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Journées Équations aux dérivées partielles
Roscoff, 1–5 juin 2015
GDR 2434 (CNRS)

Recent progress in velocity averaging

Diogo Arsénio

Abstract

A classical result in kinetic theory establishes that if f(x, v) and v ·∇xf(x, v) both belong
to L2 (Rn

x × Rn
v ), then

∫
K

fdv ∈ H
1
2 (Rn

x), for any compact set K ⊂ Rn
v . Such regularity

statements are known as velocity averaging lemmas and have important implications in the
analysis of kinetic equations.

It was asked in [2] whether other settings of velocity averaging could produce a similar
maximal gain of regularity of half a derivative. This question, motivated by an earlier work
of Pierre-Emmanuel Jabin and Luis Vega [17] on the subject, turns out to be surprisingly
rich and difficult, and it is, for the moment, far from being fully understood.

In this article, after recalling some classical results in the field, we survey the recent
developments from [2], where new settings of velocity averaging lemmas were investigated.
We also formulate a few conjectures, mainly derived from a dimensional analysis and by
analogy with known results, thus delimiting the possibilities for other new settings of velocity
averaging.

Velocity averaging lemmas concern the regularity theory of solutions to the kinetic transport
equation

(∂t + v · ∇x) f(t, x, v) = g(t, x, v), (0.1)
where (t, x, v) ∈ R× Rn × Rn, or its stationary counterpart

v · ∇xf(x, v) = g(x, v), (0.2)

where (x, v) ∈ Rn × Rn, with n ≥ 1.
Variants of the above equations are also relevant. Indeed, different spatial and velocity domains,

as well as non-linear velocity fields (consider the relativistic case), are sometimes studied. Never-
theless, for the sake of simplicity, we will mainly focus on the Euclidean stationary setting (0.2),
which, we believe, captures the essential features of kinetic transport (at least as far as velocity
averaging is concerned). We will nevertheless make brief references to the non-stationary case (0.1)
in Section 2 below without expanding on the subject.

After describing a modern viewpoint on classical velocity averaging in Sections 1, 2 and 3, we
intend to survey, in the remainder of this text, recent theorems and conjectures on the subject.
Most results presented here are taken directly from [2] and we will systematically sketch proofs of
the asserted results. Nevertheless, we refer the reader to [2] and the references therein for further
details and complete justifications.

1. Classical velocity averaging, the Hilbertian case

The classical Hilbertian case of velocity averaging is contained in the following result. It is the
starting point of the regularity theory of kinetic transport equations and has been established first
in [12]. Note, however, that such regularity results had already been suggested in weaker forms
in [1, 13].
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Theorem 1.1 ([12]). Let f, g ∈ L2 (Rnx × Rnv ) satisfy the transport relation (0.2). Then, the velocity
averages of f enjoy the following regularization:∫

Rn
f(x, v)ϕ(v)dv ∈ H 1

2 (Rnx) ,

for any given ϕ ∈ L∞c (Rn) (i.e. measurable functions bounded almost everywhere with compact
support).

Sketch of proof. This classical and essential result is based on a simple microlocal decomposition.
More precisely, denoting the Fourier transform in the space variable only by

f̂(η, v) = Fxf(η, v) =
∫
Rn
e−iη·xf(x, v)dx,

it holds that
iv · ηf̂(η, v) = ĝ(η, v).

Then, introducing some cutoff function ρ ∈ C∞c (R) such that ρ(0) = 1, we may decompose

f̂(η, v) = ρ (v · η) f̂(η, v) + τ (v · η) ĝ(η, v), (1.1)

where τ (v · η) = 1−ρ(v·η)
iv·η . Loosely speaking, we are using here some partial ellipticity of the

transport operator, for we invert v · η wherever it is non-vanishing.
Thus, the result is a direct consequence of the boundedness of the operator T : L2

x,v → Ḣ
1
2
x

defined by
Tf(x) =

∫
Rn
F−1
x ρ (v · η)Fxf(x, v)ϕ(v)dv, (1.2)

and of a similar operator where ρ is replaced by τ . In fact, this continuity is easily obtained, using
the Plancherel theorem, from the estimate

‖Tf‖
Ḣ

1
2
x

= 1
(2π)n2

∥∥∥|η| 12 T̂ f∥∥∥
L2
η

= 1
(2π)n2

∥∥∥∥|η| 12 ∫
Rn
ρ (v · η) f̂ϕdv

∥∥∥∥
L2
η

≤ 1
(2π)n2

∥∥∥∥|η| 12 ∥∥∥f̂∥∥∥
L2
v

‖ρ (v · η)ϕ‖L2
v

∥∥∥∥
L2
η

,

upon noticing that

sup
η∈Rn

|η|
∫
Rn
ρ (v · η)2

ϕ(v)2dv ≤ Cα ‖(1 + |v|)α ϕ(v)‖2L∞(Rn) ‖ρ‖
2
L2(R) , (1.3)

where Cα > 0 only depends on α > n−1
2 .

A similar estimate holds with the cutoff τ in place of ρ, which concludes the justification of the
theorem. �

Remark. Note that, by duality, the boundedness of the operator T established above is equivalent
to the continuity of the adjoint operator T ∗ : L2 (Rnx)→ Ḣ

1
2
(
Rnx ;L2 (Rnv )

)
defined by

T ∗h(x, v) = F−1
x ρ (v · η)Fxh(x)ϕ(v). (1.4)

2. Classical velocity averaging, the Hilbertian non-stationary case

Applying the method of proof of Theorem 1.1 to the non-stationary kinetic transport equa-
tion (0.1) (employing this time a Fourier transform in both t and x so that (0.1) is equivalent
to i (τ + v · η) f̂(τ, η, v) = ĝ(τ, η, v) and then introducing a cutoff ρ (τ + v · η)) yields the following
similar result, which establishes regularization in both time and space variables.

