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REPRESENTATIONS OF QUASI-PROJECTIVE GROUPS,
FLAT CONNECTIONS AND
TRANSVERSELY PROJECTIVE FOLIATIONS

BY Frank Loray, JorGe Vitorio Pereira & FrépEric Touzer

Asstract. — The main purpose of this paper is to provide a structure theorem for codimension-
one singular transversely projective foliations on projective manifolds. To reach our goal, we
firstly extend Corlette-Simpson’s classification of rank-two representations of fundamental
groups of quasi-projective manifolds by dropping the hypothesis of quasi-unipotency at infinity.
Secondly we establish a similar classification for rank-two flat meromorphic connections. In
particular, we prove that a rank-two flat meromorphic connection with irregular singularities
having non trivial Stokes matrices projectively factors through a connection over a curve.

Risumi (Représentations de groupes quasi-projectifs, connexions plates et feuilletages transver-
salement projectifs)

L’objet de cet article est d’établir un théoréme de structure pour les feuilletages singuliers
transversalement projectifs de codimension 1 sur une variété projective lisse. Pour ce faire,
nous étendons d’abord la classification de Corlette et Simpson de représentations de rang 2 des
groupes fondamentaux des variétés quasi-projectives lisses en omettant I’hypothése de quasi-
unipotence a l'infini. Ensuite, nous établissons une classification analogue pour les connexions
méromorphes plates de rang 2. En particulier, nous montrons qu’une connexion méromorphe
plate de rang 2 avec des singularités irrégulieres et des matrices de Stokes non triviales se
factorise par une connexion sur une courbe.
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264 F. Loray, J. V. Peremra & F. Touzer

1. INnTRODUCTION

Let X be a smooth projective manifold over C. A (holomorphic singular) codi-
mension one foliation .% on X is defined by a non zero rational 1-form w satisfying
Frobenius integrability condition w A dw = 0. The foliation is said transversely pro-
jective if there are rational 1-forms «, 8 on X such that the sly-connection defined on
the trivial vector bundle X x C2 by

(1.1) Z+—VZ=dZ+AZ with A:(O‘ 5)

w —
is flat: dA + A- A = 0. Note that this flatness property is intrinsically attached to
the foliation and does not depend on the choice of the defining rational one form w.
Indeed, if .% is defined by w’ = aw where a is any rational function not identically
zero, the corresponding connection matrix is

_(a+i 1o
A= ("7 ol adey )
2 a

This definition, equivalent to that in [39], extends to the singular case the classical
definition in [18] for smooth foliations. Outside the polar divisor of the connection
matrix A, the foliation % admits distinguished germs of first integrals taking values
in P!, well defined up to left composition with elements of Aut(P') = PSLy(C).
Precisely, given a local basis of V-horizontal sections B = (b;;) € SL2(&'(U)) on some
open set U, i.e., satisfying dB + A - B = 0, the ratio ¢ := ba; /bes provides such a
local first integral for .#; changing to another basis B - By will have the effect of
composing ¢ with a Moebius transformation.

Transversely projective foliations play a singular role in the study of codimen-
sion one foliations. They are precisely those foliations whose Galois groupoid in the
sense of Malgrange is small (see [8, 28]). They often occur as exceptions or counter
examples [4, 22, 42] and played an important role in our study of foliations with
numerically trivial canonical bundle [25]. For these foliations, one can define a mon-
odromy representation by considering analytic continuation of distinguished germs of
first integrals, making the transverse pseudo-group into a group (see [23]); it coincides
with the (projectivization of the) monodromy of the flat connection V.

The goal of this paper is to provide a structure theorem for transversely projective
foliations in the spirit of [11, 6] and what has been done recently in [16] for transversely
affine foliations.

In fact, we mainly work with the connection V defined by (1.1) up to birational
bundle transformation. When it has at worst regular singularities, V is characterized
by its monodromy representation up to birational bundle transformations [17]. One of
the main ingredients that goes into the proof of our structure theorem is an extension
of Corlette-Simpson’s classification of rank two representations of quasi-projective
fundamental groups [13] which we now proceed to explain.
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TRANSVERSELY PROJECTIVE FOLIATIONS 265

1.1. RANK-TVV() REPRESENTATIONS OF QUASI-PROJECTIVE FUNDAMENTAL GROUPS

Let X° be a quasi-projective manifold and consider X a projective compactification
of X° with boundary equal to a simple normal crossing divisor D. If D, is an irre-
ducible component of D, then by a small loop around D; we mean a loop 7 : S' — X°
that extends to a smooth map % : D — X which intersects D transversely on a unique
smooth point of D;. A representation p : m1(X°,2) — SLo(C) is quasi-unipotent at
infinity if for every irreducible component D; of D and every small loop v around D;,
the conjugacy class of p() is quasi-unipotent (eigenvalues are roots of the unity).

A representation p : 1 (X°, z) — SLo(C) projectively factors through an orbifold Y
if there exists a morphism f : X° — Y and a representation p : 7w¢™(Y, f(x)) —
PSL3(C) such that the diagram

m(X°, ) L SL2(C)

A e

m(Y, f(2)) — PSLa(C)
is commutative (we refer to [32, §2.4] for the definition and general properties of
orbifolds).

A polydisk Shimura modular orbifold is a quotient ) of a polydisk D™ by a group
of the form U(P,®) where P is a projective module of rank two over the ring of
integers 0, of a totally imaginary quadratic extension L of a totally real number
field F; ® is a skew hermitian form on P, = P ®¢, L; and U(P, ®) is the subgroup
of the ®-unitary group U(Pr, ®) consisting of elements which preserve P. This group
acts naturally on D™ where n is half the number of embeddings ¢ : L — C such that
the quadratic form /—1 ®(v, v) is indefinite. The aforementioned action is explained
in details in [13, §9]. Note that there is one tautological representation

7o (D" /U(P, ®)) ~ SU(P, ®)/{£1d} — PSLy(C),

which induces for each embedding o : L — C one tautological representation
7o (D" /U(P, ®)) — PSLy(C). The quotients D" /U(P, ®) are always quasi-projective
orbifolds, and when [L : Q] > 2n they are projective (i.e., proper/compact) orbifolds.
The archetypical examples satisfying [L : Q] = 2n are the Hilbert modular orbifolds,
which are quasi-projective but not projective. We refer again to [13] for a thorough
discussion and point out that our definition of tautological representations differs
slightly from loc. cit. as they consider polydisk Shimura modular stacks instead of
orbifolds and consequently their representations take values in SLy(C). Here we are
lead to consider representations with values in PSLy(C) because £1d € SU(P, @)
acts trivially on D™,

Turorem 1.1 (Corlette-Simpson). — Suppose that X° is a quasi-projective manifold
and p : m (X°,x) = SLa(C) is a Zariski dense representation which is quasi-unipotent
at infinity. Then p projectively factors through

JE.P. — M., 2016, tome 3



266 K. Loray, J. V. Perema & F. Touzer

(1) a morphism f: X° =Y to an orbicurve Y (orbifold of dimension one); or
(2) a morphism f: X° — §) to a polydisk Shimura modular orbifold $).

In the latter case, the representation actually projectively factors through one of the
tautological representations of .

Although their hypothesis is natural, as representations coming from geometry
(Gauss-Manin connections) are automatically quasi-unipotent at infinity, Corlette and
Simpson asked in [13, §12.1] what happens if this assumption is dropped. Our first
main result answers this question.

Tueorem A. — Suppose that X° is a quasi-projective manifold and p : m(X°, z) —
SLo(C) is a Zariski dense representation which is not quasi-unipotent at infinity.
Then p projectively factors through a morphism f: X° =Y to an orbicurve Y.

Our method to deal with representations which are not quasi-unipotent at infinity
is considerably more elementary than the sophisticated arguments needed to deal with
the quasi-unipotent case. The non quasi-unipotency allows us to prove the existence
of effective divisors with topologically trivial normal bundle at the boundary of X°.
We then use Malcev’s Theorem combined with a result of Totaro about the existence
of fibrations to produce the factorization.

CororLrary B. — Suppose that X° is a quasi-projective manifold and p : 71(X°, z) —
SLo(C) is a representation which is not virtually abelian. Then p projectively factors
through

(1) a morphism f: X° =Y to an orbicurve Y ; or
(2) a morphism [ : X° — $) to a polydisk Shimura modular orbifold $) equipped
with one of its tautological representations.

In case (2), the representation is Zariski dense and quasi-unipotent at infinity.

Proof. — The case of Zariski dense representations is covered by Theorem 1.1 and
Theorem A. Non virtually abelian representations in Aff(C) factors through an orbi-
curve according to [2], [16, Th.4.1] and references therein. O

1.2. Riccati roLiaTions. — Since we are interested in PSLy rather than SLo, we will
essentially work with the projective connection associated to (1.1), or more geomet-
rically the foliation % induced by V-horizontal sections on the total space of the
projective bundle X x P!. In an affine chart, # is defined by the “Riccati” pfaffian
equation
dz +w — 20z — 22 = 0.

More generally, a Riccati foliation over a projective manifold X consists of a pair
(m: P — X, ) = (P,#) where 7 : P — X is a locally trivial P!-fiber bundle in
the Zariski topology (i.e., P is the total space of the projectivization P(E) of a rank
two vector bundle F) and S is a codimension one foliation on P which is transverse
to a general fiber of 7. If the context is clear, we will omit the P!-bundle P from the
notation and call 5 a Riccati foliation.
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TRANSVERSELY PROJECTIVE FOLIATIONS 267

The foliation ¢ is defined by the projectivization of horizontal sections of a (non
unique) flat meromorphic connection V on E: it is the phase portrait of the projective
connection P(F, V). The connection V is uniquely determined by .7 and by its trace
on det(E). We say that the Riccati foliation s has regular singularities if it can be
lifted to a meromorphic connection V with regular singularities (see [17, Chap.II,
Déf. 4.2]), and irregular if not.

We will say that a Riccati foliation (P, ) over X factors through a projective
manifold X’ if there exists a Riccati foliation (#' : P’ — X' ) over X', and
rational maps ¢ : X --» X/, & : P --» P’ such that 7’ o ® = ¢ o 7, ® has degree one
when restricted to a general fiber of P, and 57 = ®*5#".

Our second main result describes the structure of Riccati foliations having irregular
singularities.

Turorem C. — Suppose that X is a projective manifold, and (P, ) is a Riccali
foliation over X. If 7€ is irreqular then at least one of the following assertions holds
true.

(1) Maybe after passing to a (possibly ramified) two-fold covering, the Riccati foli-
ation J is defined by a closed rational 1-form.
(2) The Riccati foliation (P, 7€) factors through a curve.

The proof of Theorem C relies on similar ideas as those used in the proof of The-
orem A, on an infinitesimal criterion for the existence of fibrations due to Neeman
(Theorem 2.3) and on the semi-local study of Riccati foliations at a neighborhood of
irregular components of the polar divisor (Section 6).

1.3. TRANSVERSELY PROJECTIVE FOLIATIONS. — Our main goal, the description of the
structure of transversely projective foliations, is achieved by combining Corollary B
and Theorem C. To this end, recall that for a polydisk Shimura modular orbifold £
and any of its tautological representations p, Deligne extension of the associated local
system provides a logarithmic flat connection; denote by (§ x, P!, %,) the induced
Riccati foliation.

TareorEM D. Let F be a codimension one transversely projective foliation on a
projective manifold X. Then at least one of the following assertions holds true.

(1) There exists a generically finite Galois morphism [ :Y — X such that f*F is
defined by a closed rational 1-form.

(2) There exists a rational dominant map f : X --» S to a ruled surfacew : S — C,
and a Riccati foliation S defined on S (i.e., over the curve C) such that F = f*5.

(3) There exists a polydisk Shimura modular orbifold $ and a rational map
[ X --»9x,P! towards one of its tautological Riccati foliations such that F = f* .
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268 K. Loray, J. V. Perema & F. Touzer

Remark 1.2. In the third item, we note (see [37]) that, after blowing-up the am-
bient, ., (resp. &) is locally defined at singular points by a 1-form of the type

k

Z)\idf_i, 1<k<n, A\ €Rs,
=1 v

for local coordinates (x1,...,x,) (where n is the dimension of the ambient space).

In particular, for instance for X a surface, if % has (maybe after blowing-up) a

hyperbolic singular point, a saddle-node or a non linearizable saddle, then we are in

the first two items.

There are previous results on the subject [39] and on the neighboring subject of
transversely affine foliations ([6], [11], [16]). With the exception of [16], all the other
works impose strong restrictions on the nature of the singularities of the foliation.
Our only hypothesis is the projectivity of the ambient manifold.

Theorem D also answers a question left open in [16]. There, a similar classification
for transversely affine foliations is established for foliations on projective manifolds
with zero first Betti number. Theorem D gives the analogue classification for arbitrary
projective manifolds, showing that the hypothesis on the first Betti number is not
necessary.

1.4. Frar meromoreuic sly-coNNECTIONS. — A meromorphic rank-2 connection (E, V)
on a projective manifold X is the datum of a rank 2 vector bundle F equipped with
a C-linear morphism V : E — E ® QL (D) satisfying Leibniz rule

V(f-s)=f-V(s)+df ® s for any section s and function f.

Here D is the polar divisor of the connection V. The connection V is flat when the
curvature vanishes, that is V-V = 0, meaning that it has no local monodromy outside
the support of D; we can therefore define its monodromy representation. Throughout
the text, all connections are assumed to be flat.

When det(E) = Ox and the trace connection tr(V) is the trivial connection on O,
we say that (E,V) is a sly-connection. In particular, its monodromy representation
takes values into SLy(C).

