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Journées Équations aux dérivées partielles
Port d’Albret, 7 juin–11 juin 2010
GDR 2434 (CNRS)

Hypoelliptic estimates for some linear diffusive
kinetic equations

Frédéric Hérau
Abstract

This note is an announcement of a forthcoming paper [13] in collaboration
with K. Pravda-Starov on global hypoelliptic estimates for Fokker-Planck and
linear Landau-type operators. Linear Landau-type equations are a class of
inhomogeneous kinetic equations with anisotropic diffusion whose study is
motivated by the linearization of the Landau equation near the Maxwellian
distribution. By introducing a microlocal method by multiplier which can be
adapted to various hypoelliptic kinetic equations, we establish optimal global
hypoelliptic estimates with loss of 4/3 derivatives in a Sobolev scale exactly
related to the anisotropy of the diffusion.

1. Introduction

This paper is a short announcement of the article [13] and deals with regularization
properties of some kinetic equations with intrinsic diffusion, such as Fokker-Planck,
Landau or the Boltzmann equation without cut-off.

Concerning inhomogeneous kinetic equations, i.e. those describing the evolution
of the system both in space and moment, one problem is that there is diffusion only
in moment and not in space. In this sense they can be considered as degenerate.
Anyway the regularization occurs in both variables thanks to a now well-understood
mixing procedure called hypoellipticity (e.g. [15], [17], [24])

One step in studying regularization and hypoelliptic properties is to analyze the
so-called subelliptic properties of the corresponding linearized operator. The aim
of this article is to give optimal subelliptic estimates for Fokker-Planck and linear
Landau type operators (without external potential) of the following form:

P = v.∂x −∆2
v + v2, (Fokker-Planck operator) (1.1)

MSC 2000: 35H10, 35H20, 35B65, 82C40.
Keywords: Kinetic equations, Regularity, global hypoelliptic estimates, hypoellipticity, anisotropic diffusion, Wick
quantization, Landau, Fokker-Planck.
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and

P = v.∂x − ∂v.λ(v)∂v − (v ∧ ∂v).µ(v)(v ∧ ∂v) + F (v), (1.2)
(linear Landau-type operators)

where x, v ∈ Rn, n ∈ N in the Fokker-Planck case and n = 3 in the Landau case.
Here ∂x, ∂v are the associated gradients and the diffusion is given by smooth positive
functions λ, µ and F satisfying for all α ∈ N3, there exists Cα > 0 such that for all
v ∈ R3,

|∂αv λ(v)|+ |∂αv µ(v)| ≤ Cα〈v〉γ−|α|, |∂αv F (v)| ≤ Cα〈v〉γ+2−|α|, (1.3)
and there exists C > 0 such that for all v ∈ R3,

λ(v) ≥ C〈v〉γ, µ(v) ≥ C〈v〉γ, F (v) ≥ C〈v〉γ+2, (1.4)

with γ ∈ [−3, 1] and where 〈v〉 = (1 + |v|2) 1
2 . In the following we shall use the

notation Dx = i−1∂x, Dv = i−1∂v.

As a first (and essentially pedagogical) step we give a result concerning the Fokker-
Planck operator:

Proposition 1.1. Let P be the Fokker-Planck operator (1.1). Then, there exists a
positive constant C > 0 such that for all u ∈ S(R2n

x,v),

‖〈Dx〉2/3u‖2L2 + ‖〈v〉2u‖2L2 + ‖〈Dv〉2u‖2L2 ≤ C
(
‖Pu‖2L2 + ‖u‖2L2

)
, (1.5)

where the notation ‖ · ‖L2 stands for the L2(R2n
x,v)-norm.

Some steps of the proof will be rapidly given in section 2 of this paper, and it is
completely written in [13]. Note anyway that it was already essentially contained in
[14] in the semi-classical framework (Sections 2, 8 and 9 there). We recall here some
steps of the proof since the method used in the Landau case is essentially the same,
although the proof is much harder.

Before giving the result in the Landau case we give some preliminary comments.
Concerning the Fokker-Planck operator we notice that the exponent 2/3 appear-
ing in (1.5) in the x-derivative has to be compared with the exponent 2 in the
v-derivative. This is the typical exponent coming from the fact that two Poisson
brackets between the real and the imaginary parts of the symbol are required to get
a microlocally elliptic symbol (see chap 25 in [16]). Anyway the whole hypoelliptic
theory will not be used here and we shall only use a pedestrian multiplier method,
in the framework weyl-Hörmander symbolic calculus.

