simple manipulations on sums and integrals give sum-
shuffle and integral-shuffle relations, expressing product of multizeta values
as sums of (several other) multizeta values. For example, the simplest case
is Euler’s sum-shuffle

ζE(a)ζE(b) =
(∑ 1

na1

)(∑ 1
nb2

)
= ζE(a, b) + ζE(b, a) + ζE(a+ b) ,

which follows by order trichotomy n1 > n2, or n1 < n2 or n1 = n2. (Note
that the sum-shuffle is also called quasi-shuffle or stuffle to emphasize that
it is not a pure shuffle on si’s (unlike the integral shuffle) and sometimes
si’s get stuck together as in the last term above).

Either set of these shuffle relations are quadratic relations which reduce
the study of polynomial relations between the multizeta relations to linear
relations, which are conjectured to be generated from the double shuffle
relations obtained by equating what we get from the two kind of shuf-
fles. (Here we are oversimplifying by ignoring the inclusion of renormalized
divergent multizeta). There are many other conjectural descriptions (con-
jecturally equivalent), for which we refer to the papers mentioned above.

5.2. Relations between multizeta in the function field case. Since
we are not dealing with a total order, the sum-shuffle argument mentioned
above fails. In fact, it is easy to see that the classical sum-shuffle relations
and integral-shuffle relations do not usually work, and we have new relations
such as ζ(ps1, . . . , psr) = ζ(s1, . . . , sr)p . The author proved families of
examples, where in the place of the three multizetas on right side of shuffle
above, we could have fewer or many of them. For example, when q = 2, we
have [49] ζ(2)ζ(2b − 1) = ζ(2b + 1) +

∑
ζ(2i + 1, 2(b − i)), where the sum

is over 1 ≤ i < b. The patterns get much more complicated in the general
case.

At first, it was not clear that we can always reduce to the linear relations
by having linear span to be algebra by some substitute for shuffle relations.
(In [8], many more “degenerate” multizeta were introduced to achieve this
by shuffle over degrees. But we will not use them.)

Then the author gave a full conjectural shuffle recipe [49] (for product
of two zetas) in the case q = 2. This was a combinatorial recursive recipe.
To give a flavour of part of it, given the formula for ζ(19)ζ(b) as sum of
multizetas, it will tell how to derive exact formula for ζ(19)ζ(b+32), which
has 8 more multizeta terms.

Alejandro Lara Rodriguez, then the author’s masters student, general-
ized [27, 28] parts of this conjectural recipe to any q, with better control
for q prime. It exhibited [44, 3.2] “base q digit permutation symmetries”
stressed by David Goss.
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In [45], bypassing these conjectural recipes completely, the author di-
rectly proved the following theorem.

Consider

(∗) Sd(a)Sd(b)− Sd(a+ b) =
∑

fiSd(ai, a+ b− ai) ,

with fi ∈ Fp.

Theorem 5.1.
(1) Let A = Fq[t]. Given a, b ∈ Z+, there are fi ∈ Fp and ai ∈ Z+, so

that (∗) holds for d = 1.
(2) Fix q. If (∗) holds for some fi ∈ Fp and ai ∈ Z+ for d = 1 and

A = Fq[t], then (∗) holds for all d ≥ 0 and for all A (with ∞ of
degree one, and corresponding to the given q). In this case, we have
the shuffle relation

(∗∗) ζ(a)ζ(b)− ζ(a+ b)− ζ(a, b)− ζ(b, a) =
∑

fiζ(ai, a+ b− ai) .

(3) Sd(a1, . . . , ar)Sd(b1, . . . , bk) can be expressed as
∑
giSd(ci1, . . . , cimi),

with gi ∈ Fp, cij’s and mi’s being independent of d, and with
∑
ai+∑

bj =
∑
j cij and mi ≤ r + k.

(4) For any A with rational infinite place, the product of multizeta val-
ues can be expressed as a sum of some multizeta values, such an
expression preserving total weight and keeping depth filtration. In
particular, the Fp-span of all the multizeta values is an algebra.

Note that the mechanism here is of shuffle (or quasi-shuffle, stuffle), not
on the polynomials themselves, but on the degrees, and then taking care of
the d1 = d2 case by (∗). We take this opportunity to record that while the
proof of (3) and (4) follows from (∗), splitting up of front entry from Sd’s
and induction on length, as mentioned in [45, p. 1979], the author makes
a mistake there in setting up the vector notation induction, in particular
the fourth equality, which is said to follow from shuffle is messed up and
should be replaced by what follows from shuffle. The full correct argument
is given on the author’s update page.

Next, Alejandro Lara Rodriguez, then the author’s PhD student, turned
this effective procedure into a nice formula for the shuffle relation for the
product of two zeta values as a sum of products of two binomial coefficients,
or in terms of generating functions.

Interestingly, the day of his PhD thesis defense, the author got an email
from his past student (he is proud to say!) Huei Jeng Chen, who using (sim-
ilar in principle, but much better) a partial fraction decomposition formula,
which, as we later learned from M. Kaneko, was used even by Euler [21,
p. 145-146] in the real multizeta case) gave a much simpler formula as
follows.
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Theorem 5.2 ([19]). We have

ζ(a)ζ(b)− ζ(a+ b)− ζ(a, b)− ζ(b, a)

=
∑(

(−1)a−1
(
j − 1
a− 1

)
+ (−1)b−1

(
j − 1
b− 1

))
ζ(a+ b− j, j) ,

where the sum is over j which are multiples of q − 1 and 0 < j < a+ b.