We will say that any two connections (E,V) and (E’, V') are birationally equiva-
lent when there is a birational bundle transformation ¢ : F --+ E’ that conjugates
the two operators V and V’. In other words, Ox(xD) ®p, F ~ Ox(¥D) ®¢, E’
for some reduced divisor D in X and the respective differential operators coincide.
Keep in mind that the polar divisor might be not the same for V and V’. The con-
nection (E, V) is called regular if local V-horizontal sections have moderate growth
near the polar divisor (V); equivalently, the restriction of (F, V) to a general (com-
plete) curve C' C X is birationally equivalent to a connection having only simple
poles (see [17, Chap.II, Déf. 4.2] for details). When the polar divisor (V) has only
normal crossings, then regularity is equivalent to be birationally equivalent to a log-
arithmic connection, in particular having only simple poles. A connection (E, V) is
said irregular if it is not regular.
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We will say that (E,V) and (E’, V') are projectively equivalent if the induced P!-
bundles coincide P(E) = P(E’), and if moreover V and V' induce the same projective
connection P(V) = P(V’); equivalently, they induce the same Riccati foliation on the
total space of P(E). This is equivalent to say that (E', V') = (E, V) ® (L, ¢) for some
flat meromorphic rank 1 connection (L,d) on X.

We provide a structure theorem for connections up to the combination of projective
and birational equivalence. In order to settle our result, we note that any meromorphic
rank 2 connection is (projectively birationally) equivalent to a sly-connection (see
Remark 4.2). A combination of Corollary B and Theorem C yields:

Turorem E. — Let (E, V) be a flat meromorphic sly-connection on a projective man-
ifold X. Then at least one of the following assertions holds true.

(1) There exists a generically finite Galois morphism f 'Y — X such that
f*(E,V) is projectively birationally equivalent to one of the following connections
defined on the trivial bundle:

w 0 0 w
Vd+(0 w) or d+<0 0),

with w a rational closed 1-form on X.

(2) There exists a rational map f : X --» C to a curve and a meromorphic
connection (Eg, Vo) on C such that (E,V) is projectively birationally equivalent to
f*(Eo, Vo).

(3) The sly-connection (E,V) has at worst regular singularities and there exists a
rational map f : X --+ $ which projectively factors the monodromy through one of
the tautological representations of a polydisk Shimura modular orbifold $. In particu-
lar, the monodromy representation of (E,V) is quasi-unipotent at infinity, rigid, and
Zariski dense.

In particular, when (E, V) is irregular, only the former two cases occur. As men-
tioned in the abstract, the connection projectively factors through a curve whenever
it has non trivial Stokes matrices.

Remark 1.3. As we are working in the meromorphic setting, it is no more relevant
to consider orbicurves instead of curves in item (2).

1.5. STRUCTURE OF THE PAPER. The paper is divided in two parts, with the first
independent of the second. In the first part, Sections 2 and 3, we recall some results
on the existence of fibrations which will be used throughout the paper, and present
the proof of Theorem A. In this first part we avoided using foliation theory aiming at
a wider audience. The second part deals with the irregular case and is organized as
follows. Section 4 presents foundational results about Riccati foliations, most of them
borrowed from [24] and [16]. In particular, we show how to reduce the general problem
to the surface case. Section 5 describes the local structure of a Riccati foliation along
its polar divisor (on a surface); we state there, in Theorem 5.6, a reduction of singu-
larities in the spirit of Sabbah’s “good formal model” for meromorphic connections by
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270 F. Loray, J. V. PEreira &« F. Touzer

using blowing-ups and ramified covers; the proof of this technical result is postponed
to Section 8, and it uses tools from the theory of transversely projective foliations,
like classification of their reduced singular points following [3, 42]. Section 6 analyzes
the structure of reduced Riccati foliations over surfaces at a neighborhood of a con-
nected component of its irregular divisor, showing in particular the existence of flat
transverse coordinates. This will be essential to produce the fibration in the absence
of rich monodromy. Section 7 contains the proofs of Theorems C and E. Section 8
deals with transversely projective foliations, including the proof of Theorem D, and
the fact that it is actually equivalent to our structure result on sls-connections. Sec-
tion 9 presents a series of examples underlining the sharpness of our results. Finally
in an appendix we prove a result reminiscent of Sabbah’s good formal models in the
context of Riccati foliations.

Acknowledgements. The authors warmly thank anonymous referees for pointing
out several incorrect points and for giving many suggestions improving the presenta-
tion of the paper.

2. EXISTENCE OF FIBRATIONS

In this section we collect three results about the existence of fibrations on projective
manifolds which will be used in the sequel. For the proof of Theorem A all we will
need is Theorem 2.1 below, which is due to Totaro [40]. Toward the end of the paper
(proof of Theorem C), we will make use of the two other results below.

Turorem 2.1. — Let X be a projective manifold and D1, Do, D3 3 connected effective
divisors which are pairwise disjoint and whose Chern classes lie in a line inside of
H?(X,R). Then there exists a non constant morphism f : X — C to a smooth curve C
with connected fibers which contracts every divisor numerically proportional to Dy to
a point. In particular, the D;’s are rational multiple of fibers of f.

The original proof studies the restriction map H'(X,Q) — H'(D;,Q), where D;
is the disjoint union of desingularizations of the irreducible components of D;. When
it is injective, this map leads to a divisor linearly equivalent to zero in the span of
D>, ..., D, which defines the fibration. Otherwise, the fibration is constructed as a
quotient of the Albanese map of X. An alternative proof, based on properties of some
auxiliary foliations is given in [35]. It goes as follows: given two divisors with propor-
tional Chern classes, one constructs a logarithmic 1-form with poles on these divisors
and purely imaginary periods. The induced foliation, although not by algebraic leaves
in general, admits a non-constant real first integral. Comparison of the leaves of two of
these foliations coming from three pairwise disjoint divisors with proportional Chern
classes reveals that they are indeed the same foliation. The proportionality factor of
the corresponding two logarithmic 1-forms gives, after Stein factorization, the sought
fibration. For details, see respectively [40, 35].

In general, two disjoint divisors with same Chern classes are not fibers of a fibration.
Indeed, if L is a non-torsion flat line-bundle over a projective curve C' then the surface
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TRANSVERSELY PROJECTIVE FOLIATIONS 271

S =P(L®0¢) admits two homologous disjoint curves, corresponding to the inclusions
of L and O¢ in L & O¢, which are not fibers of a fibration. The point is that the
normal bundle of these sections are L* and L. Nevertheless, if the normal bundle of
one of the effective divisors is torsion then we do have a fibration containing them as
fibers. This example is extracted from [40, p.613].

Tarorem 2.2, Let X be a projective manifold and D1, D2 be connected effective
divisors which are pairwise disjoint and whose Chern classes lie in a line of H*(X,R).
If Ox(D1)|p, is torsion then there exists a non constant map f : X — C to a smooth
curve C' with connected fibers which maps the divisors D; to points.

A proof of this result is presented in Section 2.1 below. There is also an infinitesimal
variant of Theorem 2.1 due to Neeman [34, Art.2, Th.5.1] where instead of three
divisors we have only one divisor with torsion normal bundle and constraints on a
infinitesimal neighborhood of order bigger than the order of the normal bundle. The
formulation below is due to Totaro, see [41, paragraph before the proof of Lem.4.1],
and the proof we present is an adaptation of Neeman’s proof. For an alternative proof
see [12, §3].

Turorem 2.3. — Let X be a projective manifold and D be a connected effective divisor.
Suppose that Ox (D)|p is torsion of order m. If

ﬁX(mD”(erl)D = ﬁ(m+1)Da
then there exists a non-constant morphism f : X — C to a smooth curve C with
connected fibers which maps the divisor D to a point.

Proof. — Let I = Ox(—D) be the defining ideal of D. Consider the diagram
0 ﬁx ﬁx(mD)—>ﬁx(mD)®ﬁx/1m4>O

| J |

0——Op %ﬁx(mD) ®ﬁx/1m+1 — ﬁx(mD) (%9 ﬁx/Im —0

deduced from the standard exact sequence
0— Ox(—mD) — Ox — Ox/I™ — 0.
In cohomology we get the diagram
H°(X,0x(mD)® Ox/I™) — H' (X, Ox)
| |
H°((m +1)D, 0x(mD) @ Ox /1Y) - H'(mD, Ox(mD) ® Ox /I™) - H'(D, Op)
If Ox(mD)|(m+1)Dp =~ O@m+1)p then Ox(mD)|;mp ~ Op,p and
1€ H'(mD, Cp,p) = H'(mD, Ox(mD) ® Ox /I™)

belongs to the image of the map in the lower left corner. Exactness of the bottom row
implies that 1 € H°(mD, €,,p) is mapped to zero in H'(D, Op).
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272 I. Loray, J. V. Pereira & F. Touzer

According to the diagram, the morphism H®(mD, 0,,p) — H(D, Op) factors
through H(X, 0x) — HY(D, Op).

If 1 € H(mD, O,,p) is mapped to zero in H' (X, Ox ) then we deduce from the first
row of the first diagram above that h%(X, Ox(mD)) > 2. Moreover, H°(X, Ox (mD))
contains a section nowhere vanishing on D. Therefore mD moves in a pencil without
base locus and we have the sought fibration.

If instead 1 € H°(mD, 0,,p) is mapped to a nonzero element in H'(X, Ox) then
HY(X,0x) — HY(D,0p) is not injective. Thus the same holds true for the map
HY(X,0x) — ®HY(D;, Op,) where D; are the irreducible components of D. It follows
that @ Alb(D;) (direct sum of the Albanese varieties) do not dominate Alb(X). By
the second part of the proof of [40, Th. 2.1], the morphism

Alb(X)

X S ADD,)

contracts D, and is non constant. It follows (cf. [34] or [40]) that the image is a curve
and we get the sought fibration as the Stein factorization of this morphism. ]

2.1. Proor or Tueorem 2.2. — By assumption the effective divisors Dy and D5 have
proportional Chern classes. Therefore, there exists non-zero positive integers aq, as
such that the line bundle . = @x (a1 Dy — azDy) lies in Pic’(X). If . is a torsion
element of Pic’(X) then there exists a rational function g : X — P with zero
set supported on D; and polar set supported on Ds. We can take f as the Stein
factorization of g.

Suppose now that £ is not a torsion line-bundle. The restriction .£|p, of &
to D; is isomorphic to €p, (a1 D7) and according to our assumptions is a torsion
line-bundle. Hence for some integer m # 0, £®™ is in the kernel of the restriction
morphism Pic’(X) — Pic?(D;). Since we are assuming that .# is not a torsion line-
bundle, it follows that the restriction morphism H'(X,0x) — H'(Dy, 0p,) is not
injective. We conclude as in the proof of Theorem 2.3. ]

3. FACTORIZATION OF REPRESENTATIONS

3.1. CRITERION FOR FACTORIZATION. — We apply Theorem 2.1 to establish a criterion
for the factorization of representations of quasi-projective fundamental groups. In the
statement below, we have implicitly fixed an ample divisor A in X and we consider the
bilinear pairing defined in NS(X), the Néron-Severi group of X, defined by (E, D) =
E-D-A""2 where n = dim X. According to Hodge index Theorem this bilinear form
has signature (1,rank NS(X) —1).

Turorem 3.1. — Let X be a projective manifold, D be a reduced simple normal cross-
ing divisor in X, and p : m (X ~ D) — G be a representation to a simple linear
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algebraic group™) G with Zariski dense image. Suppose there exists E, a connected
component of the support D with irreducible components FE1,...,Ey, and an (ana-
lytic) open subset U C X containing E such that the restriction of p to m (U — E)
has solvable image. Then either the intersection matriz (E;, E;) is negative definite
or the representation factors through an orbicurve.

Proof. — 1If the intersection matrix (E;, E;) is negative definite then there is nothing
to prove. Throughout we will assume that (E;, E;) is not negative definite.

Let S be the Zariski closure of p(m1 (U ~\ E)) in G. Since G is simple while
p(m1(U \ E)) is solvable, we have that S # G. Let p be the derived length of S
and choose an element «y of the (1 + 1)-th derived group of m1(X ~\ D) such that
p(v) # id.

We apply Malcev’s Theorem (any finitely generated subgroup of G is residually
finite) [26] to obtain a morphism g : 71 (X ~ D) — T to a finite group I' such that
o(7) # id. This choice of ¢ implies that the derived length of o(m1 (X \ D)) is at least
i+ 2. Since the derived length of S is p, it follows that

c=lo(m (X \D)):o(m (U N\ E))]

is at least 3.

Let us now consider the covering p : X, — X, ramified along D, determined
by 0. Over X \ D, pl,-1(xp) is the étale covering of X ~\ D determined by ker o.
In particular p~1(X \ D) is a smooth quasi-projective manifold. In general, X, is
projective but not necessarily smooth. Notice that by construction p~!(FE) has at
least ¢ = [p(m1 (X N\ D)) : o(m1 (U \ E))] > 3 distinct connected components in X,.

To be able to apply Hodge index Theorem, we now proceed to desingularize X,. In
order to keep track of the intersection matrix (E;, E;), instead of applying Hironaka’s
Theorem we will construct a smooth variety Y together with a ramified covering
¢ : Y — X which factors through p.

To each irreducible component D; of D let m; be the order of p(v;) on a short
loop ; around D;. Let & : X — X be a finite ramified covering of X, with X smooth,
such that «*(D;) = mlﬁ where BJZ is a smooth and irreducible hypersurface and
D= > D; is a simple normal crossing divisor. For the existence of x with the above
properties, we can use Kawamata coverings (see [20, Prop.4.1.12]). If we denote the
ramification divisor of k by R and its image under x by A then we can also assume
that A + D is a simple normal crossing divisor on X.

The composition g o k, : 71 (X ~ D) — T sends short loops around the irre-
ducible components of D to the identity of I' and therefore induces a representation
0: wl()?) —T. Let 7: Y — X be the étale covering of X determined by the kernel
of 0. It is a projective manifold endowed with a ramified covering ¢ = konm:Y — X

(D As the terminology may vary, we precise that a linear algebraic group G is simple if it is not
commutative and has no normal algebraic subgroups (other than 1 and G), and it is quasi-simple if
its centre Z is finite and G/Z is simple.
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which factors through p : X, — X as wanted. Consequently ¢~ (F) has (at least) as
many connected components as p~!(E).