In the Landau case things are complicated by the fact that the real part of the
symbol is not of order 2 anymore, and that there is an inhomogeneity in the v-
derivatives because of the weights coming from the term v ∧ ∂v. This prevents us
from mimicking directly the proof provided in the Kramers-Fokker-Planck case.
Nevertheless we are able to use again the same multiplier method, although in a
gainless symbolic calculus. In order to handle this more complex situation, and get
the right weights and the good exponents 2/3 and 2, we shall also use some elements
of Wick calculus developed by N. Lerner in [18]. The main features and the definition
of Wick calculus are recalled in a short self-contained exposition in an appendix of
[13].
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Now we give the main result in the Landau case:

Theorem 1.2. Let P be a Landau-type operator (1.2) satisfying hypotheses (1.3-
1.4) with γ ∈ [−3, 1]. Then there exists a constant C ≥ 0 such that∥∥∥〈v〉γ+2u

∥∥∥2
+
∥∥∥ 〈v〉γ/3 |Dx|2/3u∥∥∥2

+
∥∥∥ 〈v〉γ/3 |v ∧Dx|2/3u∥∥∥2

+
∥∥∥ 〈v〉γ |Dv|2u∥∥∥2

+
∥∥∥ 〈v〉γ |v ∧Dv|2u∥∥∥2

≤ C
(∥∥∥Pu∥∥∥2

+
∥∥∥u∥∥∥2

)
for all u ∈ S(R6

x,v).

Recently the problem of (global) regularity estimates for diffusive kinetic equa-
tion was studied with different angles of approach. Concerning the Fokker-Planck
equation and similar models, we can mention the works [12], [11] and [8]. The lo-
cal regularity of Landau-type equations is a direct consequence of their hypoelliptic
structure and recently the (local) Gevrey regularity for diffusive models was studied
in [5], [6], [7]. Concerning the Boltzmann equation without angular cutoff, existence
and regularity results are given for example in [2] and references therein. The aim of
this note is to propose and explain global and sharp estimates for the Landau and
Fokker-Planck operators, whose proofs can be found in [13].

2. The Fokker-Planck operator

As mentioned in the introduction, we first consider the case of the Fokker-Planck
operator without external potential,

P = iv.Dx +D2
v + v2, x, v ∈ Rn. (2.1)

The aim of this section is to prove Proposition 1.1 and also illustrate in a simplified
setting with good symbolic calculus the general method for proving optimal hypoel-
liptic estimates with loss of 4/3 derivatives. This microlocal method by multiplier
can be adapted to various hypoelliptic kinetic equations; and as we shall see with
linear Landau-type operators, it turns out to be sharp enough to handle anisotropic
classes of symbols, even if in the latter case we shall have to deal with gainless
symbolic calculus.

Coming back from now to the Fokker-Planck operator, we begin by performing
a partial Fourier transform in the x variable and notice that one may reduce our
study on the Fourier side to the analysis of the operator

P = iv.ξ +D2
v + v2 = iv.ξ +

n∑
j=1

D2
vj

+
n∑
j=1

v2
j , v, ξ ∈ Rn,

depending on the parameter ξ. In this section, we shall therefore consider Weyl
quantizations of symbols only in the velocity variable v and its dual variable η but
not in the variable ξ, which will be considered here as a parameter

(awu)(v) = 1
(2π)n

∫
R2n

ei(v−ṽ).ηa
(
v + ṽ

2 , η
)
u(ṽ)dṽdη. (2.2)

The Weyl symbol of the Fokker-Planck operator is then given by

p = iv.ξ + |η|2 + |v|2,
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where | · | stands for the Euclidean norm on Rn. Defining the symbol

λ =
(
1 + |η|2 + |v|2 + |ξ|2

) 1
2 , (2.3)

we shall see that Proposition 1.1 easily follows from the key hypoelliptic estimate
‖(λ2/3)wu‖2L2 . ‖Pu‖2L2 + ‖u‖2L2 . (2.4)

