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GDR 2434 (CNRS)

Energy Critical nonlinear Schrödinger equations in
the presence of periodic geodesics

Sebastian Herr
Abstract

This is a report on recent progress concerning the global well-posedness
problem for energy-critical nonlinear Schrödinger equations posed on specific
Riemannian manifoldsM with small initial data inH1(M). The results include
small data GWP for the quintic NLS in the case of the 3d flat rational torus
M = T3 and small data GWP for the corresponding cubic NLS in the cases
M = R2 × T2 and M = R3 × T. The main ingredients are bi-linear and tri-
linear refinements of Strichartz estimates which obey the critical scaling, as
well as critical function space theory. All results mentioned above have been
obtained in collaboration with D. Tataru and N. Tzvetkov.

1. Introduction and main results
This is a report on recent progress [14, 15] concerning the small data global well-
posedness problem for energy-critical nonlinear Schrödinger equations

(i∂t + ∆)u = |u|
4
d−2u, (d ≥ 3) (1.1)

posed on specific d-dimensional Riemannian manifolds M (without boundary) with
initial data in H1(M). We are mostly interested in the case of compact manifolds or,
more generally, in the case of manifolds with periodic geodesics. In the exposition
we will restrict ourselves to defocusing nonlinearities, but all results remains true in
the focusing case as we will only deal with small initial data.

For strong solutions u of (1.1) with initial data φ we have L2-conservation

m(u(t)) = 1
2

∫
M
|u(t, x)|2dx = m(φ), (1.2)

and energy conservation

e(u(t)) = 1
2

∫
M
|∇u(t, x)|2dx+ d− 2

2d

∫
M
|u(t, x)|

2d
d−2dx = e(φ). (1.3)
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Thus, the natural energy space for this equation is H1(M), which is also the scale
invariant space for (1.1) in the case of M = R3 in the following sense: if uλ(t, x) =
λ1/2u(λ2t, λx) for some λ > 0 we have

‖uλ(t, ·)‖Ḣ1(R3) = ‖u(λ2t, ·))‖Ḣ1(R3).

Therefore, it is a natural problem to study the local well-posedness of (1.1) in
H1(M), as it immediately implies small data global well-posedness.

First, let us review some selected general facts concerning space-time estimates
for the linear Schrödinger equation without claiming to give a comprehensive list of
references or a complete account on the history of the problem here. In the Euclidean
case M = Rd, the full range of sharp Strichartz estimates

‖eit∆φ‖Lpt ((0,T );Lqx(M)) . ‖φ‖L2(M), 2/p+ d/q = d/2, p ≥ 2, (1.4)

is available, see e.g. [16], which imply small data global well-posedness [9]. The ad-
missibility condition on the Strichartz pairs (p, q) comes from scaling considerations.
Extensions to the case of asymptotically Euclidean and non-trapping metrics have
been considered in [25, 24]. There are several examples where estimates of type (1.4)
are known to fail, see [3, 26] for the failure of (1.4) on M = Td, see also [4, 5, 6, 7]
for the case M = Sd. It is a classical fact that non-degenerate and stable trapped
geodesics allow spatial concentration of solutions and form a geometric obstructions
to dispersion, see e.g. [1, 21, 22, 23] for precise statements. This may lead to insta-
bility results for nonlinear Schrödinger equations [27], and the failure of Strichartz
estimates. Nevertheless, in many cases Strichartz estimates with a loss of derivatives
or within a restricted range of admissible Strichartz pairs are known to hold true,
see e.g. [3, 26, 2, 5, 10, 20] and references therein.