Let B be one of the connected components of ¢~!(E) with irreducible components
By, ..., By. Consider the ample divisor A’ := ¢*A on Y and define (-,-)y using it.
Notice that

(¢*C1, " Ca)y = ¢*C1 - ¢*Ca - (¢*A)" 2 = deg(¢) - (C1,Cs),

for any divisors C7,Cy in X. Since we are assuming that (E;, E;) is not negative
definite, there exists an effective divisor F' supported by B with (F,F)y > 0. In
fact, there exists such divisor for each connected component of ¢~!(E), therefore
at least three. Hence, we can produce F}, Fy, F3 pairwise disjoint effective divisors
with connected supports on Y satisfying (F;, F;)y > 0 and (F;, Fj)y = 0. Since
the signature of the quadratic form (-,-)y is (1,rank NS(Y') — 1), we deduce that all
the three divisors have proportional Chern classes; moreover, (F;, F;)y = 0. Notice
also that either F; N B = & or the support of F; coincides with B. Indeed, if F' is
an effective divisor with support contained in B, but not equal to B, then we can
choose an irreducible component of B, say C, not contained in the support of F' but
intersecting it. Therefore (C, F)y > 0 and, provided that (F,F)y > 0, for k large
enough C' + kF is an effective divisor with

(C+kF,C+kF)y = (C,C)y +2k(C, F)y + k*(F,F)y > 0.

But, doing so, we would produce new disjoint F;’s with (F;, F;)y > 0, contradicting
Hodge index Theorem.

We can apply Theorem 2.1 to ensure the existence of a curve ¥ and a non-constant
morphism with irreducible general fiber g : Y — X such that the divisors F}, Fb,
and F3 are multiples of fibers of g. The morphism g is proper and open, thus all the
other connected components of ¢~1(D) are mapped by g to points. Let us denote by
pi=pody: T (Y N ¢*D) — G the lifted representation. We want first to prove that p
factors through g. Note that p also has Zariski dense image in G.

Let U C Y \ ¢*D be a Zariski open subset such that the restriction of g to U is a
smooth and proper fibration, thus locally trivial in the C*° category over %° = g(U).
Let also F' be a fiber of gy and H be the Zariski closure in G of p(mi(F)), and
consider the following diagram

7T1(ZO) —1

From this, it is clear that the image of 7y (F') is normal in 71 (U), and since normality
is a (Zariski) closed condition, we deduce that H is a normal subgroup of G. Since G
is simple, we conclude that H must be trivial, i.e., the restriction of p to U factors
through the curve X°. Following the proof of [13, Lem. 3.5] we see that this suffices
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to obtain the factorization through an orbicurve. Still denote by g : ¥ — X the
factorization morphism.

We will now prove that the morphism ¢g : ¥ — ¥ descends to a morphism
f: X — C that factors the initial representation p. Here, we follow the argument
of [13, Lem. 3.6]. By Stein factorization Theorem, we can assume that g : ¥ — X
has connected fibers. Assume also ¢ : Y — X is Galois, with Galois group A; if not,
replace Y by some finite Galois covering 5 Y Sy S x (choose a finite index
normal subgroup of 71(X) that contains the subgroup defining ¢). We note that ¥
might become singular, but this does not matter in what follows. For any v € A, we
want to prove that v permutes g-fibers, i.e. for a generic fiber F of g, then g o vy(F)
is a point.

Aiming at a contradiction assume g o y(F) is not a point. Then g, (p) : 7(F) — X
is surjective and, since the representation p factors through the curve X, it follows
that the representation p has Zariski dense image in restriction to +(F'). Strictly
speaking, in order to define the restriction p to v(F'), we have to move the base point
of the fundamental group (that we have omitted so far) to put it into v(F') and the
restriction depends on the way we do this, but different choices lead to conjugated
subgroups and the property of being Zariski dense is invariant by conjugation. Once
this has been done, the image H of p|,(r) must be of finite index in the image of the
factorizing representation 71(3) — G. By hypothesis G is simple and therefore H is
Zariski dense. On the other hand, since p comes from a representation on X = Y/A, it
follows that p must be trivial in restriction to y(F'), since it is in restriction to F. This
contradiction shows that A, the Galois group of ¢, permutes the fibers of g : Y — X,
and thus permutes the points of ¥ (connectedness of fibers). We get a morphism
from X to the orbicurve C' = ¥/A through which p factors. O

Remark 3.2. — We can avoid the factorization through an orbicurve by instead re-
stricting the factorization to a Zariski open subset of X \ D. In the opposite direction,
if we allow one dimensional Deligne-Mumford stacks with general point having non
trivial stabilizer as targets of the factorization, then we can replace simple linear alge-
braic groups by quasi-simple linear algebraic groups in the statement, since our proof
shows that for G' quasi-simple, there exists a fibration such that the Zariski closure of
the images of fundamental groups of fibers of f under p are finite.

32 Hr\N K-TWO REPRESENTATIONS AT NEIGHBORHOODS OF DIVISORS

Prorosition 3.3. Let X be a complex manifold, D a reduced and simple normal
crossing divisor in X, and p : m(X ~ D) — SLy(C) a representation. Let E be a
connected divisor with support contained in D such that for each irreducible compo-
nent E; of E and any short loop ~y; turning around E;, the element p(v;) does not lie
in the center of SLa(C), i.e., p(;) is distinct from +£1d. Then there exists an open
subset U C X containing E such that the restriction of p to w1 (U ~ D) has solvable
image.
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Proof. Let E1,..., Ey be the irreducible components of E and 7y, ..., be short
loops turning around them. We will denote the set of smooth points of D in E; by E7,
i.e., Ef =F; < Uj;éi(Ej N El)

Suppose first that +p(v1) is unipotent. Since, by hypothesis, it is different from
the identity, its action on C? leaves invariant a one-dimensional subspace L. If U; is
a small tubular neighborhood of E; and Uy = U; \ D then U7 has the homotopy
type of a S'-bundle over E and therefore the subgroup generated by 7 in 7 (U7)
is normal. It follows that every v € m1(U7) also leaves L invariant. It follows that
the rank two local system induced by p admits a unique rank one local subsystem
determined by L on U7.

To analyze what happens at a non-empty intersection Iy NF;, we can assume that
both 71 and ; have base points near E1 N E;. Thus 1 commutes with v;, both p(v1)
and p(v;) are unipotent, and they both leave L invariant. Thus the rank one local
subsystem determined by L on Uy extends to a rank one local subsystem on Uy UU?.
Repeating the argument above for the other irreducible components Fs, ..., Ey, we
deduce the existence of a neighborhood U of E such that p(m1(U \ D)) is contained
in a Borel subgroup of SLs(C).

Similarly if p(v1) is semi-simple, then the same holds true for every ~;. Moreover,
the representation now leaves invariant the union of two linear subspaces L and Lo
(but does not necessarily leave invariant any of the two). We deduce that the image
of p restricted to a neighborhood of E minus D is contained in an extension of Z/27

by C*. O
Remark 3.4. The proof above is very similar to the proof of [13, Lem. 4.5].
Prorosition 3.5. — Let X, D, E, U and p be as in Proposition 3.3. Assume also that

every short loop v turning around an irreducible component of D — E which inter-
sects E has monodromy in the center of SLo(C). If the intersection matriz of E is
invertible, then the restriction of p to m (U \ D) is quasi-unipotent at the irreducible
components of E.

Proof. — Let (F,V) be a rank-two vector bundle over U with a flat logarithmic
connection whose monodromy is given by p (see [17, Prop. 5.4, p. 94]). Since the mon-
odromy is solvable, around each point of U \. D we have one or two sub-bundles of F'
which are left invariant by V. Modulo passing to a double covering of U \. D if neces-
sary, we can assume that (F,V) is reducible, i.e., we have a sub-bundle F; C F and
a logarithmic connection V; on F; such that V; = V| . The monodromy of V; on
a loop y around irreducible components of E equal to one of the eigenvalues of p(7v),
say Ay. If 7; is a short loop around an irreducible component E; of E then the residue
of V1 along E; satisfies
exp(2miResg, (V1)) = A,

By the residue formula we can write

c1(Fi) =Y Resg,(V1)E; + > Resp, (V1)D;,
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where Di,...,Ds are the irreducible components of D intersecting F but not
contained in it. Since the eigenvalues around D; are &1, we have that Resp, is a
half-integer. Since c;(Fy) lies in H?(U,Z), we have that for every k

(c1(Fy), Ex) = Y Resg,(V1)(Ei, E) + ) Resp, (V1)(D;, Ex)

is an integer. Therefore the vector v = (Resg, (V1),...,Resg, (V1)) satisfies a linear
equation of the form A-v = b with A = (E;, E;) and 2b € ZF. Since A has integral
coefficients and is negative definite, it follows that v is a rational vector. Therefore the
restriction of p to U \ D is quasi-unipotent at the irreducible components of £. [

Remark 3.6. — The proof above is reminiscent of Mumford’s computation [33] of the
homology of the plumbing of a contractible divisor on a smooth surface.

3.3. Proor or Turorem A. — Let X be a projective manifold and D C X a simple

normal crossing hypersurface such that X° = X ~\ D. Let p : 7(X ~ D) — SLy(C)
be a Zariski dense representation which is not quasi-unipotent at infinity. Let E be
a connected divisor with support contained in® |D| such that p(v) # £1d for every
small loop around an irreducible component of E, and p(y) is not quasi-unipotent
for at least one small loop. If E is maximal with respect to these properties, Propo-
sition 3.3 implies that the restriction of the projectivization of p to a neighborhood
of E is solvable, and Proposition 3.5 implies that the intersection matrix of F is in-
definite. Let D’ C D the union of the components of D around which the monodromy
is equal to +1d. Clearly |E| is a connected component of |D — D’|. Since PSLy(C) is
a simple group we can apply Theorem 3.1 (replacing D by D — D’) to factorize the
projectivization of p through an orbicurve. Theorem A follows. |

4. RICCATI FOLIATIONS

Here we recall basic definitions and properties of Riccati foliations, and provide
some reduction lemmata.

4.1. Prosectivi coNNECTIONS AND Riccatt roriations. — Let E be a rank 2 vector
bundle on a complex manifold X and V : E — E ® QL (D) be a meromorphic
connection on E with (effective) polar divisor D: the operator V is C-linear and
satisfying Leibniz rule

V(f-s)=f-V(s)+df ®s for any local section s and function f.

In any local trivialization Z : E — C? of the bundle, the connection is defined by

Z+—V(Z)=dZ+ AZ with Z:(Zl) andA:<°‘ 5>7
29 w 0

where A is a matrix of meromorphic 1-forms (sections of Q4 (D)).
The operator V, being linear, commutes with the fiberwise action of G,,, = C* on F
and induces a projective connection on the P-bundle P(E). In local trivialization

(D1f H is a divisor, |H| stands for the support of H
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above, after setting (1 : z) = (21 : z2), the differential equation VZ = 0 takes the
form Q = 0 for the Riccati 1-form

QA =dz+wy+ zuwr +z2w2,

with (wp, w1, w2) = (w,0 — a, —f). Any two connections (E,V) and (E’, V') induce
the same projective connection if, and only if there is a rank 1 meromorphic connec-
tion (L, () such that (E',V’) = (L,() ® (E,V). The connection (E,V) is actually
determined by the (independent) data of the projective connection and the trace
connection (det(E),tr(V)) (defined in local trivialization by d + a + ).

The distribution 2 = 0 defines a (singular codimension one) foliation .7 on the to-
tal space P of the P'-bundle if, and only if it satisfies Frobenius integrability condition
QA dS2 = 0, which is equivalent to

dwo = Wo N wq
(41) dw1 = 2(,;)0 N wa

dCUQ = wy Nws.

The flatness condition V-V = 0 for the linear connection, which writes dA+A-A =0
in local trivialization, is equivalent to (4.1) (flatness of the projective connection) and
the flatness d(a + §) = 0 for the trace connection. In this case, V-horizontal sections
project onto the leaves of J7.

We say that (P — X, ) is a Riccati foliation since over a general point of X, the
P!-fiber is transverse to .J#.

Remark 4.1. — A codimension one foliation . on (the total space of a) P!-bundle
P — X is a Riccati foliation if and only if it is transverse to a general P*-fiber. Indeed,
in local trivialization, 2 must be defined by a 1-form P(z, z)dz + Q(z, z) polynomial
in 2. One easily checks that transversality to C = P* — {oo} implies that P does
not depend on the variable z. On the other hand, transversality near z = oo implies
that Q has degree at most 2 in z.

Remark 4.2. — One could define define Riccati foliations on arbitrary P!-bundles,
not necessarily of the form P(E). However, in this paper, all Riccati foliations are
defined on projectivized vector bundles P(E). In particular, when X is projective, they
are birationally equivalent to the trivial bundle X x P! where all above formula makes
sense globally; moreover, they come from the slo-connection on X x C? obtained by
setting a + 6 = 0.

Remark 4.3. Any two sly-connections (E,V) and (E’, V') are equivalent if, and
only if, there exists a flat rank 1 logarithmic connection (L,d) on X having mon-
odromy into the binary group {£1} C G,, such that (E,V) is birationally equiva-
lent to (L, ) ® (E’, V). In particular, (E,V) and (E’, V') are birationally equivalent
after pulling them back to the ramified two-fold cover ¥ — X determined by the
monodromy representation of (L, d).
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Remvark 4.4. If X is a projective manifold and H C X is an hypersurface, there
may exist representations

p:m (X~ H) — PSLy(C)

which cannot be realized as the monodromy of a Riccati foliation (see [24, Ex. 5.2]).
However, when X is a projective curve, then H = {p1,...,p;} is a finite union
of points, this obstruction does not exist because every local monodromy (around
each p;) can be realized as the projectivization of the monodromy of a meromorphic
connection. This enables us to construct over X a P* bundle (hence a projectivization
of a rank 2 vector bundle) equipped with a Ricatti foliation with the right monodromy
(see [21] for the details).

The (effective) polar divisor () of the Riccati foliation is defined as the direct
image under 7w : P — X of the tangency divisor between 7 and the vertical foliation
defined by the fibers of m. It corresponds to the vertical part of the polar divisor of 2
in local trivialization. We have (V)s = () since the trace tr(V) may have more,
or higher order poles; however, in the sl;-case, the two divisors coincide.