The subtle dependence on the base q expansions of a, b of the values and
vanishing of the binomial coefficients may explain why it was not so easy
to guess these formulas (different family for each q) from the numerical
data. The combinatorics is a little complicated so that most of the original
conjectures of [27, 28, 49] on the shuffle descriptions are still open. Some of
them have been proved using Chen’s formulas, by Chen [19] and Ryotaro
Harada (in his thesis from Nagoya).

These relations have coefficients in Fp, which is much smaller than the
function field K, whereas in the real case, the coefficients are in Q, which
is simultaneously analog of a function field and a prime field.

Combining this depth 1 case, with induction and shuffle on degrees as
in the previous theorem, one can describe the product in general. The fol-
lowing clean explicit form for the product was conjectured to the author
by Shuji Yamamoto (thanks to him!) after the Lyon lectures. The details
of verifications together with extra Hopf algebra structure (with commu-
tative and associative product, and not co-commutative but co-associative
explicit co-product) can be found in Shuhui Shi’s upcoming PhD thesis, at
University of Rochester.

Let S be the free monoid on set {xn}n∈Z+ and consider the Fp-vector
space R with basis S. We define a product ∗ on R: Let φ ∈ S be the
empty word, for any A ∈ S, A ∗ φ = φ ∗ A = A. For A = xa1 . . . xan ,
B = xb1 . . . xbm ∈ S, denote A− = xa2 . . . xan , B− = xb2 . . . xbm , we define
product, inductively on the length of A and B, as

A ∗B = xa1(A− ∗B) + xb1(A ∗B−) + xa1+b1(A− ∗B−)

+
∑

0<j<a1+b1
(q−1)|j

∆j
a1,b1

xa1+b1−j · ((A− ∗B−) ∗ xj) ,

where

∆j
a1,b1

= (−1)a1−1
(
j − 1
a1 − 1

)
+ (−1)b1−1

(
j − 1
b1 − 1

)
,

and w
∑
i fiwi =

∑
i fi(wwi) for fi ∈ Fp, w, wi ∈ S. Then (R,+, ∗) is a com-

mutative algebra. Define a linear map θ : R → K∞, φ 7→ 1, xa1 . . . xan 7→
ζ(a1, . . . , an). Then θ is an Fp-algebra homomorphism, i.e. φ(xa1 . . . xan ∗
xb1 . . . xbm) = ζ(a1, . . . , an)ζ(b1, . . . , bm).
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5.3. A fixed classical sum-shuffle relation survives for large enou-
gh q. If a+b ≤ q, Chen’s formula specializes to Euler’s sum-shuffle relation.
In fact, it was already proved in [47, 5.10.6] that given a fixed sum-shuffle
relation, it holds for function fields for large enough q. The author wonders
whether there is another logic-model theory type proof for this. While the
sum-shuffle relations are technically simpler, some mathematicians coming
from motives and cohomology sides think (in the real case), the integral-
shuffles more natural and sum-shuffles as accidents which need to be ex-
plained. So it is interesting to note that in our case, the sum-shuffles, but
not the integral-shuffles survive, at least for large enough q.

5.4. Which shuffle relations survive for non-rational ∞. We saw in
Theorem 5.1 that the shuffle relations are universal for all A’s (for a given
q) with ∞ of degree one. When the place ∞ has degree more than one, the
residue field F∞ at ∞, which determines the signs, is bigger than F∗q , and
there are two natural approaches to extend the notion of monic in this case
to define multizeta. Either, one fixes a sign in F∗∞, or restricts signs to be
in fixed a set of representatives for F∗∞/F∗q to define monic. It turns out [32]
that if the classical shuffle ζ(a)ζ(b) = ζ(a, b)+ζ(b, a)+ζ(a+b) (the product
relation ζ(a)ζ(b) = ζ(a + b) respectively) holds for Fq[t], then it holds for
all such A in the first approach (in the second approach respectively), and
numerical data seems to indicate that other shuffle relations in depth 2 do
not survive!

6. Linear relations: Examples and general conjectural
restrictions

6.1. Euler type relations. In [47, 5.10.13], it was proved that for q = 2,
ζ(1, 1) = ζ(2)/(t2 + t) and generalized to [49, Thm. 5, 3.4.6]

ζ(1, q − 1) = ζ(q)/(t− tq) ,

closest in sprit to the Euler relation mentioned above for q = 3 (when even
agrees with “even”). In fact, we show that Sd(q)/`1 = Sd+1(1, q− 1), which
summing over the degrees gives this multizeta relation.

We also have [49, 3.4.6] ζ(1, q2−1) = ζ(q2)(1/(t−tq)+1/((t−tq)(t−tq2))
and some other such relations.

Now we give some speculations on the restrictions on all possible re-
lations, based on heuristics using motivic interpretation and some other
reasons.

6.2. Weight and depth filtration. Just as in the classical case, we had
conjectured [49, §5] that the relations between multizeta preserves weight
gradation and depth filtration (though not the depth itself) and had given
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some heuristic structural reasons. By Chang’s work recalled below in Sec-
tion 9, we now know that the weights are indeed preserved.

6.3. Conjecture: Only one shuffle. In contrast to the real case recalled
above, we conjectured [49, 5.4] that there is only one shuffle relation (over
Fp, as the sums will only provide prime field coefficients) in the function
field case and gave some heuristic reasons based on motivic interpretation.
In particular, there should be no (non-trivial) linear relations with Fp co-
efficients. So, for example, in contrast to the duality relations in the real
case, no distinct tuples could give same multizeta, and thus the depth is
well-defined by the multizeta value, again in contrast to the real case (e.g.,
Euler relation in the real case).