Theorem 2.1 ([12]). Let f, g ∈ L2 (Rt × Rnx × Rnv ) satisfy the transport relation (0.2). Then, the
velocity averages of f enjoy the following regularization:∫

Rn
f(t, x, v)ϕ(v)dv ∈ H 1

2 (Rt × Rnx) ,

for any given ϕ ∈ L∞c (Rn).
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Recall now that the solution f(t, x, v) of (0.2) may be expressed according to Duhamel’s repre-
sentation formula:

f(t, x, v) = f0(x− tv, v) +
∫ t

0
g(s, x− (t− s)v, v)ds

= F−1
x e−itv·ηFxf0(x, v) +

∫ t

0
F−1
x e−i(t−s)v·ηFxg(s, x, v)ds

= e−tv·∇xf0(x, v) +
∫ t

0
e−(t−s)v·∇xg(s, x, v)ds,

(2.1)

where f0(x, v) is the initial data.
The following result shows that it is also possible to formulate the regularity of velocity averages

with respect to the initial data and the source term, thus establishing the average smoothing effect
of the kinetic flow e−tv·∇x .

Theorem 2.2. Let f0 ∈ L2 (Rnx × Rnv ) and g ∈ L1 (Rt;L2 (Rnx × Rnv )
)
. Then, the velocity averages

of f , defined by (2.1), enjoy the following regularization:∫
Rn
f(t, x, v)ϕ(v)dv ∈ L2

(
Rt; Ḣ

1
2 (Rnx)

)
,

for any given ϕ ∈ L∞c (Rn).

Sketch of proof. For any h ∈ L2 (Rt × Rnx), we obtain first, using Plancherel’s theorem and esti-
mate (1.3), that∥∥∥∥∫

R
h(t, x+ tv)ϕ(v)dt

∥∥∥∥
Ḣ

1
2
x L2

v

= 1
(2π)n2

∥∥∥∥|η| 12 ∫
R
eitv·ηFxh(t, η)ϕ(v)dt

∥∥∥∥
L2
η,v

= 1
(2π)n2

∥∥∥|η| 12Ft,xh(−v · η, η)ϕ(v)
∥∥∥
L2
η,v

≤
Cα ‖(1 + |v|)α ϕ‖L∞

(2π)n2
‖Ft,xh(τ, η)‖L2

τ,η

= Cα(2π) 1
2 ‖(1 + |v|)α ϕ‖L∞ ‖h(t, x)‖L2

t,x
,

where Cα > 0 only depends on α > n−1
2 .

It then follows, by duality, that∥∥∥∥∫
Rn
f0(x− tv, v)ϕ(v)dv

∥∥∥∥
L2
t Ḣ

1
2
x

≤ C ‖f0(x, v)‖L2
x,v
,

and, consequently, that∥∥∥∥∫
Rn

∫ t

0
g(s, x− (t− s)v, v)dsϕ(v)dv

∥∥∥∥
L2
t Ḣ

1
2
x

≤
∫
R

∥∥∥∥∫
Rn
g(s, x− tv, v)ϕ(v)dv

∥∥∥∥
L2
t Ḣ

1
2
x

ds

≤ C ‖g(x, v)‖L1
tL

2
x,v
,

which, in view of Duhamel’s representation formula (2.1), concludes the justification of the theorem.
�

Remark. The preceding formulation of velocity averages regularity with respect to the kinetic
transport semi-group e−tv·∇x and its proof are strikingly reminiscent of the local smoothing effect
for the Schrödinger equation established in [8] (see Theorems 1.1, 2.1 and 3.1 therein). Note,
however, that the above result is global in time and space, whereas the smoothing effect for the
Schrödinger equation is only local in t and x. It is necessary here to tame large velocites, though.
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3. Classical velocity averaging, the general case

Interpolation theory (see [4]) provides us with powerful tools to conveniently extend the Hilbertian
case of Theorem 1.1 to a general setting in Lpx,v, with 1 ≤ p ≤ ∞. The next theorem provides the
regularity of velocity averages in this context.

Theorem 3.1 ([2, 5, 9, 10, 12]). Let f, g ∈ Lp (Rnx × Rnv ), with 1 < p < ∞, satisfy the transport
relation (0.2). Then, the velocity averages of f enjoy the following regularization:∫

Rn
f(x, v)ϕ(v)dv ∈W s,p (Rnx) ,

where s = min
{

1
p ,

1
p′

}
, for any given ϕ ∈ L∞c (Rn).

Remark. Under the same hypotheses, at least for velocity weights ϕ ∈ C∞c (Rn), Theorem 3.1 has
been first established in [12] for values s < min

{
1
p ,

1
p′

}
. It was then improved in [10] to show

that velocity averages belong to the Besov spaces B
1
p′

p,2 (Rn), when 1 < p ≤ 2, and B
1
p
p,p (Rn), when

2 ≤ p <∞. For values 1 < p ≤ 2 only, it was eventually shown in [5], through a convoluted analysis
in Hardy spaces on product domains, that Theorem 3.1 holds as stated above with velocity averages
lying in the Sobolev spaceW

1
p′ ,p (Rn). It was later proven in [9] with refined interpolation methods

that, for values 1 < p < 2, velocity averages even belong to B
1
p′
p,p (Rn), which is a proper subset of

W
1
p′ ,p (Rn). The question of whether velocity averages belong toW

1
p ,p (Rn), when 2 < p <∞, was

finally settled by the affirmative as a simple by-product of the careful analysis conducted in [2].

Sketch of proof. The justification of this result merely consists in interpolating the Hilbertian case
from Theorem 1.1 with the degenerate L1

x,v and L∞x,v cases (corresponding to p = 1 and p =∞ in
the statement of the theorem). This interpolation procedure is carried out on the operator T and
its adjoint T ∗ defined by (1.2) and (1.4), respectively.

To this end, we use the elementary yet crucial trick of expressing the cutoff defining T and T ∗
as ρ(v · η) =

∫
R e
−itv·ηρ̃(t)dt, where ρ̃(t) = 1

2π
∫
R e

itrρ(r)dr is the inverse Fourier transform of ρ, so
that T and T ∗ can be recast as

Tf(x) =
∫
Rn
F−1
x ρ (v · η)Fxf(x, v)ϕ(v)dv =

∫
Rn

∫
R
f(x− tv, v)ρ̃(t)ϕ(v)dtdv,

T ∗h(x, v) = F−1
x ρ (v · η)Fxh(x)ϕ(v) =

∫
R
h(x− tv)ρ̃(t)ϕ(v)dt.

