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Journées Équations aux dérivées partielles
Biarritz, 6 juin–10 juin 2011
GDR 2434 (CNRS)

Analytic and Geometric Logarithmic Sobolev
Inequalities
Michel Ledoux

Abstract

We survey analytic and geometric proofs of classical logarithmic Sobolev
inequalities for Gaussian and more general strictly log-concave probability
measures. Developments of the last decade link the two approaches through
heat kernel and Hamilton-Jacobi equations, inequalities in convex geometry
and mass transportation.

Logarithmic Sobolev inequalities, going back to the works of L. Gross [18], P.
Federbush [16], I. Stam [27] and others, are an essential tool in the analysis of the
trend to equilibrium in the study of various analytic and probabilistic models for
which they provide exponential decays in entropy. One specific feature with respect
to classical Sobolev inequalities is their independence with respect to dimension,
allowing for the investigation of infinite dimensional systems.

In this short exposition, we briefly survey a number of developments of the last
decade at the interface between analysis, probability theory and geometry around
this family of functional inequalities. We concentrate in particular on analytic heat
kernel and geometric convexity proofs of logarithmic Sobolev inequalities, and an-
alyze their links. Not every detail is make precise here, in particular the classes of
functions used for the various inequalities are not always clearly described.

One basic form of the logarithmic Sobolev inequality is the one for the standard
Gaussian probability measure dµ(x) = (2π)−n/2 e−|x|

2/2dx on Rn stating that for
every smooth positive function f : Rn → R such that

∫
Rn fdµ = 1,∫

Rn
f log fdµ ≤ 1

2

∫
Rn

|∇f |2

f
dµ. (1)

The constant is sharp and equality is achieved on exponential functions.

MSC 2000: 60H, 35K, 58J.
Keywords: Logarithmic Sobolev inequality, heat kernel, Brunn-Minkowski inequality.
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This logarithmic Sobolev inequality actually admits various formulations. We refer
to [2, 1, 26, 28] for introductions to logarithmic Sobolev inequalities and for complete
references. In particular, the transformations below may be performed similarly for
any probability measure µ on Rn given the form (1) (up to constants). For example,
f may be changed into f 2 so to yield that for any smooth function f : Rn → R such
that

∫
Rn f

2dµ = 1, ∫
Rn
f 2 log f 2dµ ≤ 2

∫
Rn
|∇f |2dµ. (2)

In this form, the logarithmic Sobolev inequality has much similarity with the classi-
cal Sobolev inequality. While when the gradient of f is in L2(µ), one cannot assert
(and it is wrong in general) that the function itself is in Lp(µ) for some p > 2, the
scale degenerates to the Orlicz space L2 log L(µ) (which is critical). On the other
hand, no constant depending on the dimension is reported in (2), a fundamental
feature of this family of inequalities, allowing for an access to infinite dimensional
analysis.

A further description of logarithmic Sobolev inequalities may be provided in a
information theoretic terminology. For a given smooth positive function f : Rn → R
with

∫
Rn fdµ = 1, denote by dν = f dµ the probability measure with density f with

respect to µ and set
H(ν |µ) =

∫
Rn
f log f dµ

for the relative entropy of ν with respect to µ and

I(ν |µ) =
∫
Rn

|∇f |2

f
dµ

for the relative Fisher information. Then the logarithmic Sobolev inequality (1) for
the probability measure µ may be recasted equivalently as

H(ν |µ) ≤ 1
2 I(ν |µ) (3)

for every probability measure ν absolutely continuous with respect to µ.
In particular, from a more PDE point of view, denoting by V (x) = 1

2 |x|
2 the

quadratic potential underlying the Gaussian measure µ (but what follows may ac-
tually be formulated for general regular potentials V ), let L = ∆ −∇V · ∇ be the
heat operator with invariant measure dµ = e−V

Z
dx. The dual picture with invariant

measure the Lebesgue measure is described by the linear Fokker-Planck operator
L̃ = ∇· [ρ∇(log ρ+V )]. Changing a smooth positive function f : Rn → R such that∫
Rn fdµ = 1 into a (smooth positive) probability density ρ = f e−V

Z
= f ρ∞ with

respect to the Lebesgue measure, the logarithmic Sobolev inequality (1) is then
transformed into∫