We also note here that there should not even be a general different shuffle
relation with Fq(t) coefficients of integral-shuffle type, in the sense of pre-
serving the depth. This is because it would imply, in the simplest case of
product of two zetas, by equating its result with the shuffle relation above,
that even in weights lower than q we will have a non-trivial linear relation,
as the sum shuffle relation in this case does have depth one term appear-
ing with a non-zero coefficient. This would contradict the expectations of
Section 8.

6.4. Conjectural parity restriction. In [49, 5.3] we conjectured that
multizeta relations, being motivic by the results of Section 4, come through
the relations of special interpolating function mentioned there. We con-
structed [49, §3] such functions for S<d(k), suitably normalized, when k is
“even” and gave heuristic reasons why such functions can exist only for k
“even”. Thus, it was speculated that, apart from the shuffle relations ef-
fects, the iterated indices si, i > 1 in the multizeta linear relations should
be “even”. This is true e.g., at Sd level in the sum shuffle relations above
and for the Euler type relations and the eulerian and zeta-like relations be-
low, because the depth reduction mechanism (see e.g., [49, 3.4.6] or proofs
in [30]) seems to come through the special cancellations in the products
of such functions. See also [13, Thm. 3.1.1], which proves that in weight-
preserving linear relation between values of depth at most 2, the second
co-ordinates s2 are always “even”.

As we will see below in Section 8, many linear relations can be generated
by complicated sum shuffle processes, and even the first simplest families
of examples of §8.4 shows that you can use any indices m = si iteratively
without any parity restrictions, and so in general, even at Sd level iterated
indices need not be “even” in general. It would be interesting to understand
the exact scope of the parity restriction, by separating out the shuffle type
effects from the relations involving manipulations of the rational functions
of the Section 4.
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7. Special linear relations: Eulerian and Zeta-like multizeta
values

We now focus on the simplest kind of linear relations, those between two
multizeta, one of which is the zeta value itself. We discuss the results, con-
jectures and algorithms to decide when the ratio of a multizeta value with
a zeta value is algebraic [12, 15, 18, 25, 30]. As we now know, by Chang’s
results (only expected when the definition was made) recalled below in Sec-
tion 9, that no such relation exists, in different weights, and that the ratio
is algebraic if and only if it is rational, we make the following definitions.

7.1. Definitions. [30, 47]
We call a multizeta value ζ(s1, . . . , sr) (or the tuple (s1, . . . , sr)) zeta-like

if the ratio ζ(s1, . . . , sr)/ζ(s1 + · · · + sr) is rational. (We use depth r > 1
below, sometimes without mention, because in the r = 1 case everything is
zeta-like by definition). A multizeta value of weight w is called eulerian, if
it is a rational multiple of π̃w. So zeta-like multizeta values of “even” weight
are eulerian by Carlitz’ result of §2.7. While the zeta-like multizeta values of
“odd” weight w cannot be eulerian, for the simple reason that π̃w (and thus
the ratio) is not even in K∞ then, by Yu’s result (Theorem 2.1), the ratio
in this case is not even algebraic. Since ζ(ps1, . . . , psr) = ζ(s1, . . . , sr)p, we
can restrict to the tuples where not all si’s are divisible by p. We call such
tuples primitive.

7.2. Some conjectures and results. In [30], we proved several families
of zeta-like values and made several conjectures based on the numerical
evidence obtained by studying continued fractions of ratio of the multizeta
divided by the zeta of the same weight.

Conjecture 7.1 (Size restrictions and Slicing). If (s1, . . . , sr) is zeta-like,
then

(1) si ≤ si+1, and (q − 1)si ≤ si+1 ≤ (q2 − 1)si.
(2) (s2, . . . , sr) is eulerian and (s1, . . . , sr−1) is zeta-like.

Conjecture 7.2 (Splicing constructions).
(1) Let q = 2. If (s1, . . . , sk) and (sk, . . . , sr) are zeta like and the total

weight
∑r
i=1 si is a power of 2 or a power of 2 minus one, then

(s1, . . . , sr) is zeta-like, except when the two tuples to be spliced are
(1,1) and (1,1).

(2) Let q be any prime power. If (s1, . . . , sk) and (sk, . . . , sr) are euler-
ian and the total weight

∑r
i=1 si is qn−1 or q(q−1), then (s1, . . . , sr)

is eulerian.
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Conjecture 7.3 (Weight restrictions). Primitive eulerian values occur only
in weights q(q − 1) or qn − 1, if q > 2 and also possibly in weight qn, if
q = 2.

We take this opportunity to mention that in Conjecture 4.4 of [30] which
gives full conjectural list of the zeta-like values of depth at most q2, the
word “primitive” should have been dropped and that the remaining part of
4.4 also follows from Conjecture 7.1(1) (i.e. Conjecture 4.1(i) of [30]) and
the parity conjecture mentioned in §6.4, which as mentioned there, follows
in this case from the result of Chang.

There are also combinatorially involved conjectures [30, 4.3] on weight
restrictions on zeta-like tuples, depending on depths etc. which we do not
give here. We characterized eulerian tuples completely by these conjectures
and depth 2 list below.

When only the first part of the conjecture was made, I heard from Pa-
panikolas of the following nice result they had just proved (at that time
only in the eulerian (“even” weight) case, which they soon generalized after
learning about the rest of the conjectures) using the transcendence analysis
of the t-motives involved. We had only checked and expected (by the parity
conjecture mentioned above) the second statement on our data.

Theorem 7.4 ([15]). If ζ(s1, . . . , sr) is zeta-like, then ζ(s2, . . . , sr) is euler-
ian. In particular, s2, . . . , sr are “even”, and if the value is eulerian, then
s1 is also “even”.

In [15] ([25] respectively), efficient algorithms to effectively check whether
a given tuple is eulerian (zeta-like respectively), for a given q , were devel-
oped using motivic interpretation ideas and were used to produce much
more (than [30]) data, which was then used to verify and make conjectures.