In order to explain how one can derive such an hypoelliptic estimate and justify
the choice of multiplier introduced below, we first notice that the diffusive part of
the Fokker-Planck operator gives a trivial control in the variables (v, η). Indeed, this
control is just a consequence of the ellipticity of the real part of the symbol

Re p = |η|2 + |v|2,
in these variables. The main point in the estimate (2.4) is then to get a control of
the term |ξ|2/3. Notice that this control cannot be derived from the ellipticity of the
symbol p and that we will need to consider the following iterated commutator

[(Im p)w, [(Re p)w, (Im p)w]]
in order to get some ellipticity in the parameter ξ. Here Re p and Im p stand for
the real and imaginary parts of the symbol p . Indeed, usual symbolic calculus (see
Theorem 18.5.4 in [16]) or a direct computation shows that the Weyl symbol of this
iterated commutator is exactly given by the iterated Poisson brackets

−{Im p, {Re p, Im p}} = {Im p, {Im p,Re p}} = 2|ξ|2,
where we recall that the Poisson bracket of two symbols a and b is defined as

{a, b} = ∂a

∂η
· ∂b
∂v
− ∂a

∂v
· ∂b
∂η
.

Notice that we shall need the ellipticity of this iterated commutator only in the
region of the phase space where |η|2 + |v|2 . λ2/3, since one can directly rely on the
real part of the symbol p in the region where |η|2 + |v|2 & λ2/3. This informal discus-
sion accounts for the following choice of symbol multiplier. Let ψ be a C∞0 (R, [0, 1])
function such that

ψ = 1 on [−1, 1], and supp ψ ⊂ [−2, 2]. (2.5)
We define the real-valued symbol

g = − ξ.η

λ4/3ψ

(
|η|2 + |v|2
λ2/3

)
, (2.6)

where the function λ is defined in (2.3). The cutoff function ψ allows to localize the
symbol multiplier in the region of the phase space where we need the ellipticity of
the iterated commutator

[(Im p)w, [(Re p)w, (Im p)w]],
whereas the factor λ4/3 appearing in (2.6) will ensure that the symbol g defines a
bounded operator on L2. Following the usual notations introduced by L. Hörmander
in [16, Chapter 18] (see also [19]) we consider the metric

Γ = dv2 + dη2

M
,
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with
M = 1 + |v|2 + |η|2 + λ2/3, (2.7)

and the classes of symbols S(m,Γ) associated to order functions m, that is, the
class of all functions a ∈ C∞(R2n

v,η,C) possibly depending on the parameter ξ and
satisfying

∀α ∈ N2n,∃Cα > 0,∀(v, η, ξ) ∈ R3n, |∂αv,ηa(v, η, ξ)| ≤ Cαm(v, η, ξ)M(v, η, ξ)−|α|/2.

It is easy to check that this metric Γ is admissible (slowly varying, satisfying the
uncertainty principle and temperate) with gain

λΓ(X) = inf
T 6=0

(
ΓσX(T )
ΓX(T )

)1/2

= M(X), X = (v, η, ξ), (2.8)

for symbolic calculus in the symbol classes S(m,Γ). We refer to [16] or [19] for
extensive presentations of symbolic calculus.

As a first step in the study, we are able to prove the following estimates: For any
m ∈ R, the following symbols belong to their respective symbol classes

i) 〈ξ〉m ∈ S(λm,Γ); ii) λm ∈ S(λm,Γ); (2.9)
iii) g ∈ S(1,Γ); iv) Re p ∈ S(M,Γ); (2.10)

uniformly with respect to the parameter ξ ∈ Rn. For the proof we refer to [13,
Lemma 2.2]. Let us just mention that the metric is adapted both to the weight g
and the (real part of the) symbol p. Recall also that in the "elliptic" regions, i.e. in
the phase space where η2 + v2 is large, the weight g is zero, and it will be useful
only in the regions where

|η|2 + |v|2 . λ2/3.

and this explains the introduction of the cut off function, and it is also remarkable
that it has the following symbolic property

ψ

(
|η|2 + |v|2
λ2/3

)
∈ S(1,Γ). (2.11)

The next step is to show that up to controlled terms and a weight factor λ4/3, the
Poisson bracket

{Im p, g} ,
makes appear the elliptic symbol of the iterated commutator

−{Im p, {Re p, Im p}} = 2|ξ|2,

in the region of the phase space where |η|2 + |v|2 . λ2/3. This is the case and we are
able to show that [13, Lemma2.3]

{Imp, g} = |ξ|
2

λ4/3ψ

(
|η|2 + |v|2
λ2/3

)
+ r, (2.12)

with a remainder r belonging both to symbol classes S
(
|η|2 + |v|2,Γ

)
and S(M,Γ),

uniformly with respect to the parameter ξ ∈ Rn.