Rn
ρ log(ρ/ρ∞)dx = H

(
ρ | ρ∞

)
≤ 1

2 I
(
ρ | ρ∞

)
= 2

∫
Rn

∣∣∣∇(√ρ/ρ∞)∣∣∣2ρ∞dx (4)

for any such probability density ρ.
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One specific feature of logarithmic Sobolev inequalities is their independence with
respect to the dimension of the underlying state space Rn. However, dimension may
actually be dug out for example by developing (4) as∫

Rn
ρ log ρ dx+

∫
Rn
V ρ dx+ logZ ≤ 1

2

∫
Rn

∣∣∣∇(log ρ+ V )
∣∣∣2ρ dx. (5)

Dimension enters here into the picture through the normalization Z, equal to Zn =
(2π)n/2 for the Gaussian measure. For this example, this dimension effect may also
be visualized after the action of dilations in (5) and optimization which then produce
the so-called Euclidean logarithmic Sobolev inequality (with respect to the Lebesgue
measure thus) ∫

Rn
ρ log ρ dx ≤ n

2 log
(

1
2nπe

∫
Rn

|∇ρ|2

ρ
dx

)
(6)

for every smooth positive probability density ρ. The Euclidean logarithmic Sobolev
inequality (6) is equivalent to the Gaussian logarithmic Sobolev inequality (1), and
is sharp on Gaussian functions. Moreover, it is formally equivalent, up to constant,
to the classical L2 Sobolev inequality.

For both the heat and Fokker-Planck descriptions, logarithmic Sobolev inequal-
ities describe equivalently the trend to equilibrium at an exponential rate. For ex-
ample, if ρt is the probability density solution of the evolution

∂ρ

∂t
= ∇ ·

[
ρ∇(log ρ+ V )

]
with initial condition ρ0, then under the logarithmic Sobolev inequality (4),

H
(
ρt | ρ∞

)
≤ e−2tH

(
ρ0 | ρ∞

)
for every t ≥ 0, where we recall that H(ρ | ρ∞) =

∫
Rn ρ log(ρ/ρ∞)dx.

In this short expository paper, we thus present two basic approaches to the loga-
rithmic Sobolev inequality (1) (for Gaussian and more general strictly log-concave
measures). The first one will be analytic, through heat kernel and semigroup argu-
ments that will actually reveal a number of deeper gradient bounds. The second one
is geometric (convexity) in nature, relying on the Brunn-Minkowski inequality. This
geometric approach is actually deeply linked with aspects of mass transportation.
The two approaches may be related by the concept of hypercontractivity, and van-
ishing viscosity may be used to directly connect them. In the last section, we briefly
outline how the convexity arguments may be used towards (classical) Sobolev in-
equalities (with their sharp constants). Most of the results presented here are taken
from the works [8, 10, 6, 9] (cf. [5, 28] for general references).
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1. Analytic heat kernel proof

There are at least fifteen different proofs of the logarithmic Sobolev inequality (1).
The following analytic proof, going back to the work of D. Bakry and M. Émery [4],
is perhaps the simplest one. Start from the standard heat semigroup on Rn acting
on a suitable function f : Rn → R as

Ptf(x) =
∫
Rn
f(y) e−|x−y|2/4t dy

(4πt)n/2 , t > 0, x ∈ Rn,

with generator the Laplace operator ∆. Note that when t = 1
2 , Pt defines a Gaussian

probability measure centered at x (and at x = 0 is exactly the standard Gaussian
µ).

Fix now f : Rn → R a smooth positive function and t > 0. At any point (omitted
below),

Pt(f log f)− Ptf logPtf =
∫ t

0

d

ds
Ps
(
Pt−sf logPt−sf

)
ds.

Since d
ds
Ps = ∆Ps = Ps∆,

d

ds
Ps
(
Pt−sf logPt−sf

)
= Ps

(
∆
(
Ps−tf logPt−sf

)
−∆Pt−sf logPt−sf −∆Pt−sf

)
= Ps

( |∇Pt−sf |2
Pt−sf

)
.

Hence

Pt(f log f)− Ptf logPtf =
∫ t

0
Ps

( |∇Pt−sf |2
Pt−sf

)
ds. (7)

Now, gradient and semigroup obviously commute ∇Pu = Pu(∇) so that, by the
Cauchy-Schwarz inequality for the Gaussian kernel Pu, for every u ≥ 0,

|∇Puf |2 ≤
[
Pu
(
|∇f |

)]2
≤ Pu

( |∇f |2
f

)
Puf. (8)

This inequality applied for u = t− s thus shows that

|∇Pt−sf |2

Pt−sf
≤ Pt−s

( |∇f |2
f

)
.