7.3. Explicit conjectural description for eulerian values.

7.3.1. Let q > 2. In [30], we proved (for q ≥ 2) that in the depth 2 case,
(q − 1, (q − 1)2), (qn(q − 1), qn+2 − 1− qn(q − 1)), (qn − 1, (q − 1)qn)

are eulerian. We conjectured that these are the only primitive eulerian
tuples in depth 2. We also conjectured that

Tr := (qn − 1, (q − 1)qn, . . . , (q − 1)qn+r−2)
of depths r > 2 (q ≥ 2) are eulerian, and this was proved by Chen [18]. Con-
jecturally these are all the primitive eulerian tuples in depth more than 2.

The last conjecture was made in this simple explicit form in [15] by check-
ing on the extensive data generated by the efficient algorithm constructed
there, but is immediately seen to be equivalent (as mentioned in [30, Notes
added in the proof]) to the depth 2, slicing/splicing, weight conjectures
of [30] as follows.
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If S := (s1, . . . , sr) is primitive eulerian with r > 2, then (s1, s2) and
(s2, s3) are eulerian by the tuple restriction conjecture 7.1(2), but the sec-
ond co-ordinate of the first two in depth 2 list cannot be the first co-ordinate
of eulerian (even up to p-powers), so that (s1, s2) = (qn − 1, (q − 1)qn) for
some n, without loss of generality. By induction on r > 2, S is Tr−1 fol-
lowed by sr. By weight part of the conjecture, it has weight qk − 1, Tr−1
has weight qn+r−2−1, so sr = qk−qn+r−2, so comparison with the depth 2
list above with (sr−1, sr) proves the claim.

7.3.2. Let q = 2. In depth 2, the primitive eulerian (same as zeta-
like now) list above specializes to (1, 1), (2n, 2n+2 − 2n − 1), (2n − 1, 2n),
there are two more: (1, 3) and (3, 5) The conjecture [30] is that these are
exactly the primitive eulerian values in depth 2. In depth r > 2, the
family above specializes to (2n − 1, 2n, . . . , 2n+r−2). There are two more,
(1, 1, 2, . . . , 2r−2) [30, Thm. 3.2] and (1, 3, 22, . . . , 2r−1) ([30, Conj. 4.6(2)]
proved in [18]). The conjecture in [15, 6.2] (again it can similarly be deduced
from slicing, splicing conjectural characterization above) is that, apart from
the known (1, 2, 5), there are no other primitive eulerian tuples.

We refer to [15, 6.2] for careful weight, depth cataloging details.

7.4. Results and conjectures on Zeta-like values. We do not yet have
a conjectural description of all zeta-like values of “odd” weight.

In [30], it was proved that (qn −
∑s
i=1 q

ki , (q − 1)qn) for 1 ≤ s < q, and
0 ≤ ki < n, and a few other depth 2 tuples are zeta-like. There was also an
explicit conjecture on all depth 2 zeta-like values of weight at most q2.

It was also proved that any depth family (1, (q−1), (q−1)q, . . . , (q−1)qn)
is zeta-like. It was also conjectured (proved in [18]) that

(1, q2 − 1, (q − 1)q2, . . . , (q − 1)qn+1) ,
((q − 1)qn − 1, (q − 1)qn+1, . . . , (q − 1)qn+r−1)

are also zeta-like.
In [25], an algorithm for determining whether the given multizeta value

is zeta-like, examples, data, conjectural zeta-like families, and more conjec-
tural weight restrictions on the zeta-like values are given. We only give one
conjecture from there to give a flavour: For any n > 0, r ≥ 2 and m ≥ 1
such that pm ≤ q,(

qn −
s∑
i=1

qki , pmqn−1(q − 1), . . . , pmqn+r−3(q − 1)
)

is zeta-like, where s < q and ki < n such that (q − 1)s1 ≤ s2, where s1, s2
are the first two co-ordinates of the tuple.
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7.5. Comparison with the real multizeta case. As mentioned in [30],
it seems that only zeta-like multizeta (of depth more than one) known in
the real case are ζ(2, 1k) = ζ(k + 2) which is not Eulerian if k is odd, and
others are Eulerian ζ((3, 1)k) = ζ(22k)/(2k + 1), ζ((2n)k) = ζ((2, 12n−2)k)
and ζ((2m, 1, 2m, 3)n, 2m) = ζ(2m, (2, 1, 2m, 3, 2m−1)n). (Here the subscript
denotes the number of times the value or the tuple is repeated. The first and
the last two equalities are the result of duality, whereas (3, 1)k is self-dual).

The last family was mentioned as 1997 conjecture in [30], but it has since
been proved by Charlton [17] (and also independently by Francis Brown (in
a letter to the author) soon after the author mentioned it to him).

The author would like to thank M. Kaneko, who checked that there
are no more zeta-like values, (and pointed out missing dual tuples which
give the same values) in weights at most 16, and Broadhurst, who told the
author that he does not know any more zeta-like examples, and that he
had calculated data for weights up to 22 but had not checked this question
systematically.

If these are the only such tuples, this description (namely (2, 12n+1)) of
“odd weight” zeta-like multizeta seems much simpler in the real case than
the function field case, which is not yet understood even conjecturally.

Our results also show that in contrast to the real case, the multizeta of
weight “odd” and depth 2 in our case are not generated (over rationals or
algebraics) by the zeta values. For q = 2, when everything is “even”, exactly
the non-eulerian ones are not generated in this way.