We now give the main step of the result concerning the Fokker-Planck operator.
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Proposition 2.1. There exists a positive constant C > 0 such that for all s ∈ R,
ξ ∈ Rn and u ∈ S(Rnv ),

‖|ξ|1/3u‖2L2 + ‖vu‖2L2 + ‖Dvu‖2L2 ≤ C
(
‖〈ξ〉−sPu‖L2‖〈ξ〉su‖L2 + ‖u‖2L2

)
,

where ‖ · ‖L2 stands for the L2(Rnv )-norm. In particular we have

‖|ξ|1/3u‖2L2 + ‖vu‖2L2 + ‖Dvu‖2L2 ≤ C
(
‖Pu‖L2‖u‖L2 + ‖u‖2L2

)
,

in the case when s = 0.

Proof. This is essentially [13, Propositions 2.4 and 2.5], but we give it here in a
rather complete way since this is the core of the proof. We consider the multiplier
G = gw defined by the Weyl quantization of the symbol g as in (2.2); and let ε be
a positive parameter such that 0 < ε ≤ 1. For any s ∈ R, we may write

Re(〈ξ〉−sPu, 〈ξ〉s(1− εG)u) = ‖Dvu‖2L2 + ‖vu‖2L2

− εRe(iv.ξu,Gu)− εRe(|Dv|2u,Gu)− εRe(|v|2u,Gu). (2.13)
We need to estimate the terms appearing on the second line of (2.13). We begin by
noticing from (2.9) and the Calderón-Vaillancourt Theorem that the operator G is
bounded on L2. This implies that

|Re(|Dv|2u,Gu)| = |Re(Dvu,DvGu)|
≤ |Re(Dvu, [Dv, G]u)|+ |Re(Dvu,GDvu)| . ‖Dvu‖2L2 + ‖[Dv, G]u‖2L2 , (2.14)

uniformly with respect to the parameter ξ ∈ Rn. Symbolic calculus shows that the
symbol of the commutator [Dv, G] is exactly given by i−1∂vg. In view of (2.9), this
symbol belongs to the symbol class S(1,Γ). We therefore deduce from the Calderón-
Vaillancourt Theorem that

|Re(|Dv|2u,Gu)| . ‖Dvu‖2L2 + ‖u‖2L2 , (2.15)
uniformly with respect to the parameter ξ ∈ Rn. A similar reasoning gives the
estimate

|Re(|v|2u,Gu)| . ‖vu‖2L2 + ‖u‖2L2 , (2.16)
uniformly with respect to the parameter ξ ∈ Rn. Regarding the last term, we may
write

−Re(iv.ξu,Gu) = 1
2Re([iv.ξ, G]u, u),

since the operatorsG and iv.ξ are respectively formally selfadjoint and skew-selfadjoint.
Symbolic calculus then shows that the symbol of the commutator

1
2[iv.ξ, G],

is exactly given by
1
2 {v.ξ, g} = 1

2
|ξ|2

λ4/3ψ

(
|η|2 + |v|2
λ2/3

)
+ r

2 ,

where we know from (2.12) that r belongs both to symbol classes S
(
|η|2 + |v|2,Γ

)
and S(M,Γ), uniformly with respect to the parameter ξ ∈ Rn. Notice from (2.9)
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and (2.8) that |η|2 + |v|2 and r are both first order symbols belonging to the class
S(M,Γ). Using that the estimate

|r| . |η|2 + |v|2,

holds uniformly with respect to the parameter ξ ∈ Rn, since r ∈ S
(
|η|2 + |v|2,Γ

)
,

we deduce from the Gårding inequality (Theorem 2.5.4 in [19]) that
|(rwu, u)| . ‖Dvu‖2L2 + ‖vu‖2L2 + ‖u‖2L2 .