Inserting in (7), by the semigroup property,

Pt(f log f)− Ptf logPtf ≤
∫ t

0
Ps

(
Pt−s

( |∇f |2
f

))
ds = t Pt

( |∇f |2
f

)
. (9)

As announced, at t = 1
2 , this is exactly the logarithmic Sobolev inequality (1) for

the standard Gaussian probability measure µ. Note that the only inequality sign in
this proof comes up from the Cauchy-Schwarz inequality allowing thus for an easy
description of extremal functions (exponentials).
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At this stage, it should be pointed out that actually exactly the same proof
produces a reverse logarithmic Sobolev inequality. Namely, starting again from (7)
and (8), use now the latter with u = s and Pt−sf instead of f to get

Pt(f log f)− Ptf logPtf ≥
∫ t

0

|∇Ps(Pt−sf)|2
Ps(Pt−sf) = t

|∇Ptf |2

Ptf
. (10)

As will be developed below, the latter actually entails useful gradient bounds.
The preceding heat kernel proof may be developed similarly (cf. [3, 20, 5]) for the

semigroups (Pt)t≥0 with generators L = ∆−∇V · ∇ under a suitable uniform lower
bound on the Hessian of the potential V . The semigroup (Pt)t≥0 is described as the
solution u = u(x, t) = Ptf(x) of the initial value problem

∂u

∂t
− Lu = 0 in Rn × (0,∞)

u = f on Rn × {t = 0}

Now whenever, as symmetric matrices, V ′′ ≥ c ∈ R, it may be shown that

|∇Puf | ≤ e−cuPu
(
|∇f |

)
, u ≥ 0,

and the previous arguments may then be performed identically for both the log-
arithmic Sobolev inequality (9) and its reverse form (10). The result holds more
generally for heat kernels on Riemannian manifolds (or weighted Riemannian man-
ifolds) with a non-negative lower bound on the Ricci curvature. In particular, when
c > 0, we may let t → ∞ to reach the analogue of (1) for the invariant measure
dµ = e−V dx as the inequality∫

Rn
f log f dµ ≤ 1

2c

∫
Rn

|∇f |2

f
dµ

for every smooth positive function f : Rn → R such that
∫
Rn fdµ = 1. As in the

Gaussian case, this inequality is independent of the dimension n and as a result ac-
tually shares a basic stability by product (allowing, for product measures, to deduce
the mutidimensional inequality for the one-dimensional one). Note also that the re-
verse logarithmic Sobolev (10) in this context yield simple and robust (dimension
free) gradient bounds. For example, if c = 0, whenever 0 ≤ f ≤ 1, |∇Ptf | ≤ t−1/2

for every t > 0.

While independent of the dimension, the Gaussian logarithmic Sobolev inequality
still reflects dimension through its Euclidean version (6). This dimension effect may
actually also be perceived on the previous semigroup proof along the following lines.
Namely the above proof shows that, under the commutation property∇Pu = Pu(∇),
the function

φ(s) = Ps

( |∇Pt−sf |2
Pt−sf

)
, s ≤ t,
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is non-decreasing. Of course, an alternate way to reach this conclusion is to look for
its derivative. Now φ may also be written as φ(s) = Ps(Pt−sf |∇ logPt−sf |2) and it
is then easily seen that

φ′(s) = 2Ps
(
Pt−sf Γ2 (logPt−sf)

)
where Γ2 is the so-called Bakry-Émery operator

Γ2(h) = 1
2 ∆

(
|∇h|2

)
−∇h · ∇(∆h).

On Rn, or more generally on a Riemannian manifold (X, g) equipped with the
Laplace-Beltrami operator ∆, Bochner’s formula indicates that

Γ2(h) =
∥∥∥Hess(h)

∥∥∥2

2
+ Ricg(∇h,∇h)

where Ricg is the Ricci curvature tensor (which is 0 on the flat space Rn). Then,
on Rn or a Riemannian manifold with non-negative Ricci curvature, Γ2(h) ≥ 0 and
therefore φ′ ≥ 0 which is the announced claim. The argument may be similarly
pushed to weighted Riemannian manifolds X equipped with dµ(x) = e−V dx where
dx is the Riemannian measure and V a smooth potential for which

Γ2(h) =
∥∥∥Hess(h)

∥∥∥2

2
+
[
Ricg +∇∇V

]
(∇h,∇h). (11)

Now actually, as is clear for the definition of the Γ2 operator, under Ricg ≥ 0 we
actually have (by a trace inequality) that

Γ2(h) ≥
∥∥∥Hess(h)

∥∥∥2

2
≥ 1
n

(∆h)2.