(3.1)

Using these representations, it is readily seen that the operators T : Lpx,v → Lpx and T ∗ : Lpx → Lpx,v
are bounded, for any 1 ≤ p ≤ ∞.

Therefore, interpolating (we use here both real and complex interpolation procedures; see [2]
for full details) the bounds T : L2

x,v → H
1
2
x and T ∗ : H−

1
2

x → L2
x,v (from the proof of Theorem 1.1)

with T : L1
x,v → L1

x and T ∗ : L1
x → L1

x,v, respectively, we deduce that T : Lpx,v → W
1
p′ ,p
x and

T ∗ : W
− 1
p′ ,p

x → Lpx,v are bounded, for any 1 ≤ p ≤ 2.
Finally, by duality, we conclude that T : Lpx,v → W s,p

x , where s = min
{

1
p ,

1
p′

}
, is bounded, for

all 1 ≤ p ≤ ∞. Hence, considering decomposition (1.1) and since a similar estimate holds for T
where the cutoff ρ(r) is replaced by τ(r) = 1−ρ(r)

ir , the theorem is proven. �

4. Maximal regularity and dimensional analysis

We address now the question of the optimality of Theorem 3.1. Under the hypotheses stated
therein, it was shown in [18], through a straightforward dimensional analysis, which we reproduce
and generalize below, that the regularity index s = 1− 1

p is optimal when 1 ≤ p ≤ 2. As for the case
p > 2, it was also argued in [18] that the regularity of velocity averages cannot be improved beyond
the value s = 1

p , but this optimality argument remains incomplete for it requires the use of a larger
class of velocity weights ϕ(v) with unbounded support. In fact, it turns out that, in general, the
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value s = 1
p is not optimal in the range 2 < p <∞ for compactly supported velocity weights, for it

is possible to largely improve this regularity index beyond the value s = 1
p in dimension n = 1, as

stated in the one-dimensional Theorem 5.1 from Section 5 below. The question of the optimality
of the value s = 1

p , when p > 2, in higher dimensions n ≥ 2, for compactly supported velocity
weights ϕ(v), was finally settled in [9, Theorem 1.3] where a convoluted counterexample shows the
necessity of the constraint s ≤ 1

p whenever p > 2 and n ≥ 2.
Thus, on the whole, the maximal gain of regularity in the Lp (Rnx × Rnv ) setting, with n ≥ 2,

clearly happens for the value p = 2 where half a derivative is gained by averaging in velocity. This
naturally raises the question addressed in [2]:

Are there other settings where velocity averages gain half a derivative in regularity?

In fact, there already exist generalizations of the aforementioned theorems where velocity averages
are regularized by half a derivative or more. For instance, under the hypotheses of Theorem 1.1,
if one further assumes that (−∆v)

β
2 f ∈ L2

x,v, for some β > 0, then it is possible to show, at

least for velocity weights ϕ ∈ C∞c (Rn), that the velocity averages of f belong to H
1+2β
2+2β
x (see [6,

Corollary 1.2], for instance). However, such statements result from the combination of velocity
averaging methods with the hypoelliptic phenomenon in kinetic transport equations (as discovered
in [6]; see also [3]), which essentially allows to transfer regularity from v to x. Hypoellipticity is
well understood (at least in the context of velocity averaging), we are therefore going to avoid
it altogether by restricting our study to a setting where the densities f and g in (0.2) belong to
Lebesgue spaces. In order to further contain our discussion, we will always assume that f and
g belong to the same space (of course, the case where f and g belong to distinct spaces is also
interesting and should be investigated). In this context, we may rephrase the above interrogation
as follows:

For what values of 1 ≤ p, q, r ≤ ∞ does it hold that f, v · ∇xf ∈ Lp (Rnx ;Lq (Rnv )) implies∫
Rn fϕdv ∈W

s,r (Rnx), for every 0 ≤ s < 1
2 , where ϕ ∈ L

∞
c (Rn) is given?

Note that, by the closed graph theorem, this can only happen if, for all 0 ≤ s < 1
2 , there is a

constant C > 0, which only depends on 1 ≤ p, q, r ≤ ∞, 0 ≤ s < 1
2 and ϕ ∈ L∞c (Rn), such that

one has an estimate ∥∥∥∥∫
Rn
fϕdv

∥∥∥∥
W s,r
x

≤ C
(
‖f‖LpxLqv + ‖v · ∇xf‖LpxLqv

)
. (4.1)

At this stage, it is very natural to conduct a dimensional analysis of the above inequality,
which will restrict the range of parameters 1 ≤ p, q, r ≤ ∞ and 0 ≤ s < 1

2 for which such
an estimate may hold. We perform now this dimensional analysis by generalizing the procedure
from [18]. To this end, let d ∈ {1, . . . , n} and denote x = (x′, x′′) = (x1, . . . , xd, xd+1, . . . , xn)
and v = (v′, v′′) = (v1, . . . , vd, vd+1, . . . , vn). For some given ψ(x, v) ∈ C∞c (Rn × Rn), ε > 0 and
0 < δ < 1, we define

f̃(x, v) = ψ

(
x′

ε
, x′′,

v′

δ
, v′′
)
.

We suppose now that (4.1) holds for some ϕ(v) ∈ C∞c (Rn) such that ϕ (0, v′′) 6≡ 0, which we test
with the function f̃ . This yields

ε
d
r−sδd

∥∥∥∥∫
Rn
ψ(x, v)ϕ (δv′, v′′) dv

∥∥∥∥
Ẇ s,r
x

≤
∥∥∥∥∫

Rn
f̃ϕdv

∥∥∥∥
W s,r
x

≤ C
(∥∥f̃∥∥

LpxL
q
v

+
∥∥v · ∇xf̃∥∥LpxLqv)

≤ C
(
ε
d
p δ

d
q ‖ψ‖LpxLqv + ε

d
p−1δ

d
q+1 ‖v′ · ∇x′ψ‖LpxLqv + ε

d
p δ

d
q ‖v′′ · ∇x′′ψ‖LpxLqv

)
.