The monodromy representation of the Riccati foliation (P — X, 5¢) is the repre-

sentation
P T (X N [(H)]) — PSLy(C)

defined by lifting paths on X \ |[(J#)s| to the leaves of 5. We note that p is just
the projectivization of the linear monodromy of V.

4.2. RICCATI FOLIATIONS DEFINED BY A CLOSED 1-FORM. Let us start with two criteria.

Lemma 4.5. — Let (P, 52) be a Riccati foliation over a projective manifold X . If there
exists a birational map ® : P --» P distinct from the identity such that ®* =

and ™o ® = 7 then there exists a generically finite morphism of degree at most two
f:Y = X such that f*(P, ) is defined by a closed rational 1-form.

Proof. — Since ® commutes with projection 7 : P — X it follows that over a general
fiber of 7, ® is an automorphism. Let F' = {z € P ~\ indet(®)|P(z) = z} be the set
of fixed points of ®. Since we are dealing with a family of automorphism of P!, the
projection of F' to X is generically finite of degree one or two. Assume first that the
degree is one. Then we can birationally trivialize P in such a way that F' becomes
the section at infinity and ® is of the form z — z + 7 for some 7 € C(X). Let
Q = dz + wy + w1z + wez? be a rational form defining #. The invariance of 7
under ® reads as

OQNDP*QN=0 < ws =0and w; = —dlogT < d(7Q) =0.

If the degree of 7|z is two then after replacing X by (a resolution of) a ramified
double covering we can assume that P is trivial and that ® is given by z — A(x)z.
The invariance of # under ® reads as

QAP Q=0 <= wy=ws =dA =0 < d(z7'Q) =0.

This concludes the proof of the lemma. O
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Lemva 4.6. Let (P,5%) be a Riccati foliation over a complex manifold X. Let
H C P be a s-invariant (maybe singular) hypersurface which intersects the generic
fiber of P — X at 2 < n < oo distinct points.

— Ifn > 3, then € has a (non constant) meromorphic first integral.
— If n = 2, maybe passing to a two-fold cover X' — X, then  is defined after a
convenient bundle trivialization by Q = dz/z + w with w a closed 1-form.

In particular, the monodromy of € is virtually abelian.

Since H is J#-invariant, the intersection set between H and a fiber must be (glob-
ally) invariant by the monodromy group computed on the same fiber. For n = 2, this
implies that the monodromy is dihedral, and for n > 2, that it is finite. The conclu-
sion of the Lemma is much stronger in case ¢ is irregular, since ¢ could have no
monodromy but transcendental leaves in that case.

Proof. — Maybe passing to a finite cover X’ — X, we can assume that H splits into
n meromorphic sections. For n > 3 one can send three of them to z = 0,1, 00 and
observe that their J#-invariance implies wg = w; = ws = 0. Therefore, z is a first
integral and all leaves have algebraic closure. For n = 2 one can send the two sections
to z = 0 and z = oo and we get that the Riccati 1-form defining J# takes the form
dz + wz; Frobenius integrability implies dw = 0. |

Let us now describe Riccati foliations defined by closed 1-forms.

Provosirion 4.7. — Let (P, 5) be a Riccali foliation over a projective complex man-
ifold X. If 7 is defined by a closed 1-form Q on P, then:

— either S has a (non constant) meromorphic first integral,
— or after a convenient bimeromorphic bundle trivialization, we have

d
(4.2) Q:c(f—i—w) or Q=dz+w,
with w a meromorphic closed 1-form on X and c € C*.

Proof. — Denote by (2), and (£2) ., the zero and polar divisor of Q. Since Q2 is closed,
the support H of (), — (Q),, is J-invariant. The hypersurface H intersects the
generic fiber of P — X in n > 1 distinct points (1-forms have non trivial divisor
on P1). If n > 3, then % has a first integral.

If n = 2, then H splits into the union of two meromorphic sections, Hy and H,
say; indeed, either they are zero and polar locus of €2, or they are both simple pole,
but with opposite residue. After trivialization of P sending them to z = 0 and z = oo
respectively, we get that 7 is defined by a closed 1-form ' := dz/z+w; but Q = f-Q/
is closed as well, which implies that f is a first integral. We are thus in one of the two

oo

items depending on f is constant or not.
Finally, when n = 1, we can assume H = {z = oo} and we get that

Q= f(dz +wo + 2wy + 2%ws)
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restricts to a general fiber as ¢ - dz, with ¢ € C*. This means that f does not depend
on z and, by gauge transformation z — cz, we can assume f = 1. The 1-form €2 is
closed if, and only if, dwy = wy = wo = 0. O

4.3. GENERICALLY FINITE MORPHISMS AND FACTORIZATIONS. In order to prove Theo-
rems C and D, it will be useful to blow-up the manifold X and pass to a finite cover in
order to simplify the foliation. At the end, we will need the following descent lemma
to come back to a conclusion on X.

Provosition 4.8. — Let (P, ) be a Riccati foliation over X and assume that
f*(P,2) is not defined by a closed rational 1-form for any dominant morphism
[ Y = X. If the pull-back ¢*(P, ) via generically finite morphism ¢ : X o X
factors through a curve, then the same holds true for (P, ).

Proof. It is very similar to the proof of [13, Lem. 3.6]. Maybe composing by a
generically finite morphism, we can assume that

(1) ¢ is Galois in the sense that there is a finite group G of birational transforma-
tions acting on X and acting transitively on a general fiber;

(2) there is a morphism f: X — C with connected fibers and a Riccati foliation
(P, %\%) over C such that its pull-back on X is birationally equivalent to (P, jfiz) =
Q" (P, ).

In consequence, for any g € G, g* (}A5 %A”/) is birationally equivalent to (157 J/g) and the
Riccati foliation (P H ) factors through f 0g:X --» C. Consider a general fiber Z
of f. The Riccati foliation (P,. 77 )\ z restricted to Z is birationally equivalent to the
trivial Riccati foliation on Z, and thus admits a rational first integral. If the map f og
were dominant in restriction to Z, this would imply that (PO, %’6) also has a rational
first integral, and the same for (P H ) and (P ), contradiction. Thus g (and G)
must permute general fibers of f and acts on C. Moreover, g (PO,%%) is birational
to (Po, %) for all g € G. Lemma 4.5 implies that over each g : X --» X there exists
a unique birational map ¢ : P --» P such that §*jfi’?/ = jfiz, and a similar statement
holds true for the action of G on C. Therefore, we get an action of G on the diagram

ﬁ‘)ﬁo

x- .o
which preserves the Riccati foliations. Passing to the quotient, we get a commutative
diagram

P—— Py

Lo
where Py --+ C has P! as a general fiber. Moreover, the quotient foliation 4% on Py,
is transverse to the general fiber and thus of Riccati type. |
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4.4. MONODROMY AND FACTORIZATION. We say that a Riccati foliation (P, 7#) has
regular singularities when it can be locally induced by a flat meromorphic linear
connection having regular singularities in the sense of [17, Chap. IT]. Like in the linear
case, any two Riccati foliations (P, ) and (P’, ") having regular singularities
have the same monodromy if and only if there exists a birational bundle map ¢ :
P --» P’ such that ¢* 5 = 5, see [16, Lem. 2.13]. In particular, if the monodromy
factors through a curve, then so does the Riccati foliation by Remark 4.4. The next
proposition, borrowed from [16, Prop. 2.14], tells us what remains true in the irregular
case.

Provosirion 4.9. — Let (P, 5€) be a Riccati foliation over X. Suppose there exists a
morphism f : X — C with connected fibers such that the polar divisor (H€)e of I
intersects the general fiber of f at most on reqular singularities; assume moreover
that the monodromy representation p of (P, ) factors through f, i.e., there exists
a divisor F supported on finitely many fibers of f and a representation py from the
fundamental group of Co = f(X N\ |(#)e + F|) to PSLo(C) fitting in the diagram
below.

(X~ () + F|) —L 5 PSLy(C)

3 /

m1(Co)
Then (P, ) factors through f : X — C.

Remark 4.10. — For a Riccati or a linear connection, to have regular singularities is
a local property which, if satisfied at some point of the polar divisor, remains true all
along the irreducible component. The support of the polar divisor splits into regular
and irregular components. The assumption in Proposition 4.9 that the general fiber
of f intersect only regular singularities just means that the fiber intersects only regular
components of the polar locus. Equivalently, the connection (or Riccati foliation)
restricts to the fiber as a regular singular connection (resp. Riccati foliation).

4.5. REDUCTION TO THE TWO-DIMENSIONAL CASE. — The proposition below allows us to
reduce our study of Riccati foliations over arbitrary projective manifolds to study of
Riccati foliation over projective surfaces.

Prorosition 4.11. Let (P, 5¢) be a Riccati foliation over a projective manifold X
and assume it has no rational first integral. If the restriction of (P, 5€) to a sufficiently
general surface S C X factors through a curve, then the same holds true for (P, )
over X.

Proof. — Denote by 7 : P — X the natural projection. Let (Ps, #%) be the restric-
tion of (P, .7¢) to S C X, i.e. Pg = P| -1(gy and s = J|-1(g). By assumption, we
get a rational bundle map ¢ : Ps --+ Py such that ¢*.4) = 5. This shows that %
contains a foliation by algebraic curves.
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Applying the same argument for different choices of S, we obtain that through a
general point p € P the leaf of J# through p contains an algebraic subvariety A,. It
is known that the germ of leaf at a general point contains an unique germ of algebraic
subvariety maximal with respect to inclusion which turns out to be irreducible, see the
proof of [25, Lem. 2.4]. In our setup, we can thus assume that A, has codimension at
most two, since otherwise we would be able to enlarge A, by choosing an appropriate S
and applying the above argument.

It follows from [25, Lem. 2.4] that % contains a foliation ¢ with all leaves algebraic
and having codimension at most two, and that 27 is the pull-back of a foliation
on a curve or a surface. In the former case, we get a rational first integral for JZ,
contradiction. Hence the codimension of ¢4 must be equal to two. Let now L be a
general leaf of & and consider its projection to X. Since ¢ is transverse to the general
of fiber of 7, this projection is generically étale and 7(L) is (a Zariski open subset) of a
divisor Dz, on X. The construction method of ¢ makes clear that 7=1(Dy) is invariant
by ¢, and also that the restriction of 7 to 7=1(Dy) is birationally equivalent to the
foliation on a trivial P'-bundle over Dy given by the natural projection to P!. This is
sufficient to show that # is the pull-back of a Riccati foliation on a P'-bundle over
a curve. (|

Prorosition 4.12. Let (P, 7) be a Riccati foliation over a projective manifold X,
dim(X) > 2. If the restriction of (P, ) to a general hyperplane section Y C X is
defined by a closed rational 1-form, then the same holds true for (P, ) over X.

Proof. Since being defined by a closed rational 1-form is invariant under birational
transformation, we can assume without loss of generality that P = X x P'. Set
Z =Y x P! C P.IfY is sufficiently general, then Z is transversal to J# outside a
proper algebraic subset of ¢ and we can consider w, the closed (non zero) rational
1-form defining the restriction J#|z on Z. Then, following [10, p.47-50] (see also
[7, §5.6]), w extends (uniquely) as closed a meromorphic 1-form € defining % on the
neighborhood of Z. Let U some connected neighborhood of Y over which €2 is defined
and then can be written as

QO =agdz + arwy + -+ + apwn,

where wq,...,w, are n = dimc X meromorphically independent 1-forms on X and
the a;’s are rational functions of z (a projective coordinate on P') with coefficients
lying in the field of meromorphic functions on U. The extension of those coefficients
on the whole X is then automatic and implies the extension of  through X xP!. [

5. POLAR DIVISOR AND REDUCTION OF RICCATI FOLIATIONS

In the next two sections, we will restrict our attention to Riccati foliations over pro-
jective surfaces. Proposition 4.11 allows to transfer the conclusions to Riccati foliations
over arbitrary projective manifolds. The general case will come back into play only at
the proofs of Theorems C and D.
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Let (P, ) be a Riccati foliation over a projective surface S. In this section, we
review the local structure of (P, .#) over a neighborhood of a general point of ().
Maybe blowing-up S and passing to a ramified cover, we arrive to a list of nice local
models that either are defined by a first integral, or factor through a curve (a local
version of Theorem C). Let us first recall the one dimensional classification following
the description of [5, Chap. 4, §1].

5.1. A REVIEW OF THE ONE DIMENSIONAL CASE. — Here, we follow the description of
[5, Chap. 4, §1] which corresponds to Levelt-Turrittin normalization.

Prorosirion 5.1. — Let (P — A, ) be a Riccati foliation over a disc 0 € A C C.
Maybe after passing to the two-fold cover

A—A; x>z

and after bimeromorphic bundle trivialization and change of x coordinate, the Riccati
1-form Q defining the foliation fits into one of the following types:

— Q =dz (trivial case)

— Log®m: Q/z = dz/z + Mz /z, with A\ € C\ Z;

~ Log®e: Q = dz + dx/z;

— Irreg: Q = dz + (dz /2" + Mz /z) 2z + (a(2)2? + b(z)z + c(x))dz with a,b,c
holomorphic, k € Z>1 and A € C.

Since the statement does not appear in this form in the literature, we provide a
sketch of proof as well as definitions and useful remarks.
Let us start with a Riccati foliation . defined near z = 0 in C, x P! by

dz + (a(z)z® + b(z)z + c(z)) dz = 0.

Here, a,b,c are meromorphic at z = 0. If a,b, ¢ are holomorphic, then the Riccati
foliation is equivalent to dz = 0 by a biholomorphic bundle transformation (choose
three distinct solutions and send them to z = 0,1, 00). If a, b, ¢ have at most simple
poles, then by a bimeromorphic bundle transformation we can reduce 5 to one of
the following models (see [5, loc. cit.])

dz—l—)\d—xz:& dz—l—d—x:O or dz =0,
T T

with A € C\Z (for A € Z, we get dz = 0 for Z = 2*z). Note that the trivial case
can really occur even if the original Riccati admits a pole at = = 0 (see [5, loc. cit.]).
So far, the coordinate z remains unchanged. The monodromy of .77 around z = 0 is

2imA s, z + z + 1 or trivial. This normal form is unique

respectively given by z — e
except the choice of \: bundle transformations z — z”2%! change X into +\ + n; the
birational invariant is cos(2m\).