As we intend to prove estimates which allow us to solve H1-critical equations
we do not need to have the full range of sharp Strichartz estimates (1.4) at our
disposal. However, we need estimates which respect the scaling of the problem and
are sufficient for the given degree of the nonlinearity. Let us look at the example of
the quintic nonlinear Schrödinger equation

(i∂t + ∆)u = |u|4u, (1.5)

posed on the three dimensional torus T3 = R3/(2πZ)3. As a consequence of Littlewood-
Paley theory and Bourgain’s dyadic estimate [3, (3.117)] it holds

‖eit∆φ‖Lp(T×T3)) . ‖φ‖Hs(p)(T3), p > 4, s(p) = 3/2− 5/p, (1.6)

whereas these estimate are unknown for p ≤ 4. Notice that this Strichartz type
estimate obeys the scaling of the problem as it formally follows from the (unknown)
Strichartz estimate (1.4) with p > 4 and the Sobolev embedding. However, if one
tries to apply these estimates in order to control the quintic nonlinearity in H1(T3),
one needs to combine them with the energy inequality

‖eit∆φ‖L∞t H1
x

. ‖φ‖H1

as this is the only known linear estimate without a loss of derivatives. Then, one is
forced to put at least one factor in LptLqx for some p ≤ 4, where no estimate without
loss of derivatives is available. It is possible to rectify this strategy and to prove
local well-posedness in Hs(T3) for s > 1 with a modification of this argument, i.e.
in the full sub-critical range, but not for initial data of critical regularity s = 1.
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Our strategy will be to obtain a better share of derivatives by using multi-linear
and scale invariant versions of Strichartz type estimates. This idea originates in [3]
and has been successfully applied to many problems since then. The new difficulty
which arises in this approach is that one needs to introduce appropriate function
spaces in order to exploit the multi-linear structure of the nonlinearity. Bourgain’s
Xs,b spaces are well-known examples, see [3, 12]. However, at the level of critical
regularity refinements of Xs, 12 are needed. We will employ a critical function space
theory which originates in unpublished work on wave maps by D. Tataru and has
been applied and developed e.g. in [17, 13]. In order to prove a tri-linear Strichartz
estimate on the correct scales we need a refinement of these spaces which are sensible
to finer than dyadic localizations. Our main result in the case M = T3 is

Theorem 1.1 (see [15]). Let d = 3 and M = T3.

(i) The quintic nonlinear Schrödinger equation (1.5) is locally well-posed in
Hs(T3) for all s ≥ 1.

(ii) The quintic nonlinear Schrödinger equation (1.5) is globally well-posed for
small data in Hs(T3) for all s ≥ 1.

In an ongoing work we also study the cubic NLS in dimension d = 4 with partially
periodic data, i.e. (1.1) posed on M = R2 × T2 and M = R3 × T. Variants of the
above ideas apply, but with bi-linear instead of tri-linear refinements of Strichartz
estimates, which involve somewhat more precise estimates but in a slightly easier
analytic setup (due to the dispersive effect in the non-periodic directions). As a
preliminary result we obtain

Theorem 1.2 (work in progress, see [14]). Let d = 4, M = R2×T2 or M = R3×T.

(i) The cubic nonlinear Schrödinger equation (1.1) is locally well-posed in Hs(M)
for all s ≥ 1.

(ii) The cubic nonlinear Schrödinger equation (1.1) is globally well-posed for
small data in Hs(M) for all s ≥ 1.

In the next section we will elucidate the main ideas of the proof. We will restrict
the presentation to the case M = T3, see [15] for further details.

2. Elements of Proof
Let CN denote the collection of cubes C ⊂ Z3 of side-length N = 2n ≥ 1 with
arbitrary center and orientation. For a given set C let PC denote a Fourier multi-
plication operator which Fourier-localizes functions on T3 to C, and for a dyadic
number N ≥ 1 let PN = P{ξ∈Z3:|ξ|∼N}. As usual, the Sobolev space Hs(T3) is defined
as the space of all functions for which

‖f‖2Hs(T3) :=
∑
ξ∈Z3

〈ξ〉2s|f(ξ)|2 <∞.