Therefore, we conclude that (4.1) can possibly hold only if, for some C > 0,

εd(
1
r−

1
p )+1−sδd(1− 1

q ) ≤ C (ε+ δ) , (4.2)
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for every 0 ≤ s < 1
2 , which places some restrictions on the parameters 1 ≤ p, q, r ≤ ∞.

Indeed, setting now d = 1 and δ = ε, we find, letting ε → 0 in (4.2), that necessarily 1
r −

1
p +

1− s− 1
q ≥ 0. Further letting s→ 1

2 , we deduce the first constraint

1
p
− 1
r
≤ 1

2 −
1
q
. (4.3)

Next, setting δ = 1 in (4.2) and the letting ε → ∞, we obtain d
(

1
r −

1
p

)
− s ≤ 0. Further letting

s→ 0, we infer the second constraint
1
p
− 1
r
≥ 0. (4.4)

Finally, setting d = n and δ = 1 in (4.2) and then letting ε → 0, we conclude that necessarily
n
(

1
r −

1
p

)
+ 1− s ≥ 0, which, as s→ 1

2 , implies the third constraint

1
p
− 1
r
≤ 1

2n. (4.5)

Since the regularity results discussed here are all local in v, the estimate (4.1) will be the
strongest when the parameter q assumes its lowest possible value. Therefore, according to (4.3),
we consider 1 ≤ q ≤ ∞ such that 1

p −
1
r = 1

2 −
1
q . Then, in view of (4.4) and (4.5), it is enough to

focus on the extreme values 1
p −

1
r = 0 and 1

p −
1
r = 1

2n , for the remaining cases can be obtained
by interpolation, at least formally.

Thus, on the whole, we distinguish two kinds of expected results. The first one corresponds to
the case 1

p −
1
r = 0, whence q = 2, and takes the form of an estimate, valid for all 0 ≤ s < 1

2 ,∥∥∥∥∫
Rn
fϕdv

∥∥∥∥
W s,r
x

≤ C
(
‖f‖LrxL2

v
+ ‖v · ∇xf‖LrxL2

v

)
, (4.6)

where 1 ≤ r ≤ ∞.
The second one corresponds to the case 1

p −
1
r = 1

2n , whence q = 2n
n−1 , and takes the form of an

estimate, valid for all 0 ≤ s < 1
2 ,∥∥∥∥∫

Rn
fϕdv

∥∥∥∥
W s,r
x

≤ C
(
‖f‖

L
2nr

2n+r
x L

2n
n−1
v

+ ‖v · ∇xf‖
L

2nr
2n+r
x L

2n
n−1
v

)
, (4.7)

where 2n
2n−1 ≤ r ≤ ∞ (so that 2nr

2n+r ≥ 1).
Note that, in dimensions n ≥ 2, the range r > 2 for estimate (4.6) is automatically ruled out by

the optimality of Theorem 3.1 in the range p > 2 provided by the aforementioned counterexample
from [9, Theorem 1.3] (recall that this counterexample is local in velocity). As for estimate (4.7),
we do not expect to be able to beat the Hilbertian case of Theorem 1.1 in regularity or in local
integrability, in large dimensions n ≥ 2. Therefore, we only consider the range 2n

2n−1 ≤ r ≤ 2
in (4.7). It is possible that variations of the counterexample from [9, Theorem 1.3] could establish
the sharpness of the condition r ≤ 2 for (4.7), when n ≥ 2, as well.

Estimates (4.6) and (4.7) have been considered in [2]. They are both established therein in full
generality in one dimension (see Section 5 below).

In higher dimensions, estimate (4.6) is shown in [2] to hold in two dimensions in the range
4
3 ≤ r ≤ 2 (see Section 6) and partial results are obtained when n ≥ 3 (see Section 7). As for
estimate (4.7), it is established in [2] for the value r = 2 in any dimension n ≥ 2 (see Section 8).

Finally, the possibility of a more general range of validity for both (4.6) and (4.7) is addressed
through corresponding conjectures formulated in Section 9.

5. The one-dimensional case

It turns out that, in one dimension, it is possible to obtain a wide range of velocity averaging
results. This is due to the fact that, in this setting, spatial frequencies are always parallel to
velocities. The next theorem provides a general regularity statement for velocity averages in one
dimension.
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Theorem 5.1 ([2]). In dimension n = 1, let 1 < p < ∞ and 1 < q ≤ ∞. Then, for any
f, g ∈ Lp (Rx;Lq (Rv)) such that (0.2) holds true, one has that∫

R
f(x, v)ϕ(v)dv ∈W s,p (Rx) ,

for all 0 ≤ s < 1− 1
q and any ϕ ∈ L∞c (R).

Remark. Notice that, setting q = 2 in the preceding theorem validates the full range (except
endpoint cases) of estimates predicted in (4.6) when n = 1.

Note also that, setting q =∞ and p = 2r
2+r , with 2 < r ≤ ∞, in the above theorem, we obtain,

upon noticing that W s, 2r
2+r (R) is continuously embedded into W s− 1

2 ,r (R), the full range (except
endpoint cases) of estimates predicted in (4.7) in one dimension n = 1.

Sketch of proof. As in the proofs of Theorems 1.1 and 3.1, this result follows from the boundedness
of the velocity averaging operator T : LpxLqv →W s,p

x defined by (1.2), where ρ(r) is a smooth cutoff
function such that ρ(0) = 1, and of a similar operator where ρ(r) is replaced by τ(r) = 1−ρ(r)

ir . For
simplicity, we only deal with the cutoff ρ(r) and refer to [2] for full details.