From now on, let us assume that the Riccati equation has a multiple pole at z = 0,
even up to bimeromorphic bundle transformations. We are in the so-called irreqular

case.
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We may assume z = oo is not J-invariant, i.e., a Z 0. Then, after a (unique)
bimeromorphic bundle transformation of the form z — f(z)z + g(x), with f, g mero-
morphic at z =0, f # 0, we may assume the Riccati equation in the form

(5.1) dz + (22 + jifl)dx —0.

(the corresponding sly-matrix connection is in companion form). Here, we assume ¢
holomorphic non vanishing and n € Z is the order of pole. Define the irreqularity
index (or Poincaré-Katz rank) to be
no_1
K= 5 c 5220

(see [1]). By an additional bundle transformation z +— "1z with k = & or x + 3
(depending on the parity of 2x) we get the form

22+ (k+ 1)akz + ¢(x)

pov) dz = 0.

dz +

Then we cannot decrease the order of poles by further bimeromorphic bundle trans-
formations (here we actually assume k > 0 otherwise we are back to the logarithmic
case).

We say that we are in the unramified case if k € Z~(, which is equivalent to say
that ¢(0) # 0. In this case, the Riccati foliation has two singular points, and through
each of them passes a (unique) formal ##-invariant section, i.e., a solution z = f(x) of
the Riccati equation with f(z) a possibly divergent power series. After sending these
two formal leaves to z = 0 and z = oo by a formal bundle transformation, the Riccati

%va:O with w = ¢(2)
z

equation becomes

o] da,

with g(:z:) formal power series. Usually, we kill the holomorphic part of w by a last
(formal) bundle modification of the form z — h(x)z, and the principal part of w is an
invariant by birational bundle transformations. Instead of this, we can use a (formal)
change of z-coordinate to put the 1-form into the normal form w = dz/z**! + \dz/x
(see [23, proof of Prop. 1.1.3]). In fact, a combination of both operations shows that,
after analytic change of xz-coordinate and holomorphic bundle transformation, we can
put the Riccati equation into the form Irreg of Proposition 5.1: we use analytic ap-
proximation of formal solutions to get a, ¢ holomorphic and then change x-coordinate
up to the order k to normalize the principal part of w. The formal normal form (see

also [29, §IV.1.2])
dz dx dz
(5.2) ?erk“ +A—.

can be obtained by another formal bundle transformation. As in the logarithmic case,

the residue A is not unique: bundle transformations z — z™z%*! change X into +\ + n.
In the ramified case (called nilpotent in [5]) k = k — % we get, after bimeromorphic

bundle transformation, the following normal form

22 —2zFz —x

— Irreg™™: Q = dz + ppeam

holomorphic and k € Z>;.

dz + (a(x)2? + b(x)z + c(z))dr with a,b,c
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After ramification z = 72

, we get a singularity of irregular (unramified) type Irreg
with irregularity index ¥ = 2x (and A = 0). More generally, all three types Log®m,
Log®e and Irreg are stable under ramifications = 2"; moreover A and the irregularity

index k are both multiplied by n.

Remark 5.2. — As explained in [5, Chap. 4, §1], there is a more geometric algorithmic
way to minimize the order of pole of a Riccati foliation (7 : P — A, ) at 0 € A.
Recall that an elementary transformation of P at a point p € Py := 7~ 1(0) consists in
blowing-up the point p € P and then contracting the strict transform of the fiber F.
Assume S has a multiple pole at 0 € A.

— If 2 has 2 singular points on the fiber Py, then the order of poles is minimal, i.e.,
cannot be decreased by bimeromorphic bundle transformation: we are in the irregular
unramified case.

— If 2 has only 1 singular point p on the fiber Py, then apply an elementary
transformation at p; if moreover the order of pole has not decreased, then again it is
minimal: we are in the irregular ramified case.

Finally, when the order of pole is not minimal, and we want to minimize it, we
just have to apply an elementary transformation to the unique singular point of J#,
and possibly repeat this operation, until we arrive at a simple pole or at one of the
aforementioned two cases. This algorithmic procedure can easily be generalized for
Riccati foliations (P — S, .5) over a surface S (see [24]).

5.2. IRREGULAR SINGULAR POINTS AND STOKES MATRICES. For details on what follows,
see [29, Chap. VI] or [23, §5]. In the normal form Irreg, coefficients a, b, ¢ can be killed
by formal (generally divergent) gauge transformation and we arrive at the formal

normal form (5.2):

Q  dz dx dx

z z okttt
In the setting of sly-connections, this normal form writes

—a/2 0
d
(0" )
where a = dz /2! + Ndx /.

In general this last normalization is not convergent. Nevertheless, there are 2k
closed sectors covering a neighborhood of 0 in the x-variable such that the differential
equation is holomorphically conjugate to the normal form over the interior of the
sector, and the conjugation extends continuously to the boundary. Each of the sectors
contains exactly one of the arcs {x € D. | z* € iR} \ {0} where D. = {|z| < €}.
Over each of these sectors there are only two solutions with well defined limit when x
approaches zero which correspond to the solutions {z = 0} and {z = oo} for the
normal form. When we change from a sector intersecting z* € iRsq to a sector
intersecting z* € iR in the counter clockwise direction then we can continuously
extend the solution corresponding to {z = 400} but the same does not hold true

for the solution corresponding to {z = 0}. Similarly, when changing from sectors
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Sectors containing z € iR Sectors containing z® € iR«

Ficure 5.1.

intersecting ¥ € iR to sectors with points in ¥ € iRs in the counter clockwise
direction we can extend continuously the solution corresponding to {z = 0} but not
the one corresponding to {z = oo}.

The obstructions to glue continuously the two distinguished solutions over adjacent
sectors are the only obstructions to analytically conjugate the differential equation to
its normal form. These obstructions are codified by the Stokes matrices (the matrix
point of view is more convenient here):

(é b11> (c11 (1)> <(1) blk> <c1k (1)>

well-defined up to simultaneous conjugacy by a diagonal matrix. Precisely, the b;’s
(resp. the ¢;’s) are responsible for the divergence of the central manifold at z = oo
(resp. z = 0). In other terms, the b;’s (resp. the ¢;’s) are the obstructions to kill the
coefficient a(z) (resp. ¢(z)). The monodromy around = = 0 is given by multiplying
this sequence of Stokes matrices (in this cyclic order) with the formal monodromy

e—iﬂ')\ 0
0 eiTr)\

(on the left or the right, as this does not matter up to diagonal conjugacy).

If © = (%) is a change of coordinate compatible with normal form Irreg, then
the linear part ¢’(0) is a k' root of unity; it permutes the sectors, and consequently
induces a cyclic permutation of (indices of) Stokes matrices. All these classical re-
sults can be found in [29, §VI.2]. Furthermore, one also finds there explicit examples
of Riccati foliations with non trivial Stokes matrices. The most famous of them is
undoubtedly Euler’s equation that can be interpreted as a Riccati foliation over P!
defined by the rational 1-form

dz — %#dl‘.
The pole over {x = 0} is irregular unramified with non-trivial Stokes matrices, since
the weak separatrix through (0, 0) is divergent.
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5.3. LLOCAL FACTORIZATION AT A GENERIC POINT OF THE POLAR DIVISOR. After review-
ing the situation in dimension one we now move back to the two dimensional case.
Let (7 : P — S, ) be a Riccati foliation over a surface S and let H C S be an
irreducible component of the polar divisor (#)s. The hypersurface 7—1(H) can be
S -invariant or not. In fact, the following assertions are equivalent (see [24, Lem. 4.1])

— H is not J7-invariant,

— the polar order of df) along m~*(H) is strictly greater than the polar order of Q.
Moreover, in this case, if H is smooth (e.g. if (%)« is simple normal crossing), then
we can make a bundle modification over H such that H is no more a polar component
of .

The singular set of 77 is located over the polar divisor, and in restriction to 71 (H),
it consists in a curve I intersecting the generic fiber 7=1(p), p € H in 1 or 2 points.
Vertical irreducible components 7~ !(p) of T' occur over singular points of ()
and so-called turning points for the connection. Let us call them special points. The
remaining (non vertical) part of I’ can consist in one or two sections, or also of an
irreducible double section. When H is JZ-invariant, then we have (see [24, Lem. 4.1])

Lemwva 5.3. Let H be an irreducible component of the polar divisor of (P, 7). If
7Y (H) is 2 -invariant then the foliation S locally factors through a curve along H
minus its set of special points.

For the sake of completeness, we will give a short proof in Section 8.1. By local
factorization we mean the following. At any non special point p € H, and for a
sufficiently small disk A C S transverse to H at p, there exists a neighborhood U C S
of p and a submersion f : U — A with f~!(p) = H N U such that the Riccati
(P, )|y over the neighborhood U is the pull-back of its restriction over A through
a fibre bundle isomorphism. In other words, the Riccati foliation is locally a product
of a Riccati foliation over a disk by a disk (or a polydisk in higher dimension). In
this situation, the isomorphism class of the Riccati foliation (P, 5)|a is called the
transverse type of (P, 5) along the component H.

Remark 5.4. — For a linear sly-connection (£, V), the corresponding Riccati foliation
obtained by projectivization satisfies the assumption of Lemma 5.3 at a non special
point p € H of the polar divisor if and only if the polar divisors of the matrix
connection A of V and its differential dA satisfies in any local trivialization of E,
(dA)s < (A)s. In the case of simple poles, this just means that the pole is actually
logarithmic.

The following result follows from the existence of a canonical lattice (see [27]) and
is also proved in [24] for the Riccati setting.

Provosirion 5.5. — Let (m : P — S,5) be a Riccati foliation over a projective
surface S. Up to birational bundle modification, we can assume that all irreducible
components H of (H)s satisfy assumption of Lemma 5.3 and the Riccati foliation
locally factors through a curve at the neighborhood of any non special point p € S.
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We now explain how special points can be simplified by blowing-up and finite flat
morphism.

5.4. REDUCTION OF SINGULARITIES FOR RICCATI FOLIATIONS OVER SURFACES. — The fol-
lowing result will be proved in Appendix A.

Turorem 5.6. — Let (m : P — S,9) be a Riccali folzatzon over a projective sur-
face S. There exists a generically finite morphism ¢ : S8 (with S smooth) and
a birational bundle modification of the pull-back bundle ¢* P such that the pull-back
Riccati foliation has normal crossing polar divisor D, and is locally defined over any
point p € |D| by a Riccati 1-form having one of the following types:

Q Q
(1) Logbm: — = %—i-)\xd—x, or — = & + Az d—x—l—)\ dy

z oz x z oz
(2) Log®e: Q = dz—i—d—, or Q= dz+d—x+)\dy

Y

Q

(3) Trreg’: S = & f;:lj; + A\ d—m + Ay — dy , where f =z or xy;
d d

(4) Irreg: Q:dz—i—(fk{_l +)\7f)z+(a(f)z +b(f)z +c(f)) df, where f =z or zy.

In all cases, we have A € C*, A\, \y € C\Z, a,b,c holomorphic and k € Z>.

The first part of the proof has to be compared with Sabbah’s result in [38]. He
defines, for linear meromorphic connections, a notion of good formal model at a point
of a normal crossing divisor; this allows him to define Stokes matrices. Bad formal
models occur in codimension 2; they correspond to special points of Section 5.3. When
the base manifold X is a surface (and up to rank 5 connection), Sabbah proved that,
maybe blowing-up X, we can assume that all points of the polar divisor have good
formal model; this was generalized by Kedlaya and Mochizuki for any rank [19, 31].

In Appendix A, for the surface and rank 2 case, we provide a proof using an
auxiliary (transversely projective) foliation, Seidenberg’s resolution of singular points
and the classification of reduced singular points of transversely projective foliations
by Berthier and the third author in [3, 42]. We use ramified coverings to get rid of
ramified irregular singular points.

In the sequel, a Riccati foliation (7 : P — S, 5¢°) will be said reduced if it satisfies
the conclusion of Theorem 5.6.

5.5. Crosep 1-vorm AND StokEs mMaTRICES. — Let (P, %) be a reduced Riccati fo-
liation on a complex surface S. Let p € S be a point of the support of the divisor
() o- If the local model for 52 at p is of type (1), (2) or (3) in Theorem 5.6, we
see that 2 is locally defined by a meromorphic closed 1-form. In the last item (4) of
Theorem 5.6, the coefficients a(f) b(f),c(f) can be killed by a formal bundle trans-
formation z = d)( ), i.e., with be PGL2(C[f]). By this way, we arrive at the normal
form (see §5.1 or [29, §IV.1.2D

~ dz )\ 1

Q= 'z ( [ ferl ) df
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which is closed. From this formal model, one easily checks that Z = 0 and z = oo
are the only formal sections on the bundle that are J#-invariant (i.e., in restriction
to which Q identically vanishes). Therefore, 2 has exactly two . -invariant formal
sections of P at p. The obstruction to the convergence of these two formal sections is
given by non diagonal coefficients of Stokes matrices (see [29, Chap.III, Th. 4.4]).

Levya 5.7. — At a sufficiently small neighborhood V,, of p, the following assertions
are equivalent:

— Ay, is defined by a meromorphic closed 1-form on the restriction Ply,,
— there are two analytic sections V, — P of the bundle that are J-invariant,
— Stokes matrices are all trivial at p if the type is (4).

In this case, the two analytic 7€ -invariant sections induce the formal sections at p.

Proof. If |y, is defined by a meromorphic closed 1-form €, then it follows from
Proposition 4.7 that Q = ¢-(dz/z + w) after convenient bundle trivialization, with w a
meromorphic closed 1-form on X and ¢ € C*. Indeed, 7 cannot have a meromorphic
first integral over p since it is irregular, and it cannot be defined by dz + w since it has
two #-invariant formal sections. Therefore, z = 0 and z = oo are two J7-invariant
sections which must coincide with the two formal ones at p. Conversely, if 7 has two
analytic sections, then it is defined by a closed 1-form (see Lemma 4.6 and its proof).
Finally, that the two last assertions are equivalent is well-known (see [29, Chap.III,
Th. 4.4]). O

Remark 5.8. — At the neighborhood of an irregular singular point p, a Riccati fo-
liation ## has no other local (formal) multi-section than the two formal sections
discussed above. It has no meromorphic (formal) first integral and the unique formal
1-form defining 7 is, up to a scalar constant, the 1-form O above.