Let us first recall Bourgain’s Lp estimates of Strichartz type which already have
been mentioned in Section 1.
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Proposition 2.1 (Bourgain [3]). Let p > 4. For all N ≥ 1 we have

‖PNeit∆φ‖Lp(T×T3) . N
3
2−

5
p‖∆Nφ‖L2(T3). (2.1)

More generally, for all C ∈ CN
‖PCeit∆φ‖Lp(T×T3) . N

3
2−

5
p‖PCφ‖L2(T3). (2.2)

We would like to tri-linearize this estimate in function spaces which include linear
solutions.

Additionally, we will be able to strengthen (2.2) in the case p = 8. Strictly speak-
ing, this refinement is not necessary to derive small data GWP for the quintic NLS
in the case M = T3. However, it is an interesting estimate in its own right and this
circle of ideas will prove useful in the context of the 4d cubic NLS, so let us de-
scribe it here. Let RM(N) be the collection of all rectangular sets in Z3 of arbitrary
orientation and center, and side-lengths N ×N ×M .

Proposition 2.2. For all 1 ≤M ≤ N and R ∈ RM(N) we have

‖PReit∆φ‖L8(T×T3) .M
1
8N

3
4‖PRφ‖L2(T3). (2.3)

The proof of (2.3) is based on the fact ‖u‖4L8 = ‖uuuu‖L2 , Estimation of the
Fourier transform by Cauchy-Schwarz and Landau’s asymptotic [19] for the number
of lattice points in 6d (rational) ellipsoids.

For the construction of the appropriate function spaces we follow the approach
from [13, Section 2]. Let H be either L2(T3) or C and let Z be the set of finite
partitions −∞ < t0 < t1 < . . . < tK ≤ ∞ of the real line. If tK = ∞, we use the
convention that v(tK) := 0 for all functions v : R→ H.

Definition 2.3. Let 1 ≤ p < ∞. For {tk}Kk=0 ∈ Z and {φk}K−1
k=0 ⊂ H with∑K−1

k=0 ‖φk‖
p
H = 1 and we call the piecewise defined function a : R→ H,

a =
K∑
k=1

1[tk−1,tk)φk−1

a Up-atom. We define the atomic space Up(R, H) of all functions u : R → H such
that

u =
∞∑
j=1
λjaj for Up-atoms aj, {λj} ∈ `1,

endowed with the norm

‖u‖Up := inf


∞∑
j=1
|λj| : u =

∞∑
j=1
λjaj, λj ∈ C, aj Up-atom

 . (2.4)

The normed spaces Up(R, H) are complete and Up(R, H) ↪→ L∞(R;H). Every
u ∈ Up(R, H) is right-continuous and u tends to 0 for t→ −∞.

Definition 2.4. Let 1 ≤ p <∞.

(i) V p(R, H) is defined as the space of all functions v : R→ H such that

‖v‖pV p := sup
{tk}Kk=0∈Z

K∑
k=1
‖v(tk)− v(tk−1)‖pH <∞. (2.5)
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(ii) V prc(R, H) denotes the closed subspace of all right-continuous functions v :
R→ H such that limt→−∞ v(t) = 0, endowed with the norm (2.5).

Notice that (2.5) defines a norm since for any t ∈ R the partition {t,∞} yields
‖v‖V p ≥ |v(t)|. The normed spaces V p(R, H), V prc(R, H) are complete and it holds
Up(R, H) ↪→ V prc(R, H) ↪→ L∞(R;H). For 1 ≤ p < q <∞ the embedding V prc(R, H) ↪→
U q(R, H) holds true. Corresponding to the linear Schrödinger flow we define

Definition 2.5. For s ∈ R we define V p∆Hs and Up∆Hs to be the spaces of all
functions u : R→ Hs(T3) such that t 7→ e−it∆u(t) ∈ Up(R, Hs) and t 7→ e−it∆u(t) ∈
V p(R, Hs), endowed with the norms

‖u‖Up∆Hs = ‖e−it∆u‖Up(R,Hs), ‖u‖V p∆Hs = ‖e−it∆u‖V p(R,Hs), (2.6)
respectively.