Then, by duality, the boundedness of T : LpxLqv → W s,p
x , for any 1 < p < ∞, 1 < q ≤ ∞ and

0 ≤ s < 1 − 1
q , is a consequence of the boundedness of the adjoint operator T ∗ : Lpx → W s,p

x Lqv
defined in (1.4), for any 1 < p <∞, 1 ≤ q <∞ and 0 ≤ s < 1

q .
Thus, in order to establish the boundedness of T ∗, employing the representation formula (3.1)

for T ∗ and assuming that ρ̃(s) is compactly supported inside {|s| ≤ r0}, we write that

|T ∗h(x, v)| =
∣∣∣∣∫

R
h (x− tv) ρ̃(t)dtϕ(v)

∣∣∣∣ =
∣∣∣∣1v
∫
R
h (x− r) ρ̃

( r
v

)
drϕ(v)

∣∣∣∣
≤‖ρ̃‖L∞

1
|v|

∫
{|r|≤|v|r0}

|h (x− r)| dr |ϕ(v)| ≤ 2r0 ‖ρ̃‖L∞Mh(x) |ϕ(v)| ,

where Mh denotes the Hardy-Littlewood maximal function of h defined by

Mh(x) = sup
δ>0

1
2δ

∫
{|y|≤δ}

|h(x− y)|dy.

Recalling now that the Hardy-Littlewood maximal operator is bounded over Lp(R), for any
1 < p <∞, we deduce that

‖T ∗h‖LpxLqv ≤ C ‖h‖Lpx , (5.1)
for any 1 < p <∞ and 1 ≤ q ≤ ∞.

Next, we further compute, exploiting the one-dimensional structure of the operators, for any
0 < α < 1,

(−∆x)
α
2 T ∗h(x, v) =

∫
R

(−∆x)
α
2 h(x− tv)ρ̃(t)dtϕ(v)

= 1
|v|α

∫
R

(−∆t)
α
2 (h(x− tv)) ρ̃(t)dtϕ(v)

= 1
|v|α

∫
R
h(x− tv) (−∆)

α
2 ρ̃(t)dtϕ(v),

whence, for any 1 ≤ p ≤ ∞,∥∥∥(−∆x)
α
2 T ∗h

∥∥∥
LpxL1

v

≤
∥∥∥(−∆x)

α
2 T ∗h

∥∥∥
L1
vL

p
x

≤ C ‖h‖Lpx ,

which, when combined with (5.1), yields∥∥∥(1−∆x)
α
2 T ∗h

∥∥∥
LpxL1

v

≤ C ‖h‖Lpx . (5.2)

Finally, interpolating (we use here complex interpolation; see [2] for full details) the bound (5.1),
where we set q =∞, with (5.2), we obtain the estimate∥∥∥(1−∆x)

α
2q T ∗h

∥∥∥
LpxL

q
v

≤ C ‖h‖Lpx .

for any 1 < p <∞, 1 ≤ q <∞ and 0 < α < 1, which concludes the proof of the theorem. �
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Remark. Note from the proof above that it is possible to improve the gain of regularity in the
preceding theorem by assuming that the support of the velocity weight ϕ(v) does not contain the
origin. However, this is a rather unnatural setting which we prefer to avoid here.

6. The two-dimensional case

Our study of the one-dimensional case in the previous section showed that it is possible to largely
improve the classical velocity averaging results in that setting. In particular, we showed therein
that the gain of regularity of velocity averages is, in some cases, substantially improved beyond
the value 1

2 .
While such a general improvement is not achievable in higher dimensions (n ≥ 2), in view of

the counterexamples from [9, Theorem 1.3] discussed earlier, it is nevertheless possible, as shown
below, to obtain new cases displaying a gain of regularity of velocity averages of almost half a
derivative.

In two dimensions (n = 2), this was already strongly suggested in [17, Theorem 1.2], where it
is shown that velocity averages of f belong to W s, 4

3
x , for any 0 ≤ s < 1

2 , provided f and g belong
to L

4
3
xL2

v and under the peculiar assumption that g(x, v)ϕ(v) is an even function in v (see [17,
Theorem 1.2]). The latter assumption is rather unnatural and it remained unclear whether this
evenness condition could be removed or not.

By building upon the work from [17], the results from [2] brought a definitive answer to this
two-dimensional problem, which is precisely the content of the following result. In the next section,
these methods are generalized to higher dimensions (n ≥ 3), without achieving a gain of half a
derivative, though.

Theorem 6.1 ([2, 17]). In dimension n = 2, let f, g ∈ L 4
3
(
R2
x;L2 (R2

v

))
be such that (0.2) holds

true. Then, ∫
R2
f(x, v)ϕ(v)dv ∈W s, 4

3
(
R2
x

)
,

for all 0 ≤ s < 1
2 and any ϕ ∈ L∞c

(
R2).

Remark. Notice that interpolating (at least formally) the above result with the Hilbertian case from
Theorem 1.1 establishes the validity of the estimates predicted in (4.6) for the range of parameters
4
3 ≤ r ≤ 2. Recall that the range r > 2 in (4.6) has already been excluded by counterexamples. As
for the restriction r ≥ 4

3 , a counterexample from [17, Section 4.3] can be adapted to the present
situation to suggest that this condition is optimal.

Sketch of proof. As in the proofs of Theorems 1.1 and 3.1, this result follows from the boundedness
of the velocity averaging operator T : L

4
3
xL2

v →W
s, 4

3
x defined by (1.2), where ρ(r) is a smooth cutoff

function such that ρ(0) = 1, and of a similar operator where ρ(r) is replaced by τ(r) = 1−ρ(r)
ir . For

simplicity, we only deal with the cutoff ρ(r) and refer to [2] for full details.
Then, by duality, the boundedness of T : L

4
3
xL2

v → W
s, 4

3
x , for all 0 ≤ s < 1

2 , is a consequence of
the boundedness of the adjoint operator T ∗ : L4

x →W s,4
x L2

v defined in (1.4), for all 0 ≤ s < 1
2 .