7.6. Some techniques. We have focused on the results and refer to orig-
inal papers for the proofs and techniques. But we will just mention that
some of the techniques are the special interpolations [7, 8] of power sums Sd,
the results of Sections 4 and 9, the generating functions [49, 3.2] for Sd, S<d,
and the new multiplicative identities [31] for the coefficients of logarithmic
derivatives of Fq-linear functions, as well as the shuffle relations.

8. General linear relations: Dimensions, basis and generation

Many years ago, Zagier conjectured dw = dw−2 + dw−3 for the dimen-
sion dw of the Q-linear span of the multizeta (in the real case) of a given
weight w, by using the well-known LLL (Lenstra, Lenstra, Lovasz) method
of lattice reduction, implemented then on pari, by calculating the multi-
zeta approximately numerically and using the method to guess the linear
relations between them.

8.1. Todd’s dimension conjecture. George Todd, another PhD stu-
dent of the author, undertook [51] similar calculations, writing up codes
for function field implementations of LLL-method and running extensive
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calculations for each small q, trying to enumerate all linear relations be-
tween multizeta values with small degree coefficients. (One can do this with
approximate multizeta computations or even with “degree-wise” computa-
tions, because of the motivic nature of the relations. But see §8.3 for how
we may need to mix a few degrees.)

The author had conjectured that there are no linear relations in weights
less than q, and the only weight q relation is the Euler type relation above.
Todd’s numerical calculations were consistent with this expectation, and
based on them he further conjectured in his thesis the following formula for
the relevant dimensions for any weight.

Conjecture 8.1 ([51]). If d(w) denotes the dimension of the span of mul-
tizeta values of weight w, then d(w) = 2w−1 for 1 ≤ w < q, d(w) = 2w−1−1
for w = q and for w > q, we have d(w) =

∑q
i=1 d(w − i).

8.1.1. Evidence. We have already mentioned that the conjectural bound
is upper bound for w ≤ q. By finding the required number of relations,
Todd extends this to w ≤ q + 3. Also, he proves it for w ≤ 11, for any q,
by calculating sufficient relations for remaining low q’s.

8.2. Conjectural basis for the weight spaces. The author’s earlier
speculation that ζ(s1, . . . , sr)’s with all si < q should all be linearly in-
dependent seemed consistent with Todd’s calculation results. Inspired by
the Euler type relation, Todd’s dimension conjecture and Hoffman–Brown’s
work in the real case, the author has the following refined speculation on
the possible basis for the K-linear span Lw of weight w multizetas.

Conjecture 8.2. A basis for Lw can be given explicitly inductively, by
collection of exactly those ζ(s1, . . . , sr) of weight w with all si < q, for
w ≤ q, and for w > q by adding s1 = i in front of the tuples in the basis
for weights w − i, for i ≤ q.

8.3. Complicated combinatorics of the relations. We have already
seen that since the relations are motivic, they should come from relations
between Sd’s for some d’s. For example, as we have seen, the sum shuffle
comes from a single d in each term (such relations will be called “fixed”),
while there are examples already in [49], of relations needing terms for both
d and d + 1 (such relations will be called “binary”). Todd’s computations
showed that the situation is even more complicated. We give one example,
for q = 2. The known relation (`1 + `2)ζ(4) + `1`2ζ(1, 3) = 0, follows, for
example, by summing either of the following three (rational function) family
of relations (one for each d ∈ Z) for all d ∈ Z:

`1Sd(4) + `2Sd+1(4) + `1`2Sd+2(1, 3) = 0 .
`1Sd(4) + `2Sd(4) + `21Sd(2, 2) + `21Sd+1(2, 2) + `1`2Sd+1(1, 3) = 0 .
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(`1 + `2)Sd(4) + (`1 + `2)`1Sd+1(1, 3) + `21Sd(1, 3)
+ `21Sd(1, 1, 2) + `21Sd+1(1, 1, 2)
+ `1`2Sd(1, 2, 1) + `1`2Sd+1(1, 2, 1)
+ `1`2Sd(1, 1, 1, 1) + `1`2Sd+1(1, 1, 1, 1) = 0 .

Thus, if you insist to involve only tuples present in the original relations
at the zeta level, you may need to deal with several d’s at once, while the
best you can do in general, is to allow binary relations with extra tuples
which cancel out eventually, but still there is no uniqueness.

8.4. Generating relations. There are various simple ways to generate
more relations from the known relations, such as the shuffle relations and
the relations mentioned above, and in [29, 30, 49]. For example, suppose we
know a relation

∑
kiSd(Xi) = 0, (for all d, thus implying a linear multizeta

relation by summing) for some tuples Xi, then summing over d < D gives
the same relation for S<D(Xi)’s. Multiplying “on the left” by SD(m) and
summing gives then the same relation for SD(m,Xi)’s.

8.5. Todd’s generation conjecture. Todd’s numerical investigations
suggest that all relations can be reduced to binary relations. Start from
any binary relation

∑
aiSd(Xi) +

∑
biSd+1(Xi) = 0 (of given weight), and

let U be a tuple of si’s of weight w. Todd identifies two special processes
called BU , CU respectively, which by multiplying “on the left” by SD(U)
the corresponding relation for S<D’s or by multiplying it “on the right”
by S<d+1(U) respectively, gives new fixed or binary relation (of weight w
more) respectively, after manipulations using decompositions and shuffle
relations.

Let R be the relation [49] Sd(q)− `1Sd+1(1, q−1) = 0 of weight q behind
the “Euler type” relation of 6.1. Todd has the following conjecture. (We
refer to [51] for some fine details).

Conjecture 8.3 ([51]). All the relations of weight q + w are in the linear
span of the collection of BU (R), CU (R) and BX(CY (R))’s, as U run over
all the tuples of weight w and X, Y over all the tuples of weight adding
to w.