Spaces of this type have been successfully used as replacements for Xs, 12 spaces
which are still effective at critical scaling, see for instance [17, 18, 13]. However, it
turns out that we need a refinement which is sensible to stronger localizations in
Fourier space.

Definition 2.6. Let s ∈ R.

(i) We define Xs as the space of all functions u : R → Hs(T3) such that for
every ξ ∈ Z3 the map t 7→ eit|ξ|2û(t)(ξ) is in U2(R,C), and for which

‖u‖2Xs :=
∑
ξ∈Z3

〈ξ〉2s‖eit|ξ|2û(t)(ξ)‖2U2
t
<∞. (2.7)

(ii) We define Y s as the space of all functions u : R → Hs(T3) such that for
every ξ ∈ Z3 the map t 7→ eit|ξ|2û(t)(ξ) is in V 2

rc(R,C) such that

‖u‖2Y s :=
∑
ξ∈Z3

〈ξ〉2s‖eit|ξ|2û(t)(ξ)‖2V 2
t
<∞. (2.8)

It is easy to relate the Xs and Y s spaces with the previously defined V p∆Hs and
Up∆H

s. Indeed, the following embeddings hold:
U2

∆H
s ↪→ Xs ↪→ Y s ↪→ V 2

∆H
s.

The motivation for the introduction of the Xs and Y s spaces lies in the fact that
for any partition Z3 = ∪Ck it holds∑

k

‖PCku‖2V 2
∆H

s . ‖u‖2Y s .

For a time interval I ⊂ R we also consider the restriction spaces Xs(I), etc. Due
to the atomic structure of U2 the linear solution u(t) := eit∆φ satisfies u ∈ Xs([0, T ))
for any φ ∈ Hs(T3). By duality, see [13, Theorem 2.8 and Proposition 2.10], one
also obtains (for sufficiently nice f) the estimate∥∥∥∥∫ t

0
ei(t−s)∆f(s)

∥∥∥∥
Xs([0,T ))

≤ sup
∫ T

0

∫
T3
f(t, x)v(t, x)dxdt, (2.9)

where the supremum is taken over all v ∈ Y −s([0, T )) satisfying ‖v‖Y −s = 1.
The Y s-norms are strong enough to prove the following:
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Proposition 2.7. There exists δ > 0, such that for all dyadic numbers N1 ≥ N2 ≥
N3 ≥ 1 and intervals I ⊂ [0, 2π] it holds∥∥∥∥ 3∏

j=1
PNjuj

∥∥∥∥
L2(I×T3)

. N2N3 max
{
N3

N1
,

1
N2

}δ 3∏
j=1
‖PNjuj‖Y 0 . (2.10)

Proof. First of all, it suffices to prove (2.10) in the case I = [0, 2π] (in the sequel
we will write L2 = L2([0, 2π]× T3) for brevity), and when the first factor is further
restricted to a cube C ∈ CN2 ,

‖PN1PCu1PN2u2PN3u3‖L2 . N2N3

(
N3

N1
+ 1
N2

)δ 3∏
j=1
‖PNjuj‖Y 0 . (2.11)

This is because given a partition Z3 = ∪Cj into cubes Cj ∈ CN2 , the outputs
PN1PCju1PN2u2PN3u3 are almost orthogonal, while

‖u‖2Y0 =
∑
j

‖PCju‖2Y0 .