Setting

Ψ = |ξ|2

2λ4/3ψ

(
|η|2 + |v|2
λ2/3

)
, (2.17)

we can therefore find a positive constant C > 0 such that for all u ∈ S(Rnv ) and
ξ ∈ Rn,

− Re(iv.ξu,Gu) ≥ (Ψwu, u)− C‖Dvu‖2L2 − C‖vu‖2L2 − C‖u‖2L2 . (2.18)
We then deduce from (2.13), (2.15), (2.16) and (2.18) that there exists a constant

0 < ε0 ≤ 1,
and a new positive constant C > 0 such that for all u ∈ S(Rnv ) and ξ ∈ Rn,

Re(〈ξ〉−sPu, 〈ξ〉s(1−εG)u) ≥ 1
2(‖Dvu‖2L2 +‖vu‖2L2)+ε0(Ψwu, u)−C‖u‖2L2 . (2.19)

By considering separately the two regions of the phase space,
|η|2 + |v|2 . λ2/3 and |η|2 + |v|2 & λ2/3

and according to the support of the function

ψ

(
|η|2 + |v|2
λ2/3

)
,

we notice that one can find a positive constant ε1 > 0 such that for all (v, η, ξ) ∈ R3n,

ε0
|ξ|2

2λ4/3ψ

(
|η|2 + |v|2
λ2/3

)
+ 1

2(|v|2 + |η|2) ≥ ε1λ
2/3 + 1

4(|v|2 + |η|2)

≥ ε1(|ξ|2/3 + |v|2 + |η|2). (2.20)
This estimate is the crucial step where we combine the ellipticity in the variables
(v, η) of the real part of the symbol p together with the ellipticity in the variable ξ
of the iterated commutator

[(Im p)w, [(Re p)w, (Im p)w]] = 2|ξ|2,
in order to derive the optimal hypoelliptic estimate with loss of 4/3 derivatives.
Notice from (2.9), (2.11) and (2.7) that

ε0
|ξ|2

2λ4/3ψ

(
|η|2 + |v|2
λ2/3

)
+ 1

2(|v|2 + |η|2)

and
ε1(|ξ|2/3 + |v|2 + |η|2),

are both first order symbols belonging to the class S(M,Γ). Recalling (2.17) and
(2.19), we can then deduce from (2.20) and another use of the Gårding inequality
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that there exists a new positive constant C > 0 such that for all s ∈ R, ξ ∈ Rn and
u ∈ S(Rnv ),

Re(〈ξ〉−sPu, 〈ξ〉s(1− εG)u
)
≥ ε1(‖Dvu‖2L2 + ‖vu‖2L2 + ‖|ξ|1/3u‖2L2)− C‖u‖2L2 .

Notice that
〈ξ〉s(1− εG) = (1− εG)〈ξ〉s.

Recalling that the multiplier G defines a bounded operator on L2, Proposition 2.1
then follows from the Cauchy-Schwarz inequality. 2

Of course the estimates in Proposition 2.1 are not optimal, but with some addi-
tional work and substituting 〈ξ〉1/3u to u we get

Proposition 2.2. There exists a positive constant C > 0 such that for all ξ ∈ Rn
and u ∈ S(Rnv ),

‖〈ξ〉2/3u‖2L2 + ‖〈v〉2u‖2L2 + ‖〈Dv〉2u‖2L2 ≤ C(‖Pu‖2L2 + ‖u‖2L2), (2.21)
where ‖ · ‖L2 stands for the L2(Rnv )-norm.

Proof. [13, Proposition 2.6]. 2

When coming back to the direct Fourier side and integrating with respect to the
x variable, Proposition 1.1 directly follows from Proposition 2.2. This proves the op-
timal hypoelliptic estimate fulfilled by the Fokker-Planck operator without external
potential. 2

3. Linear Landau-type operators
Before giving some elements on the proof of Theorem 1.2, we recall some details
about the linearized Landau operator. Details about the full Landau equation may
be found for example in the works by Y. Guo [10], C. Mouhot and L. Neumann [20],
or C. Villani [25], and we may only recall here that the Landau equation reads as
the evolution equation of the density of particles∂tf + v · ∇xf = QL(f, f),

f |t=0 = f0,
(3.1)

where QL is the so-called Landau collision operator

QL(f, f) = ∇v ·
( ∫

R3
A(v − v∗)