This was a surprise for the author, whose optimistic hope, when Todd’s
calculation started was just that probably some relations for ζ(1, qk − 1),
generalizing those in 6.1 and [49], could be identified by the calculations
which would generate all. Todd’s calculations suggested that just the first
one is enough!

8.5.1. Evidence. As evidence, Todd gives another proofs by this pro-
cesses of some results proved by the author and Lara Rodriguez, and of
many relations found by his computations.



Multizeta values for function fields 1015

It still remains to have a good combinatorial description and structural
understanding of all the relations.

9. Transcendence and algebraic independence results

Some isolated transcendence results on multizeta were obtained by the
author [47, 10.5], [49, 2.7.8] by relations to the zeta case (as in the zeta-like
case or through more involved relations) (and applying Jing Yu’s results),
or relations to the logarithmic values (and applying Papanikolas’ results)
or to non-torsion on C⊗n (and applying Jing Yu’s results) etc.

But let us now state very nice and strong results, compared to the real
case, that are obtained by Chieh-Yu Chang and Yoshinori Mishiba, by
using the motivic interpretation, the work on multi-polylogarithm values
by Chang and the strong transcendence machine development mentioned
in 2.10.

Theorem 9.1 ([12]). Linear combination over the algebraic closure of K of
monomials in multizeta of several weights vanishes, then a sub-linear com-
bination over K of fixed weight monomials vanishes. In particular, any ratio
of different weight monomials is transcendental, and non-trivial monomi-
als in multizeta are transcendental. “Odd” weight monomial is algebraically
independent to π̃.

In fact, Chang has even more general results on multi-polylogarithm
values that he defines. He also shows that the multizeta values are K-
linear combination of their values on An. In [13], he also gives an efficient
algorithm for the dimension calculation in depth 2, in any weight.

Theorem 9.2 ([34]). Let n1, . . . , nd be distinct positive “odd” integers with
ni/nj not an integral power of p for each i 6= j, then the 1 + d(d + 1)
elements

π̃, ζ(ni), ζ(nj , nj+1), ζ(nk, nk+1, nk+2), . . . , ζ(n1, . . . , nd)
are algebraically independent over K.

Hence for q 6= 2, and d ≥ 2, there are infinitely many multizeta of depth
d algebraically independent over the field K adjoined with the zeta values,
and this also implies [34] a good lower bound on the transcendence degree
over K of the field generated by the multizeta values of bounded weight.
For some more general results, see [35].

10. Ihara power series analog, Hidden structures

In the real case [24], the multizeta, as the periods coming from iterated
extensions of Tate motives, is the deRham–Betti side of the mixed motive
structure provided by Deligne on the (Malcev completion) arithmetic fun-
damental group of projective line minus 0, 1,∞. The etale-galois side has
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developed understanding of Ihara power series giving a Galois co-cycle, at
least at the “meta-abelian” level, if not at the full nilpotent level of the
completion.

10.1. Ihara power series analog. We first describe the result in sug-
gestive terms using analogies and without defining precisely all the terms
to give the flavour.

Theorem 10.1 ([6]). Let A = Fq[t], v be a prime of A and let GK denote
the absolute Galois group of K, and Av the completion of A at v.

We can construct 1-cocycle Iσ ∈ Av[[Z]]∗ (“Ihara power series”), σ ∈ GK
satisfying Iστ (Z) = Iτ (Cχ(σ)(Z))Iσ(Z), where χ is the v-adic cyclotomic
character of the Carlitz–Drinfeld cyclotomic theory and C is the extended
Carlitz action. (Thus we have a Av[[Z]]∗-valued Galois representation of the
Galois group of the separable closure of K over v∞ cyclotomic extension
of K).

The logarithmic derivative with respect to Z of Iσ, evaluated at the nor-
malized exponential e(Z), has a power series expansion with divided power
coefficients being the v-adic limits of analogs of Deligne–Soule co-cycles
(at finite levels), which connect to the extensions giving the zeta values as
periods, and to the action on cyclotomic unit module analog of Anderson.

These power series interpolate Gauss sum analogs in tower in the sense
that for a prime ℘ of A[vn], not dividing v, IFrob℘(ζvn) is a normalized
Gauss sum (analog) above ℘ for K(ζvn), where ζnv is the vn-torsion of the
Carlitz module, and Frob℘ is the Frobenius element at ℘.

10.2. Techniques. While the original Ihara power series had two vari-
ables as in the Beta functions, and interpolated Jacobi sums, this is really
an analog of Anderson’s refinement in real case to a one variable series us-
ing his hyper-adelic Gamma functions. The “hyper-adelic” extension is not
necessary in function fields. This construction, due to Anderson, which ties
up a lot of our work on Gamma values, Gauss sums, Zeta values, cyclotomic
theory, poly-logs etc. in v∞ tower, uses the technology of Coleman power
series, generalizing it from the finite to transcendental residue fields, for
putting norm compatible families of “solitons” (interpolating partial prod-
ucts of gamma products by algebraic functions of certain kinds on products
of curves) into division compatible families.

10.3. Hidden structures. In the function field case, analog of the fun-
damental group connection understanding, if any, is missing, but we still
see multizeta (at the nilpotent completion level of deRham–Betti side)
and Ihara power series (at meta-abelian level of Galois side), so the mo-
tivic structures have nice and useful analogs, even if a little ad-hoc and
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quite different in the structural details. Similarly, in the real case, the mo-
tivic extensions are (conjecturally) related to K-theory (Deligne–Soule co-
cycles also have description in those terms), whose analog which would
work in this context is also missing so far. The Hopf algebra structure men-
tioned in §5.2 suggests an underlying algebraic group still to be understood
properly.