6. TRREGULAR DIVISOR

Throughout this section, (P, ) is a reduced Riccati foliation over a projective
surface 9, i.e., € is as in the conclusion of Theorem 5.6. We study the irregular part of
the polar divisor of .. Precisely, since ¢ is reduced, we have () = >,(1+k;)D;
where k; is the irregularity index of ## along D;; in particular, k; = 0 precisely if S
is logarithmic at the generic point of D;. Then we can decompose

(%)oo = (%)oo,rcd + I,

where (€)oo rea is a reduced divisor with support ()|, and I := Y, k; D; denotes
the irregular divisor.

We note that the irregularity index k; must be constant along each connected
component of I, due to the local model of J# at intersection points p € D; N D;
(see (3) and (4) of Theorem 5.6).

We also note that the singular set sing(J#) over the irregular divisor I consists
of finitely many P!-fibers, located over intersection points of the polar divisor, and a
smooth curve Z C 7~ 1(I) on which 7 induces a 2-fold étale covering 7|z : Z — I. If
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we restrict this picture to a connected component D of I, the curve Z|p may split as
a union of two sections, say Zy and Z, or be irreducible (i.e., unsplit). Throughout
the section, we will refer to this dichotomy as the split or unsplit case. Note that, if
we are working on a small analytic neighborhood V' of D, with V and D having the
same homotopy type, then maybe passing to a 2-fold étale covering V- V', we can
always assume that we are in the split case. Indeed, the monodromy of 7|z induces a
representation mq (V') ~ w1 (|D|) — Z/27Z which defines such a covering.

6.1. Frar coorpinaTes. — Here, we show that any connected component D of the
irregular divisor I has torsion normal bundle, in particular D-D = 0. Indeed something
even stronger holds true as proved in the proposition below.

Provosirion 6.1. — Let (P,5¢) be a reduced Riccati foliation on a projective sur-
face S. Let D = k- Dyeq be a connected component of the irreqular divisor I. Then the
normal bundle of Dyeq is torsion of order r dividing 2k (dividing k in the split case)
and moreover

O5(7Dred) kDyes = OkDyes-

In particular, in any case, we have D - D = 0.

Proof. — Take an open covering of a neighborhood of |D| by sufficiently small open
sets V; on which 47 is defined by models of Theorem 5.6, for convenient analytic
coordinates x;,y;; the restriction |D| N'V; is defined by {f; = 0} with f; = x; or
fi = x;y;. We can assume that intersections V; NV} are simply connected and do not
contain singular points of the polar divisor (J)... We want to prove that, on V;NV},
we have
fi = aiifj + bijfjl‘g—i_l:

with constant a?f = 1 and b;; holomorphic; moreover, in the split case, we want to
show that we can choose f;’s such that afj = 1. This will prove the Proposition.

We are going to work at the formal completion of V along D. Over each
intersection V; N V;, we can choose formal trivializing coordinates for the bundle

2i, 25+ Plv,av; — P! such that the foliation .77 is defined by the closed formal 1-forms
dz; df; df; dz; df; df ;
Q= (Ai+ ,;’11) and Q=29 4 (Aﬁ+ kfjl)
2 fi o fF Zj i f

Indeed, if % has model (4) over V;, then this follows from §5.1 (see (5.2)); on the
other hand, for the model (3), with f; = z; or z;y;, then we have
T Ty Py )T

and we get the normal form Q; by setting z; = z - exp(Xy log(y;)) for a convenient
determination of the logarithm (note that y; # 0 on V; NV;). We do exactly the same
over Vj.

We claim that we can choose Q; = £ over V;NV}. Indeed, since §2; and 2; define
the same foliation, they must be proportional: we have Q; = g;;€; for some (formal)
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function g;;. From closedness condition for these 1-forms, we deduce the g;; must be
a first integral for J2’; therefore, g;; is constant. But since residues of 2; and €2; on
non vertical poles z; = 0,00 are equal to £1, we thus get g;; = £1.

We note that the non vertical poles of €2; define two formal sections over V; N'V;
that coincide over |D| N'V; NV; with the singular locus of .#. In the split case, the
non vertical poles therefore globally define two sections so that we can globally fix the
residues of all €2;’s on these. Consequently, in the split case, we can moreover assume
Q; = over V; NVj.

If A # 0, then ©; = Q; because of the sign of the residue over D. Therefore, in the
unsplit case, we necessarily have A\ = 0.

Let us first deal with the split case, therefore assuming €2; = ;. We must have
fi = fij(xj,y;)f; and z; = g¢s5(x;,y;)z; for some invertible functions f;; and g;; on
Vi N'V;. Then we get

df;; 1 dfy; (I_Qc%

dgi;
0=0Q;,—Q, =22 4+ )\ — — — .
S P A A

We deduce that the 1-form
L dfi; +<1 1) af; 1 (dfij+(fij_ 4y df; )

Fk pk+1 Tk k+1 — pk+1 k ij k+1
Ff T f! f]

ij ij

o)
cannot have poles.
Notice that the residue of f]’-“@ along {f; = 0} is nothing but f;; — Z—H mod f;.
ikj = 1mod f;. Now, let us write fi; = a;;(1 + b;; f}') for some n > 0
and b;; holomorphic (and afj = 1). Then we get

(n — k)aijbi; f'df; + o(f}")
I

If n < k, then b;; must vanish along D and we can set f;; = a;;(1 +gijff'+1). By
induction, we arrive at n = k. This establishes the proposition in the split case.

Finally, in the unsplit case, whenever we have §); = —;, we can replace €); by
Q; = =, and (fi,z) by (fi,2) = (afi,1/2) with a® = —1, so that we are back to
the previous discussion: we deduce that

@i fj+big £

Therefore

G‘):

k+1
fi= o :aijfj+bijfj+ ;
. 2k 2k .
with aj} = (a;;/a)™ =1, ending the proof. O
Remark 6.2. In the system of “transverse coordinates” f; : V; — C constructed in

the course of the proof, the Riccati foliation 57
locally defined by

(2

v, 18, except at points of type (3),

;i*"fklﬂ*‘ﬂi(fi)'f‘%(fi)

o + (@a()2i 4+ A ),

T
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for a holomorphic bundle coordinate z;, where «;, 3;,7; are holomorphic functions
of f;. We can assume the functions «;, 3;,7; vanishing at arbitrary high order along
|D|. Recall from Section 5.2 that the obstruction to make them just zero is given by
the non triviality of Stokes matrices.

Remark 6.3. On V; NV, we get
{fi = ai;(f; + b fiH)

+1
Z; = Ciij 5

with aj; = +1 (same sign) and bij, cij € Oy,ny, satisfying c;; exp(bijaf;)|p| = 1.
Considering transition multiplicators a;;, we have an induced representation

Y :m (| D]) — C*

taking values in the group of (respective) roots of the unity, which describe how the
differentials df; change when we follow closed paths along D.

6.2. Smoorn riBrATION. — We have just proved that a connected component D of
the irregular divisor I has local equations ffk : Vi — C that patch together up to
order k, where k is the irregularity index. In the setting of real C'° functions, we
can modify these local equations so that they can patch together to define a fibration
on V having D as a singular fiber and which is smooth elsewhere.

Lemva 6.4. Let (P, ) be a reduced Riccati foliation on a projective surface S.
Let D be a connected component of the irregular divisor I like in Proposition 6.1 and r
be the torsion order of D,eq. Then, there exists a C°° map f:V — D defined on an
analytic neighborhood V' of |D| such that:

— f induces a C* locally trivial fibration over D* =D ~ {0},
— f coincides with local equations f] : V; — C of Remark 6.2 up to order k.

Proof. — The transition functions { f;; € &7, (V;NV;})} of the proof of Proposition 6.1
define an element in H'(V, &};) which corresponds to Oy (D). Let &, and <%} denote,
respectively, the sheaves of C'° functions and of C'*° invertible functions. Notice that
HY(V, o#}) is isomorphic to H*(V,Z), as &, has no cohomology in positive degree
(o is a fine sheaf). Notice also that the restriction morphism from H?(V,Z) to
H?(|D|,Z) is an isomorphism since the inclusion of | D| in V is a homotopy equivalence.

Since f];||pjnv; = 1, the element {f/;} € HY(V, %) maps to the trivial element of
HY(V, o) ~ H*(V,Z) ~ H*(|D|,Z). Thus we can find non-vanishing C'*°-functions
{9: € #y(Vi)} such that fl. = gi/g;. Moreover, we can choose the functions g;
satisfying g;||pjnv, = 1. Our assumptions imply that we can further assume that the

;; are constant equal to one when restricted to D.

Therefore we can define a C* function f : V' — C by the formulas f|v, = (f:)"/g:.
The function f clearly satisfies f~1(0) = |D| set-theoretically. We claim that, after
perhaps shrinking V, the critical set of f is contained in |D|. At a neighborhood of
a smooth point of |D| the function f is a power of a submersion. At a neighborhood

function

JE.P. — M., 2016, tome 3



204 F. Loray, J. V. PEreira &« F. Touzer

of a singular point of |D|, the function f is of the form h(z,Z,y,7)ry and therefore
df = xydh + h(ydz + zdy). Since this expression has an isolated singularity at zero
(the singular point of |D|) it follows that the critical set of f is indeed contained in D.
Replacing V by f~1(D.) for a sufficiently small € we have just proved the existence
of a C* proper map f : V — D, from V to the disk of radius ¢ which maps |D| to
the origin in D, and, when restricted to V ~\ |D|, becomes a locally trivial fibration
over Df. 0

6.3. Crosep 1-rorm AND RICCATI FOLIATIONS. We present now a semi-local version
of Lemma 5.7

Prorosition 6.5. Let (P, 5¢) be a reduced Riccati foliation on a projective sur-
face S. Let D be a connected component of the irreqular divisor of (P, ) and V be
a sufficiently small neighborhood of |D|. Assume we are in the split case. Then the
following assertions are equivalent:

— Ay is defined by a meromorphic closed 1-form on the restriction Ply,

— there are two analytic sections V. — P of the bundle that are € -invariant,

— at some point p € |D| (in fact any), the local model for # is of type Irreg®, or
of type Irreg with trivial Stokes matrices (see Theorem 5.6).

Proof. — 1f the local model for # has trivial Stokes matrices at p (which is automatic
in the first item, see Lemma 5.7), then it has two invariant analytic sections. By using
local trivializations of J# given in Section 5.3 (see also Remark 6.2), we see that
this property propagates all along |D|. By the way, we get a two-fold section of the
bundle; since they are locally attached to the two irreducible components of Z, we get
actually two distinct global s#Z-invariant sections. It follows from Lemma 4.6 that 57
is defined by a meromorphic closed 1-form. Finally, it follows from Lemma 5.7 that, if
defined by a closed 1-form, then Stokes matrices are trivial at any point p € |D|. O

Prorosition 6.6. — Let (P,7¢) be an irreqular Riccati foliation on a connected
complex surface S. If there exists a generically finite morphism f : S = S such
that f*(P, ) is defined by a closed rational 1-form, then there exists another one
1 S’ S of degree at most two with the same property.

Proof. — The pull-back (ﬁ,% := f*(P, ) must be also irregular; in particular,
# does not admit non constant rational first integral. By Proposition 4.7, we deduce
that, up to a birational bundle transformation, A is defined by a Riccati of the form
dz/z +w = 0 for a closed rational 1-form w on S (note that dz + w = 0 is regular).
In particular, the two sections z = 0, co are S -invariant. Pushing them down via f,
we get a n-section of P which is J7-invariant, n > 2. We can apply Lemma 4.6: by
irregularity, ¢ cannot have non constant meromorphic first integral and is therefore
defined by a closed rational 1-form maybe passing to a two-fold cover X’ — X. 0O
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6.4. MONODROMY AROUND THE IRREGULAR DIVISOR

Prorosirion 6.7. — Let (P, 5) be a reduced Riccati foliation on a complex surface S.
Let D be a connected component of the irreqular divisor I of the form D = kD,eq.
Then, there is a neighborhood V' of |D| in S in restriction to which the monodromy
of (P, 7€) is virtually abelian. More precisely, at least one of the following assertions
holds true.

(1) Maybe after passing to an étale covering V5V of degree two, the (pulled-
back) Riccati foliation S is defined by a closed meromorphic 1-form over 1% (and the
monodromy is abelian).

(2) The monodromy factors through a C*°-fibration f : VD — D* and is therefore
cyclic.

If the supports of (7€) and D do not coincide on V', then we are in case (1).

Proof. — Let V be a small tubular neighborhood of D, and let R : V — |D| be a
deformation retract. Since the statement is local, from now on 7 will be seen as a
Riccati foliation defined over V. Maybe passing to an étale covering V =V of degree
two, we may assume we are in the split case: the singular locus sing(.%#’) consists in
two disjoint sections D — P|p, and fibers over singular points of D.

If all the Stokes matrices along D are trivial, then Proposition 6.5 implies that
we are in case (1) of the statement. If (7)o and D have distinct supports in V,
this means that (%) contains at least one logarithmic component, intersecting |D)|
at some point p; the model at p is (3) in Theorem 5.6, and all Stokes matrices are
therefore trivial along D.

Let us now assume that Stokes matrices are non trivial at a smooth point g € D.
Let X be a germ of curve transverse to D at xg. Let m : P — V be the natural
projection. The restriction of 5 to m—1(¥), is a Riccati foliation over ¥ with an
invariant fiber {x¢} x P! having two saddle-nodes over it. As explained in Section
5.2, if k is the order of D at x( then there are 2k closed sectors on X, such that
over the interior of each of them, the Riccati foliation is analytically conjugated to
dz/z + dx/x*1 + X dz/z and the conjugation extends continuously to the boundary.
Over each of these sectors there are exactly two leaves with distinguished topological
behavior: the closure of each of these distinguished leaves intersect the central fiber
{zo} x P! at a unique point.