Therefore

φ′(s) = 2Ps
(
Pt−sf Γ2 (logPt−sf)

)
≥ 2
n
Ps
(
Pt−sf [∆ logPt−sf ]2

)
.

Integrating the latter (which requires some work) then shows that

Pt(f log f)− Ptf logPtf ≤ t∆Ptf + n

2 Ptf log
(

1− 2t
n

Pt(f∆ log f)
Ptf

)
. (12)

This inequality is not immediately appreciable. Note that since f∆ log f = ∆f −
|∇f |2
f

, it may be written equivalently as

Pt(f log f)−Ptf logPtf ≤ t∆Ptf + n

2 Ptf log
(

1− 2t
n

∆Ptf
Ptf

+ 2t
n

1
Ptf

Pt

( |∇f |2
f

))
.

Using that log(1 + u) ≤ u, or better letting n → ∞, we then recover the standard
logarithmic Sobolev inequality (9) for Pt. Inequality (12) holds for heat kernels on
weighted Riemannian manifolds with non-negative curvature Γ2 ≥ 0 in the sense of
(11).
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For (Pt)t≥0 the standard heat semigroup on Rn, it is of interest as an illustration
to take t = 1

2 to reach the following inequality for the Gaussian measure µ∫
Rn
f log f dµ ≤ 1

2

∫
Rn

∆f dµ+ n

2 log
(

1− 1
n

∫
Rn
f∆ log f dµ

)
for every smooth positive function f such that

∫
Rn f dµ = 1. This dimensional

logarithmic Sobolev inequality is thus stronger than the dimensional logarithmic
Sobolev inequality (1). However, if f is changed back into a probability density
ρ = fµ with respect to the Lebesgue measure, we actually end back exactly with
the Euclidean logarithmic Sobolev inequality (6). This self-improving property is
actually a by-product of the action of dilations in Rn.

Another feature of this investigation is that, as for the standard reverse logarith-
mic Sobolev inequality (10), there is a reverse form of the dimensional logarithmic
Sobolev inequality (12), namely

Pt(f log f)− Ptf logPtf ≥ t∆Ptf −
n

2 Ptf log
(

1 + 2t
n

∆ logPtf
)
.

This inequality actually implicitly contains the fact that

1 + 2t
n

∆ logPtf > 0

which may be translated equivalently as
|∇Ptf |2

(Ptf)2 −
∆Ptf
Ptf

≤ n

2t .

This inequality is actually the famous Li-Yau parabolic inequality in Riemannian
manifolds with non-negative Ricci curvature [23] which has been proved as a main
tool in the investigation of Harnack type inequalities and heat kernel bounds (cf.
[13]). It is classically established using the maximum principle while it is imbedded
here in a family of logarithmic Sobolev heat kernel inequalities, and holds similarly
for weighted manifolds.

2. Geometric convexity proof

The geometric proof will put us to start with in a somewhat different world. The
very first starting point is the classical Brunn-Minkowski-Lusternik inequality in
Euclidean space which indicates that for bounded (compact) subsets A,B of Rn,

voln(A+B)1/n ≥ voln(A)1/n + voln(B)1/n,

A+B = {x+ y;x ∈ A, y ∈ B} being the Minkowski sum of A and B. This inequal-
ity is for example typically used to prove the standard isoperimetric inequality in
Euclidean space by choosing B a ball with small radius ε tending then to 0. See [17]
for a general introduction to classical Brunn-Minkowski inequalities in Euclidean
geometry.
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Towards our goal, the next step is the functional form of the Brunn-Minkowski-
Lusternik inequality known as the Prékopa-Leindler theorem. This theorem indicates
that whenever θ ∈ [0, 1] and u, v, w are non-negative measurable functions on Rn

such that

w
(
θx+ (1− θ)y

)
≥ u(x)θv(y)1−θ, x, y ∈ Rn, (13)

then ∫
Rn
w dx ≥

(∫
Rn
u dx

)θ(∫
Rn
v dx

)1−θ

. (14)