We define now, in any dimension n ≥ 1, the velocity averaging operator S and its adjoint S∗
on the sphere Sn−1 by

Sf(x) =
∫
Sn−1
F−1
x ρ (v · η)Fxf(x, v)dv =

∫
Sn−1

∫
R
f(x− tv, v)ρ̃(t)ϕ(v)dtdv,

S∗h(x, v) = F−1
x ρ (v · η)Fxh(x) =

∫
R
h(x− tv)ρ̃(t)dt,

(6.1)

where x ∈ Rn and v ∈ Sn−1. These operator correspond to the kinetic transport equation (0.2)
with velocities restricted to the sphere v ∈ Sn−1 and are introduced here for mere convenience and
simplicity of analysis.

The operators S and S∗ enjoy boundedness properties which are similar to those of the original
operators T and T ∗, respectively. In particular, employing the classical Hilbertian methods of
velocity averaging, one finds that S : L2

x,v → H
1
2
x and S∗ : L2

x → H
1
2
x L2

v. Furthermore, representing
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Rnv in polar coordinates, it is possible to show that any boundedness property of S∗ results in a
corresponding boundedness property for T ∗. In particular, setting n = 2, it is seen that the present
theorem follows from the boundedness of S∗ : L4

x →W s,4
x L2

v, for every 0 ≤ s < 1
2 .

From now on, we assume that the cutoff function ρ(r) may be decomposed as a product ρ(r) =
ρ1(r)ρ2(r), so that ρ̃(s) = ρ̃1∗ρ̃2(s). Moreover, we suppose that both ρ̃1(s) and ρ̃2(s) are compactly
supported. Naturally, we denote by Si∗, where i = 1, 2, the operators S∗ where we replace the
cutoff ρ by ρi. It is then readily seen that

S∗h(x, v) =
∫
R

∫
R
h (x− (s+ t)v) ρ̃1(s)ρ̃2(t)dsdt =

∫
R
S2∗h(x− sv, v)ρ̃1(s)ds.

A key idea here is to use the above trick to gain integration in one dimension along v through the
straightforward estimate

|S∗h(x, v)|2 ≤‖ρ̃1‖L1

∫
R

∣∣S2∗h(x+ sv, v)
∣∣2 |ρ̃1(s)| ds

≤‖ρ̃1‖L1 ‖ρ̃1‖L∞
∫

[−r1,r1]

∣∣S2∗h(x+ sv, v)
∣∣2 ds, (6.2)

where suppρ̃1 ⊂ [−r1, r1], for some r1 > 0.
We use now the trivial yet crucial fact that the exponent 4 is an even integer to control the

square of the adjoint transport operator |S∗h|2 in L2
x rather than the operator S∗h itself in L4

x.
Thus, employing (6.2), we have the bilinear estimate

‖S∗h‖4L4
xL

2
v

=
∫
R2×S1

|S∗h(x, v2)|2
(∫

S1
|S∗h(x, v1)|2 dv1

)
dxdv2

≤ C
∫
R2×S1

(∫
[−r1,r1]

∣∣S2∗h(x+ s2v2, v2)
∣∣2 ds2

)(∫
S1
|S∗h(x, v1)|2 dv1

)
dxdv2

= C

∫
R2×S1

∣∣S2∗h(x, v2)
∣∣2(∫

[−r1,r1]

∫
S1
|S∗h(x+ s2v2, v1)|2 dv1ds2

)
dxdv2

≤ C
∫
R2×S1

∣∣S2∗h(x, v2)
∣∣2

×

(∫
[−r1,r1]2

∫
S1

∣∣S2∗h(x+ s1v1 + s2v2, v1)
∣∣2 dv1ds1ds2

)
dxdv2

≤ C
∥∥S2∗h

∥∥2
L2
x,v

sup
x∈R2

v2∈S1

I(x, v2),

where we define the nonlinear operator

I(x, v2) =
∫

[−r1,r1]2

∫
S1

∣∣S2∗h(x+ s1v1 + s2v2, v1)
∣∣2 dv1ds1ds2. (6.3)

Further using the classical Hilbertian boundedness of S2∗ : L2
x → H

1
2
x L2

v, which is analog to the
boundedness of T ∗ : L2

x → H
1
2
x L2

v, and assuming for simplicity that h(x) has frequencies localized
inside an annulus of inner and outer radii comparable to 2k, with k ∈ N, we deduce that

‖S∗h‖4L4
xL

2
v
≤ C

2k ‖h‖
2
L2
x

sup
x∈R2

v2∈S1

I(x, v2), (6.4)

where C > 0 is independent of k.
The next key idea consists in exploiting the two-dimensional integration in ds1ds2 in the above

definition of the non-linear operator to express I(x, v2) as the L2
x,v norm of S2∗h. To this end, we

employ the change of variables (s1, s2) 7→ z = s1v1 + s2v2, whenever v1 and v2 form a basis, which
holds almost everywhere. Of course, this transformation becomes degenerate when v1 and v2 are
close to being colinear, which requires technical care.
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It is readily seen that the Jacobian determinant of this transformation is given by sin θ, where
θ ∈ [0, π] is the angle between v1 and v2. The degeneracy at sin θ = 0 is then handled by noticing
that the domain of integration in z becomes localized in the direction of v2 when sin θ is small.

Thus, decomposing the domain of integration v1 ∈ S1 into small dyadic subsets

Si =
{

2−(i+1) < |sin θ| ≤ 2−i
}
,

with i ∈ N, one notices, whenever v1 ∈ Si, since S2∗ only acts in the direction of v1, that it is
possible to replace the function h(x+ z) in the definition (6.3) by hx,i(z) = h(x+ z)1Ki(z), where
Ki ⊂ R2 is a cylinder of fixed length pointing in the direction of v2 whose width is comparable to
2−i.