Let %5 be the interior of one of these sectors. The local triviality of J# along the
smooth part of D, and the local normal form of 5 at the singularities of D, allow
us to construct an open set . C V ~ |D| which extends .#s and over which we
never lose sight of the two distinguished leaves of the restriction of # to 7= !(%%).
This open subset can be indeed realized as the saturation of .5 by the fibers of
the fibration f|yp| : V ~ |D| — D* defined by Lemma 6.4. The intersection of
the resulting open set . and the initial transversal ¥ has r = # (71 (|D|)) distinct
connected components, where v : 71 (|D|) — C* is the unitary representation defined
in Remark 6.3.
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The sector .. The intersectian of . and X.

Ficure 6.1.

The restriction of the monodromy representation of 2 to . has its image (up to
conjugation) contained in C* as 4 over . has two distinguished leaves which are not
permuted because of the assumption on sing(#). By construction, the set .% has the
form f~1(8) with § a contractible open set of D*. Therefore, it has the same homotopy
type as the general fiber. In particular, 7 (%) is a normal subgroup of 71 (V ~\ |D|)
thanks to the vanishing of m3(D*). If we do this construction choosing base points
at two adjacent sectors with non trivial Stokes transition matrix, we conclude that
indeed the monodromy of J# on .¥ is trivial since a nontrivial Stokes matrix at
one hand conjugates the corresponding monodromy representations, and at the other
hand it does not respect the fixed points of the two monodromy representations. We
conclude that in the presence of a nontrivial Stokes matrix the monodromy factors
through f, : m (V ~|D|) = m1(D*) as wanted. O

Lemma 6.8. — Let (P,5¢), D, and k be as in the statement of Proposition 6.7 and
assume that we are not in case (1). If the normal bundle of Dyeq has torsion order
> k, then the monodromy of (P, ) is non-trivial.

Proof. — Notation as in the proof of Proposition 6.7. Consider the unitary represen-
tation ¢ : m(|D]) — C* defined in Remark 6.3; the torsion order r of the normal
bundle of D satisfies r = #¢(71(|D])). By Proposition 6.1, we know that r divides k
(resp. 2k) in the split (resp. unsplit) case. Since r > k, we have r = k or 2k.

Consider first the split case: this obviously implies r = k. Let v € |D| a loop such
that ¥(vy) = exp(27i/k) We can lift v to a path 7 in a region . such that the initial
and final points lie in two consecutive small sectors. Moreover, since 7 is not given by
a closed meromorphic 1-form we can assume that at least one of the two distinguished
leaves over the initial sector is not a distinguished leaf for the final sector. Closing the
path 7 using an arc on the transversal ¥, we obtain a path in V \ |D| with non-trivial
monodromy.

Consider now the unsplit case. Going back to the proof of Proposition 6.1, we see
that there must be some loop v € |D| such that ¢ (y)¥ = —1. This shows that r = k
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is impossible, thus » = 2k in this case. After a two-fold étale covering vV - V, we
are in the previous split case with normal bundle having torsion k£ coinciding with
irregularity index. We thus obtain a loop 4 with non trivial monodromy on XN/; its
projection on V' has the same property. O

7. STRUCTURE

7.1. Proor or Turorem C. — Let (P, %) be a Riccati foliation over the projective
manifold X with irregular singular points. Assuming that it is not defined by a closed
1-form after a two-fold covering, our aim is to prove that it factors through a curve.

By Proposition 6.6, we may assume that f*(P, ) is not defined by a closed ratio-
nal 1-form for any generically finite dominant rational map f : X’ --+ X. According
to Proposition 4.11, it suffices to prove the factorization of (P, ) in restriction to a
surface S C X obtained as an intersection of general hyperplane sections. According
to Proposition 4.12 (and an obvious induction on the dimension), we may assume
that the restriction is not defined by a closed rational 1-form after any generically
finite dominant rational map f : S’ --+ S. Furthermore, Proposition 4.8 allows us to
assume that the singularities of (P, #) are as in the conclusion of Theorem 5.6.

Let D be a connected component of the irregular divisor I: we have D = kD, eq.
It follows from Proposition 6.1 that D has torsion normal bundle, and from Propo-
sition 6.7 that the monodromy of (P, ) is virtually abelian at the neighborhood V/
of D.

First case: the global monodromy of (P, ) on S is not virtually abelian. — 1In particu-
lar, it is strictly larger than the local monodromy around D:

P (SN (A )ol)) # p(mr(V N [(H)ocl))-

Then arguments used in the proof of Theorem 3.1 show that D is the fiber of a
fibration f : S — C (we use extra topology in S — V to construct a ramified cover
with several disjoint copies of D and then apply Theorem 2.2). Let U a dense open
Zariski subset of S\ |(#) | such that fi;; is a topologically a locally trivial fibration
on its image®). As in the proof of Theorem 3.1, the monodromy of a general fiber
of fiy is a normal subgroup of the global monodromy group and is therefore trivial.
Thus, the monodromy representation factors through f. But the general fiber of f
does not intersect the irregular divisor and we can apply Proposition 4.9 to conclude
that the Riccati foliation factors as well.

We can now assume that the global monodromy is virtually abelian, and after
passing to a finite covering, that it is torsion free. Thus the global monodromy either
is abelian and infinite, or trivial.

(3)Beware that the general fiber of f|y is not necessarily compact, especially when D intersect a

logarithmic component of the polar locus (/#)cc.
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Second case: the global monodromy of (P, 7€) on S is abelian and infinite. We first
aim to prove that D is a fiber of a fibration S — C (up to finite cover). If the global
monodromy is strictly larger than the local monodromy around D, we can argue as
in the first case: we can use the extra monodromy to produce a finite cover on which
we have several copies of D providing a fibration. Assume now

P (SN (A )o]) = p(m1(V N [(H)ocl))-

If the Riccati foliation % nearby D satisfies conclusion (1) of Proposition 6.7, then
there is a 2-section V' --» P|y which is invariant by ¢, and in particular by the
monodromy. This 2-section therefore extends outside the extra poles of J#. If the
Riccati foliation has only logarithmic poles outside of D, then the 2-section extends
on the whole of S, proving that J# is given by a closed 1-form on a two-fold cover (see
Lemma 4.6), contradiction. If, on the contrary, # has an extra irregular pole, say D’,
disjoint from D, both of them having torsion normal bundle by Proposition 6.1; then,
we get a fibration by Theorem 2.2.

In conclusion (2) of Proposition 6.7, the monodromy factors, around D, through the
C>-fibration f : V ~~ D — D*: the monodromy is infinite cyclic. If the representation
takes values in G, we compose a suitable multiple of it with an exponential so that
we can assume that it takes values in G, and is still infinite. Consider the Deligne
logarithmic flat connection (L, V) realizing this representation. By construction, the
residue of V along an irreducible component E; of the polar divisor takes the form
k;\ + n;, where X is an irrational number (the monodromy is infinite) and k;,n,; are
integers. The residue formula gives

0= ZResEicl(Ei) + Cl(L) = (Z kicl(Ei)>>\ + <Z ’I”Lz‘Cl(Ei) + Cl(L)>.
Since A is irrational, each term in parenthesis is zero and we get in particular

0= Z kic1(E;) = c1(D) — e1(E),

where D is our connected component of the irregular divisor, and F is a divisor
disjoint from D and contained in |(#)s|. After splitting £ = E — E_ with E
and E_ effective, we know that E; and E_ have non positive self-intersection by
Hodge index Theorem. On the other hand, the equality

0=D-D=E-E=F,-E, —2E,-E_+E_-FE_

forces each term, a priori < 0, to be zero. Finally, again by Hodge index Theorem,
FE, and E_ must be disjoint and have Chern classes proportional to the Chern class
of D. We can apply Theorem 2.2 to produce a fibration.

We have just proved, in the case monodromy is abelian and infinite, that D is
fiber of a holomorphic fibration f : S — C (we keep the same notation as for the
C°°-fibration). It remains to show that the Riccati foliation J# factors. When the
monodromy is trivial along a generic fiber of f, this clearly follows from Proposi-
tion 4.9. If not, we have infinite monodromy along fibers and, by looking at a fiber
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close to D, we must be in case (1) of Proposition 6.7. In particular, there is a 2-section
of the P'-bundle P that are invariant by the Riccati foliation .. In fact, since the
monodromy is torsion-free, we are in the split case: the 2-section splits into two dis-
joint sections. These two sections are tangent to the Riccati foliation 27 and also
to the pull-back to P of the foliation defined by the fibration. We obtain two curves
in the Hilbert scheme of P. Since tangency to . imposes a closed condition on the
Hilbert scheme of P, these two curves have Zariski closure of dimension one (recall
that over each fiber of f we have exactly two sections of P). Thus they spread two
surfaces, sections of P, which are invariant by 7. By Lemma 4.6, ¢ is defined by a
closed 1-form, contradiction.

Third case: the monodromy of the Riccati foliation J s trivial. — Like in the previous
case, if 7 is defined by a closed 1-form at the neighborhood of D, then it extends as
a global 1-form, except if there is another irregular polar component, in which case we
get two disjoint divisors with torsion normal bundle (see Proposition 6.1) and therefore
a fibration (see Theorem 2.2) through which .7 factors (see Proposition 4.9). On the
other hand, if we are in case (2) of Proposition 6.7, then Lemma 6.8 implies that r < k,
i.e., the order of the normal bundle of D,¢q is strictly smaller than the multiplicity of
the irregular divisor. The existence of a fibration with a fiber supported on | D| follows
from Theorem 2.3, and the Riccati foliation factors according to Proposition 4.9. [

7.2. Proor or Theorem E. — Let (E, V) be a flat meromorphic sly-connection on X.
In the case (E, V) is regular, then the conclusion of Theorem E directly follows from
Corollary B. Indeed, the Riemann-Hilbert correspondence establishes a one-to-one
correspondence between representations up to conjugacy and regular connections up
to birational bundle transformations (see [17]). For instance, if the monodromy is vir-
tually abelian, i.e., abelian after a finite cover, then it is either diagonal, or unipotent,
and can be realized by one of the two models of case (1) in Theorem E; the Riemann-
Hilbert correspondence provides the birational equivalence. Similarly, cases (1) and (2)
of Corollary B for the monodromy respectively imply cases (2) and (3) of Theorem E
for the regular connection. Let us now assume (E, V) irregular.

Let us consider P := P(E) the P!-bundle associated to E; horizontal section of V
induce a Riccati foliation 4 on 7 : P — X which is irregular by assumption. We can
apply Theorem C to the projective connection/Riccati foliation (P, 5#) and discuss
the two possible conclusions.

Assume first that % is defined by a closed 1-form (maybe passing to a finite
covering of X). After birational bundle transformation, we can assume Py = X x P!

and %) defined by dz
Qo=—+2w or Qy=dz+w,
z

with w a closed 1-form on X (see Proposition 4.7). These Riccati foliations are induced
by those explicit connections of Theorem E (1):

w 0 0 w
Vo—d+(0 _w) or Vo—d+<0 0)
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on the trivial bundle Fy := Ox @ Ox. There is a birational bundle trivialization
FE --» Ey making commutative the diagram

E (b » By

P > Py

Obviously, ¢,V is projectively equivalent to one of the models Vg: ¢.V =Vi® ¢
with (Ox,() a flat rank one connection over X, birationally equivalent to the triv-
ial connection by construction. This means that one can write { = d + df/f and,
maybe tensoring by the logarithmic connection (Ox, d + %%) (whose square has triv-
ial monodromy), we get equality ¢.V = V(. Note that, passing to the 2-fold covering
defined by z? = f, the connection V is birationally gauge equivalent to V¢ (without
tensoring).

Assume now that (P,5¢) is birationally gauge equivalent to the pull-back
f*(Py, 54) of a Riccati foliation over a curve, f : X --» C with Py = C x PL
Denote by Vq the unique slo-connection on the trivial bundle Fy over C' induc-
ing the projective connection (Py,.#%). Then (E,V) is birationally equivalent to
f*(Ey, Vo) ® (Ox,¢) with ¢ logarithmic rank one connection having monodromy in
the center of SLy(C). O

8. TRANSVERSELY PROJECTIVE FOLIATIONS

8.1. Basic Lemma. — Let % be a transversely projective foliation on a projective
manifold X defined by a triple (wg, w1, ws). The Riccati foliation 7 defined on X x P!
by
dz + wo + 2w + 22wy =0

is integrable (4.1):

dwo = Wo N wi

dwl = 2(4}() N\ Wo

dws = w1 A wo
and the foliation .# is defined by restricting J# to the section o : X — P given by
z = 0. Another projective triple (w(,w],w}) defines the same transversely projective
foliation, i.e., the same foliation .# with the same collection of local first integrals at
a general point of X if, and only if, there are rational functions a,b on X such that
a % 0 and

W) = awp
da
(8.1) UJi = wi — ; + 2bwg
1
wh == (wg + bwy + bPwy — db)
a

(see [39]). This exactly means that the Riccati foliation .7 defined by

Q = dz + wh + 2wy + 22w
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is derived by gauge transformation 1/z = a/zZ + b. The following is well known
(cf. [39, Chap.II, Prop. 2.1, p. 193] and [9, Lem. 2.20]).

Lemvia 8.1. — If % is defined by a closed 1-form w, dw = 0, then up to gauge
transformation (8.1), the Riccati foliation S is defined by

QO =dz+w(l +¢z%) where ¢ is a first integral for F.

Proof. — One can first write w = awp for some rational function a and use gauge
transformation (8.1) to set (wp, w1, ws2) = (w,0,w}). Indeed, once wy = w is closed, we
deduce from (4.1) that wpAw; = 0, and therefore wy; = bwy for some rational function b;
consequently, wy can be killed by gauge transformation. Finally, integrability condition
gives dw) = w A wh = 0, which means that w) = fw and d(fw) = 0 for some rational
function f. The latter condition, together with closedness of w, gives df Aw =0, i.e.,
f is a first integral for .Z. O

Cororrary 8.2. — If Z is defined by a closed 1-form, then € is also defined by a
closed 1-form, or factors through a curve. If F admits a rational first integral, then
factors through a curve.