Choosing for u and v respectively the characteristic functions of A and B yields the
(equivalent, by homogeneity, and dimension free) multiplicative form

voln
(
θA+ (1− θ)B

)
≥ voln(A)θvoln(B)1−θ

of the Brunn-Minkowski-Lusternik inequality.
Modern proof of the Prékopa-Leindler theorem involve mass transportation meth-

ods (cf. e.g. [7, 28]). Dimension one is achieved by a suitable parametrization, and
dimension n may then be proved by induction. Direct multidimensional mass trans-
portation may also be developed on the basis of the Knothe map, or the Brenier-
Rüschendorf transport by the gradient of a convex function. At any rate, the various
proofs all boil down at some point to the arithmetic-geometric mean inequality. Mass
transportation methods have been significantly developed recently towards notions
of Ricci curvature lower bounds in metric measure spaces as well as functional and
transportation cost inequalities. We refer to [29] for a comprehensive account on
these achievements, and to [21] for a modest introduction in the spirit of this expo-
sition.

To make use of the Prékopa-Leindler theorem in our context, it is necessary to
first rewrite it with respect to the standard probability Gaussian measure or more
generally a probability measure of the type dµ = e−V dx for some smooth potential
V on Rn. Then, the hypothesis (13) is turned into

w
(
θx+ (1− θ)y

)
≥ u(x)θv(y)1−θ eZθ(x,y), x, y ∈ Rn

where

Zθ(x, y) = V
(
θx+ (1− θ)y

)
− θV (x)− (1− θ)V (y),

while the conclusion (14) takes the form
∫
Rn
w dµ ≥

(∫
Rn
u dµ

)θ(∫
Rn
v dµ

)1−θ

.

The intervention of the quantity Zθ(x, y) actually reflects curvature aspects as is
clear on the example of the quadratic potential. More generally, if V − c |x|

2

2 is
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convex for some c > 0 (in other words whenever V is smooth, V ′′ ≥ c > 0 as
symmetric matrices), for every x, y ∈ Rn,

Zθ(x, y) = V
(
θx+ (1− θ)y

)
− V (x)− (1− θ)V (y) ≤ c θ(1− θ)

2 |x− y|2. (15)

Let now f : Rn → R be a bounded measurable and let θ ∈ [0, 1]. Choose then

w(z) = ef(z)

v(y) = 1

u(x) = eg(x)

where the function g has to be chosen in order to satisfy the hypothesis in the
Prékopa-Leindler theorem, that is such that for every x, y ∈ Rn,

w
(
θx+ (1− θ)y

)
≥ u(x)θv(y)1−θ eZθ(x,y).

In other words,
f
(
θx+ (1− θ)y

)
≥ θg(x) + Zθ(x, y).

Now, by (15), it is enough for this purpose that

f
(
θx+ (1− θ)y

)
≥ θg(x) + c θ(1− θ)

2 |x− y|2

for all x, y ∈ Rn so that the optimal choice for g is

g(x) = 1
θ
Q(1−θ)/cθf(x), x ∈ Rn,

where
Qtf(x) = inf

y∈Rn

{
f(y) + 1

2t |x− y|
2
}
, t > 0, x ∈ Rn

is the infimum-convolution of f with the quadratic cost. The conclusion of the
Prékopa-Leindler theorem for dµ = e−V dx, V ′′ ≥ c > 0, is then that∫

Rn
efdµ ≥

(∫
Rn
e

1
θ
Q(1−θ)/cθfdµ

)θ
.

Setting 1
θ

= 1 + ct yields that
∫
Rn
efdµ ≥

(∫
Rn
e(1+ct)Qtfdµ

)1/(1+ct)

(16)

for every t > 0.
Now Qtf , t > 0, is classically known (cf. [15, 28]) as the Hopf-Lax representation

of solutions of the basic Hamilton-Jacobi equation and thus

∂tQtf |t=0 = −1
2 |∇f |

2.

Differentiating therefore (16) at t = 0 yields∫
Rn
f efdµ−

∫
Rn
efdµ log

∫
Rn
efdµ ≤ 1

2c

∫
Rn
ef |∇f |2dµ
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which, after the change of f into log f , is nothing else than the standard logarithmic
Sobolev inequality for µ. Conversely, this logarithmic Sobolev inequality implies back
the family of inequalities (16).