Therefore, sweeping important technical difficulties under the carpet (see [2] for details) and
using the classical Hilbertian boundedness of S2∗ : L2

x → H
1
2
x L2

v again, we arrive at the estimate

I(x, v2) ≤
∞∑
i=0

∫
R2×Si

∣∣∣∣∫
R
h (x+ z + sv1)1Ki(z + sv1)ρ̃2(s)ds

∣∣∣∣2 1
sin θdzdv1

≤ C
∑
i≤k

2i
∫
R2×S1

∣∣∣∣∫
R
h (x+ z + sv1)1Ki(z + sv1)ρ̃2(s)ds

∣∣∣∣2 dzdv1

+ C
∑
i>k

2i
∫
R2×Si

∣∣∣∣∫
R
h (x+ z + sv1)1Ki(z + sv1)ρ̃2(s)ds

∣∣∣∣2 dzdv1

≤ C
∑
i≤k

2i
∥∥S2∗hx,i(z, v1)

∥∥2
L2
z,v1

+ C
∑
i>k

2i |Si| ‖hx,i(z)‖2L2
z

≤ C
∑
i≤k

2i−k ‖hx,i(z)‖2L2
z

+ C
∑
i>k

‖hx,i(z)‖2L2
z

≤ C

∑
i≤k

2i−k |Ki|+
∑
i>k

|Ki|

 ‖h‖2L∞x ≤ C

2λk ‖h‖
2
L∞x

,

(6.5)

for any 0 < λ < 1 and where C > 0 is independent of k.
Hence, combining estimates (6.4) and (6.5), we infer, for any 0 < s < 1

2 ,

‖S∗h‖4L4
xL

2
v
≤ C

2k4s ‖h‖
2
L2
x
‖h‖2L∞x , (6.6)

where C > 0 is independent of k. It follows that, for any 0 ≤ s < 1
2 ,∥∥∥(1−∆x)

s
2 S∗h

∥∥∥
L4
xL

2
v

≤ C ‖h‖
1
2
L2
x
‖h‖

1
2
L∞x

,

which almost establishes the boundedness of S∗ : L4
x →W s,4

x L2
v.

In order to conclude, we write |h(x)| =
∫∞

0 1{|h(x)|≥s}ds to deduce from the preceding estimate,
assuming h is non-negative, that∥∥∥(1−∆x)

s
2 S∗h

∥∥∥
L4
xL

2
v

≤
∫ ∞

0

∥∥∥(1−∆x)
s
2 S∗1{|h(x)|≥s}

∥∥∥
L4
xL

2
v

ds

≤ C
∫ ∞

0
|{|h(x)| ≥ s}|

1
4 ds = C ‖h‖L4,1

x
,

where L4,1
x denotes a standard Lorentz space (see [4, Section 1.3] or [14, Section 1.4] for definitions

and properties of Lorentz spaces). When, h is signed, we arrive at the same estimate simply by
decomposing h into its positive and negative parts. Finally, by allowing an arbitrarily small loss
of regularity, that is by replacing 0 < s < 1

2 by a slightly smaller value, it is possible to replace
the Lorentz space L4,1

x by the standard Lebesgue space L4
x in the right-hand side of the above

estimate, which concludes the justification of the theorem. �

Remark. Some features of the preceding proof are strikingly reminiscent of the proofs of bound-
edness of Bochner-Riesz multipliers and Fourier restriction operators in two dimensions. We refer
to [15] and the references therein for more on these subjects from harmonic analysis.
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7. The higher-dimensional case

We address now the higher-dimensional setting. In [2], the methods leading to Theorem 6.1 were
extended to establish an analog result valid in any dimension. Unfortunately, the ensuing result
does not reach a maximal gain of regularity of half a derivative on the velocity averages, but only
a gain of n

4(n−1) derivatives, where n ≥ 3 is the dimension. This drawback mainly stems from the
fact that the methods of proof of Theorem 6.1 are restricted to the L4

x setting, by exploiting the
trivial fact that the exponent 4 is an even integer in order to control the square of some transport
operator in L2

x rather than the operator itself in L4
x.

The main result in this setting is the following.

Theorem 7.1 ([2]). In any dimension n ≥ 3, let f, g ∈ L 4
3
(
Rnx ;L2 (Rnv )

)
be such that (0.2) holds

true. Then, ∫
Rn
f(x, v)ϕ(v)dv ∈W s, 4

3 (Rnx) ,

for all 0 ≤ s < n
4(n−1) and any ϕ ∈ L∞c (Rn).

Remark. The above result does not cover any of the estimates predicted by (4.6) or (4.7), for it
never gets close to a gain of half a derivative. However, it can be interpreted, using interpolation,
as a weaker version of (4.6), at least for some restricted values of 1 ≤ r ≤ 2. Indeed, note that a
formal interpolation yields(

L1
xL

2
v, L

2n
n+1
x L2

v

)
n

2(n−1)

= L
4
3
xL

2
v and

(
L1
x,W

1
2 ,

2n
n+1

x

)
n

2(n−1)

= W
n

4(n−1) ,
4
3

x .

In particular, formally extrapolating the above regularity result has us believe that estimate (4.6)
must hold for the value r = 2n

n+1 . In other words, Theorem 7.1 would follow from a formal inter-
polation of (4.6), where we set r = 2n

n+1 , with the degenerate L1 case. Thus, this formal argument
suggests that (4.6) may only be valid in the range 2n

n+1 ≤ r ≤ 2, which also agrees with the
restriction 4

3 ≤ r ≤ 2 for the two-dimensional case discussed in the previous section.

Sketch of proof. As in the proofs of the preceding theorems, this result will follow from the study
of the boundedness of the transport operator T : L

4
3
xL2

v → W
s, 4

3
x , for all 0 ≤ s < n

4(n−1) defined
by (1.2), where ρ(r) is a smooth cutoff function such that ρ(0) = 1, and of a similar operator where
ρ(r) is replaced by τ(r) = 1−ρ(r)

ir . For simplicity, we only deal with the cutoff ρ(r) and refer to [2]
for full details.

As explained in the proof of Theorem 6.1, the continuity of the operator T : L
4
3
xL2

v → W
s, 4

3
x

will then follow from the boundedness of the adjoint operator S∗ : L4
x → W s,4

x L2
v with velocities

restricted to the sphere Sn−1, for every 0 ≤ s < n
4(n−1) , defined by (6.1).