Proof. If # admits a rational first integral f, then after resolution of indeterminacy
points of f by blowing-ups X=X , Stein Factorization gives a fibration ]?: X C
over a curve with connected fibers coinciding generically with leaves of Z. Applying
Lemma 8.1 to w = df, we get that ¢ = qﬁ(f) and J# actually factors through f. If
is now defined by a closed 1-form w, but does not admit a rational first integral, then
applying Lemma 8.1, we get that ¢ = ¢ € C is a constant, and ¢ is defined by
dz/(1 + cz?) + w which is closed. O

Remark 8.3. Statements similar to Lemma 6.8 and Corollary 8.2 hold with the
very same proofs in the local setting, replacing rational functions and 1-forms by
their meromorphic analogues.

Proofof Lemma 5.3. — At a generic point p € m—1(H), the foliation # is smooth
and vertical: let pg = 7(p) be the projection and o : (X, pg) — P be a germ of section
transverse to 7. The induced transversely projective foliation is regular and therefore
admits a holomorphic first integral. By the local version of Corollary 8.2, . locally
factors through a curve. a

8.2. Proor or Tureorem D. — Under previous notations, we now apply to (P,.5)
our results on projective connections (Corollary B and Theorem C, or equivalently
Theorem E). There are three cases.

First case. — There is a generically finite morphism f : Y — X such that f*5¢ is
defined by a closed 1-form €. The pull-back f*.% on Y is still defined by restricting
the Riccati foliation to the pull-back section ¢ : Y — f*P; it is therefore also defined
by restricting the closed 1-form €2 to the section.
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Second case. There is a map f : X --» C to a curve and a Riccati 4 on
Py = C x P! such that (P, 5#) is equivalent to f*(Py, #p) by birational bundle trans-
formation. We thus deduce a map ® : P --+ P, such that s = &*57). Consider the
composition P oo : X --» Py. Then either it is dominant and .% is the corresponding
pull-back of 57 (we are in case (2) of the statement), or the image is a curve and
fibers force the leaves of .Z to be algebraic (we are in case (1)).

Third case. — There exists a rational map f : X --+ § to a polydisk Shimura modular
orbifold such that (P, 5#) is equivalent to the pull-back of one the tautological Riccati
foliations (P, := §) x, P!, #,) by birational bundle transformation. Again, we deduce
a map ¢ : P --» P, such that ¢ = ®*J7,, and considering ® oo : X — P,, we can
conclude as before: we are in the case (1) or (3) of the statement depending whether
the image is a curve or higher dimensional (not necessarily dominant). (|

8.3. Turorem D mveries Tarorem E. Although we have followed the other direc-
tion, it is interesting to notice that our results on projective (or sly) connections and
transversely projective foliations are actually equivalent. Indeed, given say a Riccati
foliation (7 : P — S, %), with P birationally trivial, we can take a general ratio-
nal section ¢ : S — P and consider the induced transversely projective foliation
F = o*F . Applying Theorem D to .F gives the following possibilities.

First case. — The foliation .# has a rational first integral. By Corollary 8.2, we deduce
that 2 factors through a curve.

Second case. There is a generically finite morphism f : Y — X such that f*%
is defined by a closed 1-form w, but % does not admit a rational first integral. By
Corollary 8.2, we deduce that f*. is also defined by a closed 1-form.

Third case. — Maybe after blowing-up S, there is a morphism f : S = Py := C x P!
and a Riccati foliation ) on Py such that .# = f*J¢). Then, considering now the
pull-back ¢*5%) the fiber product:

¢

P——F

L

X—C

we get another transversely projective structure for .#. If .% is not defined by a closed
1-form up to finite cover, then its projective structure is unique, and ¢ is birational
to 74, thus pull-back from a curve.

Fourth case. There exists a polydisk Shimura modular orbifold $ and a rational
map f: X --» P, := §) x, P! towards one of its tautological Riccati foliations such
that # = f*J,. Like in the previous case, we can prove that .# is defined by a closed
1-form after a finite cover (and go back to the first two cases), or J# is birationally
equivalent to the pull-back of (P,, 7,) by f. O
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9. ExampLES
We will now present some examples which show that our results are sharp.

Examrre 9.1. Let Y be a projective manifold and consider a representation p :
71 (Y) — (C,+). It determines a cohomology class [p] € H!(Y,C). If its image under
the natural morphism H'(Y,C) — H'(Y, Oy) is non zero then it determines a non
trivial extension 0 — 0y — E — Oy — 0, endowed with a flat connection with

monodromy given by
Lp
01/

The projectivization X = P(E) is a P!-bundle over Y with a Riccati foliation defined
by a closed rational 1-form w with polar divisor equal to 2A, where A is image of
the unique section Y — P(E). If P is the trivial P!-bundle P over X then we have a
family of Riccati foliations J4, A € C, on it defined by

dz +w(l + Az?).

The Riccati foliation J73 is irregular for A # 0, does not factor through a curve, and
its irregular divisor is not a fiber of a fibration. If we take Y equal to an elliptic curve,
then X \ |A| is nothing but Serre’s example of Stein quasi-projective surface which
is not affine.

Examere 9.2, — Let n > 2 and let X be the quotient of H™ by cocompact torsion-
free irreducible lattice I' C PSLy(R)™. The natural projections H" — H define n
codimension one smooth foliations on X which are transversely projective (indeed
transversely hyperbolic). Contrary to what have been stated by the second author and
Mendes in [30, Th. 1], countably many leaves of these foliations may have nontrivial
topology (with fundamental groups isomorphic to isotropy groups of the action of T’
on the corresponding one dimensional factor of H"), but the very general leaf is
biholomorphic to H"~!. The maximal principle tells us that the general leaf cannot
contain positive dimensional sub-varieties, and consequently the foliations are not
pull-backs from lower dimensional manifolds.

Again the assumptions on I' can be considerably weakened. All we have to ask is
that T is an irreducible lattice of PSLy(R)™ for some n > 2. Notice that the rigid-
ity theorem of Margulis (resp. the classification of representations by Corlette and
Simpson) implies that all these lattices are commensurable to (resp. conjugated to
a subgroup of) arithmetic lattices of the form U(P,®)/+1d for some totally imagi-
nary quadratic extension L of a totally real number field F', some rank two projective
O'r-module P and some skew Hermitian form ®. Besides the n representations com-
ing from the n projections 79*™*(X) ~ T' C PSLy(R)" — PSLy(R), we also have
[L : Q] — 2n representations of 7™ (X) with values in PSLy(C) which do not fac-
tor through lower dimensional projective manifolds. The associated P'-bundles are
birationally trivial (since the underlying representation is a Galois conjugate of the
representations coming from the transversely projective foliations on X defined by
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the submersions H” — H), and by taking a rational section we can produce further
examples of transversely projective foliations on X which do not factor. Although the
underlying representations are Galois conjugate to the representations in PSLy(R),
the topology of the Riccati foliations over X associated to embeddings ¢ : L — C
for which v/—1 ® is definite is quite different. In the former case the Riccati foliation
leaves invariant two open subsets, corresponding to the complement of P!(R) ~ S*
in P!, while in the latter case the Riccati foliation is quasi-minimal: all the leaves not
contained in 771((#)) are dense in the corresponding P!-bundle.

Explicit examples of foliations on P? defined by the submersions H? — H with
I' C PSLy(2,R)? and T isomorphic to PSLy (0 ) (and certain subgroups) have been
determined by the second author and Mendes in [30] (K = Q(v/5)) using the work of
Hirzebruch on the description of these surfaces, and by Cousin in [15], see also [14],
(K = Q(v/3)) using an algebraic solution of Painlevé VI equation.

Examrre 9.3. — The degree of the generically finite morphism in Assertion (1) of
Theorem D cannot be bounded, even if we restrict to transversely projective foliations
on a rational surface. Let Cy = {z%+y?+ 2% = 0} C P? be the Fermat curve of degree
d > 3. 0On Sy = Cyq x Cy consider the action of Z/dZ given by ¢(x,y) = (42, €qy)
where &4 is a primitive d-th root of the unity. Let w € H%(Sy,Q§,) be a general
holomorphic 1-form satisfying ¢*w = £zw. The induced foliation is invariant by the
action of Z/dZ, but the 1-form w is not. The quotient of Sy by Z/dZ is a rational
surface R and the foliation induced by w on R is transversely projective (indeed
transversely affine). The monodromy group is an extension of the group of d-th of
unities by an infinite subgroup of (C,+). Explicit equations for birational models of
these foliations on P? can be found in [36, Ex. 3.1].

AI’I’ENI)IX. PlEI)L,C'I‘IO\J OF SINGULARITIES OF ]{ICCA'I‘I FOLIATIONS

This appendix is devoted to the proof of Theorem 5.6. Let (7 : P — S, 5¢) be a
Riccati foliation over a projective surface S. One can first blow-up S until we get a
simple normal crossing polar divisor (%), and then apply elementary transforma-
tions over irreducible components of () until we minimize order of poles on each
component. This is explained in [24]. Then all components of () satisfy assump-
tions of Lemma 5.3 and, outside of special m-fibers, the Riccati foliation locally factors
into one dimensional models of Proposition 5.1 or Irreg™™. In particular, we can de-
fine the irregularity divisor as I = ", k;D; where D; run over irreducible components
of (H)eo, and k; € %Z>0 is the irregularity index.

To get rid of special points, we use the fact that 7 : P — S is birationally trivial
and choose a rational section o : S --+ P which is not invariant by 5. The foliation
F = o* J is transversely projective; indeed, after birational trivialization z : P — P!
of the bundle, we may assume o given by z = 0: the foliation 7 defined by dz 4wy +
2w1 + 2%we = 0 and (wp, w1, ws) is a projective triple for .#. Now, apply Seidenberg’s
Theorem: maybe blowing-up S, we can now assume that .# has only reduced singular

JLE.P — M., 2016, tome 3



TRANSVERSELY PROJECTIVE FOLIATIONS 305

points. Following the classification of Berthier and the third author [3, 42], reduced
singular points of transversely projective foliations fall into one of the following types:

(1) % admits the holomorphic first integral:
— First integral: w = d(zPy?) with p,q € Zso;
(2) Z is defined by a closed 1-form w (but without first integral):
— Linear: w = dx/z + Ady/y with A € C — Q;
— Saddle-node: w = dy/y + dz/z**! + Ndz/z with X € C;
— Resonant saddle: w = dy/y + df / f*T1 + \df /f with f = 2Py? and \ € C;
(3) Z is the pull-back of a singular point of a Riccati foliation by a ramified cover:
~ Riccati saddle-node: w = dy + (b(z)y* + (1/z" + X/z)y + c(z)) dz;
— Bernoulli saddle-node: w=dz+ (b(z)z* + (1/zF T + X/z)z) da with z=y";
— Resonant saddle: w = dz+ (b(f)2? + (1/f*T1 + X/ f)z + c(f)) df with f =
zPy? and z = y;
In case (1), the local version of Corollary 8.2 (see Remark 8.3) tells us that .7
factors through f, and we can reduce it to the models given by Proposition 5.1.
In case (2), where .Z is defined by a closed 1-form w, we can similarly reduce 52
to either Q = dz + w, or dz/z + Aw with A € C*.

Finally, in case (3), we again see that .# factors through f = z or f = zPy9,
reducing to the model

Q= ds+ (W + (o + })z ().

and % is defined by z =y or z = y”.
We summarize all the possibilities studied above in the next result.

Tucorem A.l. — Let (x : P — S,5) be a Riccati foliation over a projective
surface S, with P a birationally trivial bundle. There exists a birational morphism
¢ : S8 (with S smooth) and a birational bundle modification of the pull-back
bundle ¢* P such that the pull-back Riccati foliation has normal crossing divisor D,
and is locally defined over any point p € |D| by a Riccati 1-form having one of the
following types:

(1) LOgGm1 9 — %+)\md£} or 9 — %+)\zdﬁ+/\y@7
z oz x z oz x y
d d d
(2) Log®e: Q:dz—l——x, orQ:dz—&——m—&—)\—y;
x x Yy
Q & df dx

dy
0. _ .
(3) Irreg’: p, o A . + Ay Y’ where f = x or xPyd;

(4) Trreg: Q =dz + (fgjil + A Cjc—f)z + (b(f)z% + c(f)) df , where f =z or aPyl;
ram. () 1962 df _(-dx  dy o dfy .
(5) Trreg™™: Q) = dz+ (2% + 2y ¢(f))m1~’gﬁf’“ (p +q ” +k f) with f and ¢

holomorphic, $(0) # 0, €1,e3 = 0,1 and (p,q) = (2p — €1,2q — €3).
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We note that the meromorphic gauge reduction process of Proposition 5.1 which is
a priori local can be done globally along irreducible components of the polar divisor.
Indeed, it can be checked on the proof of Proposition 5.1 that when the polar divisor
is not minimal along an irreducible component D;, then the non vertical part of the
singular set of S is a (smooth) section; after an elementary transformation along it
(blowing-up the section and then contracting the strict transform of 7=1(D;)), the
polar order decreases. After a finite number of steps, the polar order is minimal, and
all local models reduce to those of Proposition 5.1 by local biholomorphic bundle
trivialization. For details, see the proof of the main result of [24].

The last step towards Theorem 5.6 consists in passing to use a ramified covering
in order to kill ramifications. Going back to the irregular divisor I =) . k;D;, we can
choose positive integers m; such that m;k; = k for some fixed positive integer k (a com-
mon multiple of all k;’s). We now consider a Kawamata covering ({20, Prop.4.1.12]):
there exists a ramified cover f : S — S with S smooth such that f*D; = mif?i for
some smooth reduced divisors l~)l on S ,and ), D; has simple normal crossings. One
easily checks from models of Theorem A.1 that they are stable under ramified covers
in variables x or y, and that ramifying at order m; along D; multiplies the irregularity
index by m;. Finally, after covering, the irregularity index is k& all along the irregular
divisor. In particular, there are no more ramified components, and we have no more

to consider the model Irreg™™ of Theorem A.1. |
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