(
f(v∗)(∇vf)(v)− f(v)(∇vf)(v∗)

)
dv∗

)
. (3.2)

Here, A(z) is a symmetric nonnegative matrix depending on a parameter z ∈ R3,
A(z) = |z|2Φ(|z|)P(z),

with Φ(|z|) = |z|γ, and where P the orthogonal projection onto z⊥,

P(z) = Id− 1
|z|2

z.z⊥,
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matrix whose entries are(
P(z)

)
i,j

= δi,j −
zizj
|z|2

, 1 ≤ i, j ≤ 3.

The original Landau collision operator describing collisions among charged particles
interacting with Coulombic force and introduced by Landau in 1936, corresponds to
the case γ = −3. As in the Boltzmann equation, it is well-known that Maxwellians
are steady states to the Landau equation

M(x, v) = (2π)−3/2e−|v|
2/2. (3.3)

Following the standard procedure described in [10] or [20], we linearize the Landau
equation aroundM by posing

f =M+
√
Mu,

and one can check that after linearization the Landau equation for the perturbation
u(t, x, v) now reads as

∂tu+ iv.Dxu− Lu = 0, (3.4)
with Dx = i−1∂x. The transport part of the equation iv.Dx is unchanged, whereas
one can prove that the operator L may write as

L = L∗ −DvA(v)Dv − F (v), (3.5)
with F a positive smooth function satisfying the estimates (1.3) and (1.4). Here,
the operator L∗ is a convolution-type term bounded on L2, which only has a (big)
influence on the lower part of the spectrum of the operator iv.Dx − L, whereas the
other term

A(v) = (A ∗M)(v), (3.6)
inherits the properties of the projection P. More specifically, for each vector v ∈
R3, the matrix A(v) is symmetric with a simple eigenvalue λ(v) associated to the
eigenvector v; and a double eigenvalue λ⊥(v) associated to the eigenspace v⊥; which
satisfy the estimates
∀α ∈ N3,∃Cα > 0,∀v ∈ R3, |∂αv λ(v)| ≤ Cα〈v〉γ−|α|, |∂αv λ⊥(v)| ≤ Cα〈v〉γ+2−|α|,

giving rise to the anisotropy of the diffusion. Up to a bounded operator, this explains
why the linearization of the Landau equation essentially reduces to the study of a
linear Landau-type operator

P = iv.Dx +Dv.λ(v)Dv + (v ∧Dv).µ(v)(v ∧Dv) + F (v),
with µ(v) ∼ λ⊥(v)

〈v〉2 and a perhaps slightly modified function λ(v) so that the estimates
(1.4) hold. This motivates the present work on the hypoellipticity of these operators.

Now we give some elements about the proof of the optimal anisotropic hypoelliptic
estimate with loss of 4/3 derivatives given in Theorem 1.2. This is done in section
3 of [13] for the following generalized linear Landau-type operators

P = iv.Dx +
n∑
j,k=1

DvjAj,k(v)Dvk + F (v); (3.7)

where x, v ∈ Rn. Here A(v) = (Aj,k(v))1≤j,k≤n stands for a positive definite symmet-
ric matrix with real-valued smooth entries verifying

|∂αvAj,k(v)| . 〈v〉γ+2−|α|, α ∈ Nn, 1 ≤ j, k ≤ n, (3.8)
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and F is a smooth positive function verifying (1.3). We assume that we may write
A(v) = B(v)TB(v), (3.9)

where B(v) is a matrix with real-valued smooth entries verifying

|∂αvBj,k(v)| . 〈v〉
γ
2 +1−|α|, α ∈ Nn, 1 ≤ j, k ≤ n; (3.10)

and B(v)T is its adjoint. Moreover, we assume that there exists a constant c > 0
such that for all v, η ∈ Rn,

A(v)η.η = |B(v)η|2 ≥ c〈v〉γ|η|2. (3.11)
Notice that linear Landau-type operators are particular generalized linear Landau-
type operators when taking

B(v) =


√
λ(v) −v3

√
µ(v) v2

√
µ(v)

v3

√
µ(v)