Denoting by ‖ · ‖p the norm in Lp(µ), 1 ≤ p ≤ ∞ (even extended to p > 0), the
family of inequalities (16) is rewritten as∥∥∥ eQtf∥∥∥

1+ct
≤
∥∥∥ef∥∥∥

1
, t > 0.

Actually, for any a > 0, the family of inequalities∥∥∥ eQtf∥∥∥
a+ct
≤
∥∥∥ef∥∥∥

a
, t > 0, (17)

is still equivalent to the logarithmic Sobolev inequality for µ. An interesting feature
happens as a → 0. The logarithmic Sobolev inequality for µ still implies (17) for
a = 0 but not conversely, and for a = 0 these inequalities may be interpreted as the
dual form of the quadratic transportation cost inequality

W2(ν, µ)2 ≤ 1
c
H(ν |µ) (18)

between Wasserstein distance W2 and entropy H for any probability measure ν (ab-
solutely continuous with respect to µ). The implication from the logarithmic Sobolev
inequality for µ to the quadratic transportation cost inequality (18) is the famous
Otto-Villani theorem [24] (at the starting point of many developments around mass
transportation, PDE, geometry of metric measure spaces - cf. [28, 29]) and has been
revisited this way in [10].

The property (16) is actually a version for solutions of Hamilton-Jacobi equa-
tions of the celebrated hypercontractivity property of E. Nelson for the Ornstein-
Uhlenbeck semigroup. Actually, and this is one basic contribution of the seminal
paper [18] by L. Gross, the logarithmic Sobolev inequality∫

Rn
f log f dµ ≤ C

2

∫
Rn

|∇f |2

f
dµ (19)

for the probability measure dµ = e−V dx invariant for the operator L = ∆−∇V · ∇
is equivalent to the hypercontractivity property of the associated heat semigroup
Pt = etL, t > 0, in the sense that whenever 1 < p < q <∞ and

e2t/C ≥ q − 1
p− 1 ,

then
‖Ptf‖q ≤ ‖f‖p.

The (clever) proof consists in showing that
d

dt
‖Ptf‖q(t) ≤ 0

where q(t) = 1+e2t/C(p−1), t ≥ 0, if and only if the logarithmic Sobolev inequality
(19) holds. This is thus exactly the same picture as the one used for (16). Actually,
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one may transit smoothly from the heat equation to the Hamilton-Jacobi equation
by means of the vanishing viscosity method which amounts to perturb the latter by
a small noise. Consider namely, for ε > 0,

∂vε

∂t
+ 1

2 |∇v
ε|2 − Lvε = 0 in Rn × (0,∞)

vε = f on Rn × {t = 0}.

Now uε = e−v
ε/2ε solves

∂uε

∂t
= εLuε

and hence is represented as uε = Pεt
(
e−f/2ε

)
. Thus

vε = −2ε logPεt
(
e−f/2ε

)
and standard Laplace-Varadhan asymptotics show that

lim
ε→0

vε = − lim
ε→0

2ε logPεt
(
e−f/2ε

)
= Qtf.

With some technical effort, heat hypercontractivity may then be transferred to
Hamilton-Jacobi hypercontractivity, providing thus a link between the analytic the
geometric approaches (see [10] for details).

3. Classical Sobolev inequalities

One may wonder whether the preceding approaches have anything to say on the
classical Sobolev inequalities in Rn,

‖f‖q ≤ Cn(p) ‖∇f‖p

for every smooth compactly supported function f : Rn → R. Here the norms are
with respect to the Lebesgue measure and 1 ≤ p < n, 1

q
= 1

p
− 1

n
. In the following

brief discussion, we only consider p = 2 (n ≥ 3) but the same strategy applies for
any values of 1 < p < n.

As presented in [28], mass transportation methods have been used earlier by D.
Cordero-Erausquin, B. Nazaret, C. Villani [12] (based on [11] dealing with trans-
portation cost and logarithmic Sobolev inequalities) to reach these Sobolev inequal-
ities with their sharp constants (and with a description of the extremal functions).
Semigroup tools are not so well suited to this task, although fast diffusion may be
used at some point (cf. [14]). This last section is concerned with the relevance of
the geometric Brunn-Minkowski approach and is taken from [9]. The picture here is
that the Brunn-Minkowski inequality is a way to reach the standard isoperimetric
inequality in Euclidean space which in turn is esquivalent to the (sharp) L1-Sobolev
inequality. In the scale of Sobolev inequalities, this L1-Sobolev inequality implies
the L2-Sobolev inequality, however the optimal constant is lost in this implication.
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The point of the approach below is to derive the sharp L2-Sobolev inequality (ac-
tually any p) from the Brunn-Minkowski inequality. For simplicity, we only deal
here with p = 2 (see [9] for the general case, including further Gagliardo-Nirenberg
inequalities).