We should soon have better understanding of the motivic extensions here
due to the recent works of Vincent Lafforgue [26] and Lenny Taelman [42,
43]. Another contrast is that the analog of Zp in the Theorem above is A℘,
which being huge, there is no suitable well-developed Iwasawa structure
theory for it in the function field case. (See [4]).

11. Finite variants

Hoffman, Kaneko, Zagier and many others have considered finite variants
of multizeta in the real case: Given a prime p, we define, for si ∈ Z,

Zp(s1, . . . , sr) :=
∑

p>n1>···>nr>0

1
ns1

1 . . . nsr
r

considered modulo p. Thus, si’s matter only modulo p− 1, but for a fixed
si’s there is an “universality” phenomena for large enough p.

Given a prime ℘ of A = Fq[t] of degree D, we can similarly define
(modulo ℘)

Z℘(s1, . . . , sr) =
∑

ai∈A+,
D>deg(a1)>···>deg(ar)

1
as1

1 . . . asr
r
.

11.1. Some differences. In depth one, while p > n > 0 covers the full
range of (non-zero) residues modulo p, the monics of degree less that D do
not cover such a range modulo ℘ of degree D. Hence, we get the analog of
the fact that Zp(k) vanishes modulo p, for p > k + 1, if we drop “monic”
conditions on ai, but as such values vanish or are related to Z℘ by an easy
sign, we keep the monic condition.

11.2. Depth one Bernoulli–Goss connection. Let qD − 1 > s > 0,
then we have (modulo ℘)

Z℘(s) = Z℘(−(qD − 1− s)) =
D−1∑
d=0

Sd(−(qD − 1− s))

=
∞∑
i=0

Sd(−(qD − 1− s)) = ζ(−(qD − 1− s)) ,

where the last but one equality makes sense since the terms of the infinite
sum are zero for d > D − 1, by applying the result [47, 5.6.2] of Carlitz.



1018 Dinesh S. Thakur

Thus there is a nice “Bernoulli-type” connection with the zeta values of
Goss, related to Bernoulli–Goss polynomials.

Note that because of lack of a simple functional equation there are two
analogs [47, 5.3] of Bernoulli numbers, the Bernoulli–Carlitz numbers com-
ing from the zeta values at positive integers and the Bernoulli–Goss num-
bers coming from those at negative integers. The finite variant, this connec-
tion and the remark is also independently noted in [41] which also deals with
irrationality results for them when considered in a suitable ring (following
analog of Zagier work in the real case) which puts all ℘ together.

11.3. Nice congruences modulo ℘. We can push this further, and con-
sider ∞-adic (1 − 1/℘s)ζ(s) naturally as

∑∞
d=0 Sd,℘(s), where Sd,℘(s) =∑ 1

as , with the sum over a ∈ A+ prime to ℘. But the same sum considered
℘-adically converges to the ℘-adic zeta value ζ℘(s) of Goss.

Next, for a positive integer s and modulo ℘, we have

Sd,℘(s) = Sd(s), (d < D), SD+i,℘(s) = 0, (i > 0),

SD,℘(s) = −
D−1∑
i=0

Si(s), if s is “even” and 0 otherwise,

where the first follows immediately as an equality from the definitions,
the second can be seen by considering the terms modulo ℘, noting that
they occur with a multiplicity which is a multiple of q which is zero in
characteristic p, and the last follows by considering modulo ℘ and using
that

∑
f−s, where f runs over elements of F∗q , is −1 or 0 according to

whether s is “even” or not.
With the same understanding of handling the infinite sums having only

finitely many zero terms as above, but now modulo ℘, we have a nice
equality of four different kinds of zeta values below (defined with values
naturally in K∞, K℘, A,K respectively, before reducing modulo ℘), for
qdeg(℘) − 1 > s > 0:(

1− 1
℘s

)
ζ(s) = ζ℘(s) = 2ζ

(
−
(
qdeg(℘) − 1− s

))
= 2Z℘(s) mod ℘ .

Note that these are all zero, if p = 2 or if s is “even”.

11.4. Restrictions due to extra symmetries. In contrast to the real
case finite variants where the values belong to the prime field Z/pZ, in our
case, while the values a priori lie in A/℘A, by the translation invariance
and Galois Fq/Fp- invariance, the values belong to Fp(tq− t) ⊂ A/℘A. This
is just the prime field Fp, for example, for the Artin–Schreier primes of the
form ℘ = tq − t− α, with α ∈ F∗p (e.g., any such if q = p).
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12. Some ongoing projects and some other directions pursued

We briefly mention some projects being pursued.

12.1. Values at negative integers and Interpolations. In [47, 5.10]
it was already explained how to consider multizeta at negative integers si,
by grouping by degrees and how to interpolate by also removing ℘-factors
to ℘-adic ζ℘ at finite primes ℘ of A, following Goss’ ideas for the zeta case,
in a straight-forward manner. We only mention that the definition we give
in Section 3 for the multizeta values for positive integers si, also makes
sense for si ∈ Z, because of vanishing of Sd(s), for large enough d, if s is
not positive. In fact, these multizeta are finite sums (and thus rational) if
s1 ≤ 0, and convergent in general. But the second formula there will not
work in general.

12.1.1. The real case. In contrast, in the real case, analytic continua-
tion leads to singularities and points of indeterminacy at negative integers
and there are several candidates of renormalized values there, due to sev-
eral groups of mathematicians: Akiyama, Egami, Tanigawa; Guo, Zhang;
Machon, Pachya; or Furusho, Komori, Matsumoto, Tsumura (for twisted
entire versions). Because of this, there are no clear p-adic interpolations in
general, but there are some candidates in special situations via interpola-
tion and limit mechanisms due to Deligne, Unver etc. On the other hand,
we have a few (related) motivic p-adic multizeta candidates independently
due to Deligne, Furusho, Jourassay. Because of the motivic origin, these
satisfy the same relations as conjectured for the real case (and one more
coming from ζp(2n) = 0) and conjecturally no more.