√
λ(v) −v1

√
µ(v)

−v2

√
µ(v) v1

√
µ(v)

√
λ(v)

 , (3.12)

with λ and µ being the functions defined in (1.3) and (1.4). Indeed, we have for any
η ∈ R3,

|B(v)η|2 = |
√
λ(v)η+

√
µ(v)v∧η|2 = |

√
λ(v)η|2 + |

√
µ(v)v∧η|2 ≥ c〈v〉γ|η|2. (3.13)

In order to prove Theorem 1.2 in [13], we use a multiplier method inspired from
the one presented in the previous section for the Fokker-Planck operator without
external potential. Recalling (3.9), the Weyl symbol of a generalized linear Landau-
type operator (3.7) may write as

iv.ξ + |B(v)η|2 + F (v) + Lower order terms.
By denoting

p̃ = iv.ξ + |B(v)η|2 + F (v),
we shall take advantage of the ellipticity in the variables (v, η) of the real part of
the symbol p̃,

Re p̃ = |B(v)η|2 + F (v).
As in the case of the Fokker-Planck operator, the main point in proving Theorem 1.2
is then to get a control of the ξ variable. Notice again that this control cannot be
derived from the ellipticity of the symbol p̃ and that we will need to consider the
following iterated commutator

[(Im p̃)w, [(Re p̃)w, (Im p̃)w]]
in order to get some ellipticity in the ξ variable. Indeed, usual symbolic calculus
(see Theorem 18.5.4 in [16]) or a direct computation shows that the Weyl symbol
of this iterated commutator is exactly given by the iterated Poisson brackets

−{Im p̃, {Re p̃, Im p̃}} = {Im p̃, {Im p̃,Re p̃}} = 2|B(v)ξ|2.
The structure of this iterated poisson bracket suggests to introduce the following
anisotropic symbol

λ =
(
1 + |B(v)ξ|2 + |B(v)η|2 + F (v)

)1/2
, (3.14)

which defines an anisotropic Sobolev scale which is exactly related to the anisotropy
of the diffusion. As in the case of the Fokker-Planck operator, we aim at establishing
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an optimal hypoelliptic estimate with loss of 4/3 derivatives in this anisotropic
Sobolev scale

‖(λ2/3)wu‖2L2 . ‖Pu‖2L2 + ‖u‖2L2 .

By noticing that for a generalized linear Landau-type operator

{Re p̃, Im p̃} = 2B(v)ξ.B(v)η,

it is natural to consider the following multiplier: Let Ψ be a C∞0 (R, [0, 1]) function
such that

ψ = 1 on [−1, 1], and supp ψ ⊂ [−2, 2]. (3.15)
Define the real-valued symbol

g = −B(v)ξ.B(v)η
λ4/3 ψ

(
|B(v)η|2 + F (v)

λ2/3

)
, (3.16)

where λ is the symbol defined in (3.14). The main difference with the Fokker-Planck
case is that this multiplier does not belong anymore to a symbol class with good
symbolic calculus. Indeed, because of the anisotropy of the symbol p̃, we will have to
deal with gainless symbolic calculus. As a consequence, the implementation of the
method developed for the Fokker-Planck operator is more complex and requires more
advanced microlocal analysis. In order to handle this setting with gainless symbolic
calculus, we use in [13] some elements of Wick calculus developed by N. Lerner
in [18] (a short self-contained presentation is given in the appendix of [13]). For the
complete proofs, we refer to the original article [13].

4. Short conclusion

As a conclusion we just quote some developments of this work currently in prepa-
ration. The first direction deals with spectral and pseudospectral estimates for The
Landau operator, which are naturally associated to the (sharp) subelliptic estimates
as in the Fokker-Planck case ([12], [8], [14]..). The second direction deals with the
Boltzmann equation without cut-off, for which a lot of attention has been given
recently (see e.g. [1], [2]...) and for which the same multiplier method may work as
well.
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during the program Selected topics in spectral theory organized by B. Helffer, T. Hoffmann-
Ostenhof and A. Laptev at the Erwin Schrödinger Institute for Mathematical Physics,
in Vienna during the summer 2009. The author would like to thank the Institute
and the organizers very much for their hospitality and the exceptional working sur-
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