The first observation is that the Prékopa-Leindler theorem may be used in this
context with the choice of, for a given smooth f > 0 on Rn and θ ∈ [0, 1],

u′x) = f(θx)−n

v(y) = vσ
(√

θ y
)−n

w(z) =
[
(1− θ)σ + θQ1−θf(z)

]−n
where vσ(x) = σ+ |x|

2

2 , σ > 0, x ∈ Rn, which are related to the extremals functions of
the Sobolev inequality. Unfortunately, the application of the Prékopa-Leindler the-
orem is missing the Sobolev inequality by a dimension defect (essentially n instead
of n− 1).

In order to overcome this difficulty, it is necessary to consider a sharpened version
of the Prékopa-Leindler theorem based on the following elementary but fundamental
lemma (in dimension one).

Lemma 1. Let θ ∈ [0, 1 and u, v, w be non-negative measurable functions on R.
Assume that for all x, y ∈ R,

w
(
θx+ (1− θ)y

)
≥ min

(
u(x), v(y)

)
and that supx∈R u(x) = supx∈R v(x) = 1. Then∫

R
w dx ≥ θ

∫
R
u dx+ (1− θ)

∫
R
v dx.

This lemma has a long history throughout the 20th century (see [19]). It is actually
purely equivalent to the Brunn-Minkowski inequality in dimension one and a proof
may be found in [9].

A version of the preceding fundamental lemma in dimension n may be obtained
by induction on the number of coordinates which yields that whenever θ ∈ [0, 1 and
u, v, w are non-negative measurable functions on Rn such that for all x, y ∈ Rn,

w
(
θx+ (1− θ)y

)−1/(n−1)
≤ θu(x)−1/(n−1) + (1− θ)v(y)−1/(n−1)

and for some i = 1, . . . , n,, mi(u) = mi(v) <∞, then∫
Rn
w dx ≥ θ

∫
Rn
u dx+ (1− θ)

∫
Rn
v dx.

Here mi(f) denotes a constraint in L∞ of the form

mi(f) = sup
xi∈R

∫
Rn−1

f(x)dx1 · · · dxi−1dxi+1 · · · dxn.

VII–12



This version then produces the correct form towards Sobolev inequalities. Namely,
given again f > 0 smooth and vσ(x) = σ + |x|2

2 as above, set now

u′x) = f(θx)1−n

v(y) = vσ
(√

θ y
)1−n

w(z) =
[
(1− θ)σ + θQ1−θf(z)

]1−n
where σ = κθ (κ = κ(n, f) > 0) has been chosen so that m1(u) = m1(v). The
dimensional parameter is here well-set and the fundamental lemma in dimension n
then yields that∫

Rn

[
(1− θ)σ + θQ1−θf(z)

]1−n
dz ≥ θ

∫
Rn
f(θx)1−ndx+ (1− θ)

∫
Rn
vσ
(√

θ y
)1−n

dy.

On the basis of this inequality, the argument develops as in Section 2. Letting
t = 1− θ ∈ ]0, 1[∫

Rn

(
κt+Qtf

)1−n
dx ≥

∫
Rn
f 1−ndx+ t κ(2−n)/2

∫
Rn
v1−n

1 dx,

the derivative at t = 0 yields that

(1− n)
∫
Rn
f−n

(
κ− 1

2 |∇f |
2
)
dx ≥ κ(2−n)/2

∫
Rn
v1−n

1 dx.

After the change g = f−2/(n−2),
2

(n− 2)2

∫
Rn
|∇g|2dx ≥ κ

∫
Rn
g2n/(n−2)dx+ 1

(n− 1)κ(n−2)/2

∫
Rn
v1−n

1 dx.

Taking the infimum over κ > 0 produces∫
Rn
|∇g|2dx ≥ C−2

n ‖g‖
2
2n/(n−2)

where Cn can be checked as the optimal constant in the Sobolev inequality.
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