12.1.2. The function field situation. Author’s current PhD students
Shuhui Shi and Qibin Shen are working on developing understanding of
vanishing and relations between the multizeta values at negative integers,
of ℘-adic interpolated and motivic values, of “colored” variants (two analogs
of the real case [55, Ch. 13], of “level” n ∈ Z or a ∈ A), of finite variants
values, as well as of higher genus situations. So far, they have some results
and conjectures on vanishing at negative integers, as well as on universal
(working for all ℘ of large enough degree) relations for finite variants. They
have discovered some families of relations between v-adic interpolated val-
ues, and found that the connecting formulas in the real case between p-adic
and finite variants do not hold in our case without modifications.

12.2. Dimensions and transcendence degrees. We are investigating
and verifying some conjectures on dimensions and transcendence degrees of
various natural spaces of multizeta values taking into account depths and
weights.
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Let dw denote the dimension of the K-span of π̃w and all the multizeta
values of weight w and depth 2. (In the analogous situation the dimensions
of cusp forms come up in the real case). Then [13] gives a formula for this
in terms of motivic special points and also gives an algorithm to compute
this and proves that dw ≥ w − b(w − 1)/(q − 1)c.

Based on the data of [13] based on the MAGMA program written by Yi-
Hsuan Lin, the author has made the following observations/speculations:

Case q = 2: d2 = 1 and dw increases monotonically with jumps 0 or 1, so
that it takes all values. Given dw occurs 2r times, for some r ∈ Z≥0. More
precisely, it seems that starting at weight 2, the sequence giving the number
of times the dimension 1, 2, 3 . . . is repeated is (respectively) exactly 1, 2,
4, followed by two 4’s, 20 − 1 times 8’s, two 4’s, 21 − 1 times 8’s, . . . , two
4’s, 2n−1 times 8’s . . . So the dimensions are 1, 2,2, 3,3,3,3, 4,4,4,4, 5,5,5,5,
6,6,6,6, 7,7,7,7, 8 occurring 8 times, then 9 and 10 occuring 4 times, followed
by the dimensions 11, 12, 13 occurring 8 times and so on. (Checked by Lin,
Chen up to weight 160, but we need to get to weights 197 (or rather 261)
to get more confidence).

Case q > 2: Then dw = w for w ≤ q(q − 1) − 1, and the next is w − 1.
dw increases monotonically with possible (all occur infinitely often) jumps
0, 1 or 2. There are no consecutive jumps of 0 or 2. Ignoring initial q(q− 1)
segment, there are at most 2(q − 1) consecutive values for dw. (The bound
seems best and seems to occur in bounded blocks of q2(q − 1) magnitude
size as mentioned below and at least for q ≤ 9 that I checked, it occurs
before weight 2q(q − 1)).

A little imprecise observation is that there seems to be some approximate
pattern of length q2(q − 1). For example, when q = 3, for every 18 steps
starting from w = 18n, the pattern (which we do not describe here) follows
one of the two possibilities (same for first twelve steps) and weight increases
in the first pattern (which works for most of the time) by 11 and by 12,
for the second pattern holding rarely by jumps differing by powers of 3. If
this were true, the asymptotic dimension is 11/18 times weight. But this
seems to work perfectly till weight 226, and then it changes. For example,
d234−d216 = 10, rather than 11 or 12. For 235 to 241 and 243 the difference
is 9, but d247−d229 = 11. So it is still unclear whether the asymptotic bound
is the lowest possible (9/18)w or more. Probably it is between (9/18)w and
(11/18)w. But this is very near our calculating capacity, so it is hard to
make numerical progress right now.

Note that for q = 2, dw also denotes (within 1) the dimension of span of
multizeta of depth 2, weight w, modulo the span of sub-space generated by
any products of zeta values.
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12.3. Multi-polylogarithms. In [12], Chang introduced analogs of mul-
ti-polylogarithms

∑
n1>···>nr

(zq
n1

1 . . . zq
nr

r )/(`s1
n1 . . . `

sr
nr

) and generalizing [7]
formulas, he showed that the multizeta are K-linear combination of their
values at tuples with integral co-ordinates. We refer to [12] for some general
transcendence results on their values, and to [14], where he and Mishiba
study a v-adic analog and show correspondence between the v-adic vanish-
ing and the ∞-adic Eulerian nature, connecting to the torsion phenomena.

12.4. Many variable generalizations. The interesting contrast between
the function fields and the number fields, where we can simultaneously deal
with several independent copies of function fields at the same time, has been
used as a powerful tool in many function field studies, including those of
Drinfeld modules and Shtukas. In the context of Zeta and L functions [38]
and multizeta [39, 40] (and his recent letter to the author), Pellarin has
developed interesting multi-variable generalizations and has proved several
interesting evaluations, and results about the relations.

12.5. Mixed motivic zeta category. In an ongoing work, building on
the ideas of Lafforgue and Taelman mentioned in §10.3, Kirti Joshi is devel-
oping a suitable tannakian categorical framework of mixed Carlitz–Tate–
Anderson t-motives suited to multizeta studies.

This expository paper is based on the series of talks on this subject at the
conference at Imperial college in 2015, in honor of my friend David Goss,
and at the conference at Lyon in 2016. David Goss was a constant source of
encouragement to all in the subject area of function field arithmetic whose
development owes a lot to him. This article was meant for the volume in
his honor, but the volume has sadly turned into a memorial volume.
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