In (2.11) we can use Y 0 ↪→ V 2
∆L

2 to replace Y 0 by V 2
∆L

2. Then (2.11) follows by
interpolation (a multi-linear version of [13, Proposition 2.20]) from the following two
tri-linear estimates:

‖PCPN1u1PN2u2PN3u3‖L2

. N
3− 10

p

2 N
3
2−

5
q

3 ‖PN1u1‖Up∆L2‖PN2u2‖Up∆L2‖PN3u3‖Uq∆L2

(2.12)

for 2
p

+ 1
q

= 1
2 and 4 < p < 5, respectively

‖PCPN1u1PN2u2PN3u3‖L2 . N2N3

(
N3

N1
+ 1
N2

)δ 3∏
j=1
‖PNjuj‖U2

∆L
2 . (2.13)

The first bound (2.12) follows from the atomic structure of Up∆L2 and (2.2) by
Hölder’s inequality. For the second bound (2.13) we can use the atomic structure
of U2

∆L
2 to reduce the problem to the similar estimate for the product of three

solutions to the linear Schrödinger equation uj = eit∆φj:

‖PCPN1u1PN2u2PN3u3‖L2 . N2N3

(
N3

N1
+ 1
N2

)δ 3∏
j=1
‖PNjφj‖L2 . (2.14)

Let ξ0 be the center of C. We partition C = ∪Rk into almost disjoint strips of
width M = max{N2

2/N1, 1} which are orthogonal to ξ0,

Rk =
{
ξ ∈ C : ξ · ξ0 ∈ [|ξ0|Mk, |ξ0|M(k + 1))

}
, |k| ≈ N1/M

It is Rk ∈ RM(N2) and we decompose

PCPN1u1PN2u2PN3u3 =
∑
k

PRkPN1u1PN2u2PN3u3

and observe that the summands are almost orthogonal in L2(T× T3). This orthog-
onality no longer comes from the spatial frequencies, but from the time frequency.
Hence,

‖PCPN1u1PN2u2PN3u3‖2L2 .
∑
k

‖PRkPN1u1PN2u2PN3u3‖2L2
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On the other hand the estimates (2.3) and (2.2) yield

‖PRkPN1u1PN2u2PN3u3‖L2 .N
3− 10

p

2 N
3
2−

5
q

3

(
M

N2

)δ
‖PRkPN1φ1‖L2‖PN2φ2‖L2‖PN3φ3‖L2 ,

for 2
p

+ 1
q

= 1
2 and 4 < p < 5. Then (2.14) follows by summing up the squares with

respect to k. �

Proposition 2.7 and (2.9) and dyadic summation yield

Proposition 2.8. For all 0 < T ≤ 2π and u, v ∈ X1([0, T )) the estimate∥∥∥∥ ∫ t
0
ei(t−s)∆

(
|u|4u(s)− |v|4v(s)

)
ds

∥∥∥∥
X1([0,T ))

. (‖u‖4X1([0,T )) + ‖v‖4X1([0,T )))‖u− v‖X1([0,T )).

holds true.

As already mentioned above, in the function spaces X1([0, T )) this estimate can
be derived from Bourgain’s results in Proposition 2.1 and additional orthogonality
arguments without resorting to the refinement (2.3). A similar estimate holds true
for higher Sobolev regularity.

The proof of Theorem 1.1 can be completed by performing the standard Picard
iteration procedure for the local well-posedness, and additionally using the conser-
vation laws (1.2) and (1.3) for the global results for small initial data.

3. Conclusion and Outlook

We have been able to prove small data global well-posedness for the energy critical
NLS on specific manifolds with periodic geodesics, where the standard arguments
of the Euclidean theory fail. Of course, a global well-posedness theory for large data
remains a difficult open problem in the non-Euclidean setting, cf. [11] for the quintic
NLS on M = R3.

A further interesting problem is the quintic NLS on the 3-sphere S3. The example
of zonal eigenfunctions with large eigenvalues shows that the Strichartz estimates fail
in this setting, see [5]. However, for linear solutions there is a tri-linear replacement
which can be used to control the second Picard-iteration for this problem, see [8].
However, the argument in [8] uses strongly separated interactions of the spatial and
the time frequencies, which is a serious obstruction for our arguments. As a result,
we are not able to extend this estimate to our function spaces at this moment and
it remains a challenging project.
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