Here, we are also assuming that the cutoff function ρ(r) may be decomposed as a product
ρ(r) = ρ1(r)ρ2(r), so that ρ̃(s) = ρ̃1 ∗ ρ̃2(s), where both ρ̃1(s) and ρ̃2(s) are compactly supported.
In particular, the crucial trick (6.2) used to gain a one-dimensional integration along v is also valid
here.

We introduce now the following non-linear operator, for any integer N ≥ 2, denoting the vari-
ables S = (s2, . . . , sN−1) ∈ RN−2 and V = (v1, . . . , vN−1) ∈

(
Sn−1)N−1:

INh =
∫
Rn

∫
Sn−1
|S∗h(x, vN )|2

×

∫
[−r1,r1]N−2

∫
(Sn−1)N−1

∣∣∣∣∣∣S∗h
x+

N−1∑
j=2

sjtvj , v1

∣∣∣∣∣∣
2

dV dS

 dvNdx,

where [−r1, r1] contains the support of ρ̃1. Recall that, employing (6.2), it is possible to extract
a one-dimensional integration from S∗h(x, vN ) and S∗h

(
x+

∑N−1
j=2 sjtvj , v1

)
along vN and v1,

respectively. Therefore, it is possible, at least formally, to gain an N -dimensional spatial integration
in the above integrand by exploiting the integration along the variables sj . Thus, loosely speaking,
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the number N represents the expected gain of spatial dimension on the domain of integration
in IN .

As shown below, the boundedness of S∗ : L4
x → W s,4

x L2
v will follow from the following four

properties of the non-linear operator IN :

• For N = 2,
I2h = ‖S∗h‖4L4

xL
2
v
. (7.1)

• For N = n and any 0 < s < 1
2 , assuming for simplicity that h(x) has frequencies localized

inside an annulus of inner and outer radii comparable to 2k, with k ∈ N,

Inh ≤
C

2k4s ‖h‖
2
L2
x
‖h‖2L∞x , (7.2)

where C > 0 is independent of k. This estimate is rather involved and is based on the
methods employed to reach (6.6) in the proof of Theorem 6.1.

• For any N ≥ 2,
(INh)2 ≤ ‖S∗h‖4L4

xL
2
v
I2N−2h, (7.3)

which is a simple consequence of the Cauchy-Schwarz inequality (in x) followed by a careful
change of variable.

• For any N ≥ 2,
(INh)2 ≤ C

∥∥S2∗h
∥∥4
L4
x,v
I2N−1h, (7.4)

which is a direct consequence of an application of (6.2) followed by a careful use of the
Cauchy-Schwarz inequality with a change of variable.

Now, in order to establish the boundedness of S∗ : L4
x →W s,4

x L2
v from the above four properties

of IN , we further introduce the mappings Λ0,Λ1 : N \ {0, 1} → N \ {0, 1} defined by

Λ0k = 2k − 2 and Λ1k = 2k − 1.

It is possible to show that, for any integer n ≥ 3, there exists L ∈ N and a0, a1, . . . , aL ∈ {0, 1}
such that

n = Λa0Λa1 . . .ΛaL2 and n− 2 =
L∑
k=0

ak2k.

Moreover, the above decomposition is unique provided aL = 1. We will only consider this decom-
position applied to the dimension n.

Notice that one may now unify (7.3) and (7.4) into the single estimate, for any N ≥ 2,

(INh)2 ≤ C ‖S∗h‖4(1−a)
L4
xL

2
v

∥∥S2∗h
∥∥4a
L4
x,v
IΛaNh, (7.5)

where a ∈ {0, 1}.
At last, combining the above properties by using (7.1) first and then applying successively (L+1

times) estimate (7.5), we deduce that

‖S∗h‖2
L+1

L4
xL

2
v

= (I2h)2L−1

≤ C ‖S∗h‖(1−aL)2L
L4
xL

2
v

∥∥S2∗h
∥∥aL2L

L4
x,v

(
IΛaL2h

)2L−2

≤ C ‖S∗h‖(1−aL−1)2L−1+(1−aL)2L
L4
xL

2
v

∥∥S2∗h
∥∥aL−12L−1+aL2L

L4
x,v

(
IΛaL−1 ΛaL2h

)2L−3

≤ . . .

≤ C ‖S∗h‖
∑L

j=0
(1−aj)2j

L4
xL

2
v

∥∥S2∗h
∥∥∑L

j=0
aj2j

L4
x,v

(
IΛa0 Λa1 ...ΛaL2h

) 1
4

= C ‖S∗h‖2
L+1−(n−1)
L4
xL

2
v

∥∥S2∗h
∥∥n−2
L4
x,v

(Inh)
1
4 .
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Hence, in view of the classical Hilbertian boundedness of S2∗ : L2
x → H

1
2
x L2

v and (7.2), recalling
that we are assuming for simplicity that h(x) has localized frequencies of order 2k, it follows that,
for any 0 < s < n

4(n−1) ,

‖S∗h‖n−1
L4
xL

2
v
≤ C

∥∥S2∗h
∥∥n−2
L4
x,v

(Inh)
1
4

≤ C
∥∥S2∗h

∥∥n−2
2

L2
x,v

∥∥S2∗h
∥∥n−2

2
L∞x,v

(Inh)
1
4

≤ C

2k(n−1)s ‖h‖
n−1

2
L2
x
‖h‖

n−1
2

L∞x
,

where C > 0 does not depend on k. It follows that, for any 0 ≤ s < n
4(n−1) ,∥∥∥(1−∆x)

s
2 S∗h

∥∥∥
L4
xL

2
v

≤ C ‖h‖
1
2
L2
x
‖h‖

1
2
L∞x

.

Finally, the remainder of the demonstration follows the arguments from the end of the proof of
Theorem 6.1, which show that the preceding estimate is sufficient to conclude the boundedness of
S∗ : L4

x →W s,4
x L2

v.
The justification of the theorem is now complete. �

8. Dispersion and velocity averaging

Apart from the one-dimensional setting treated in Section 5, where (4.6) and (4.7) are both shown
to hold for every admissible value of r, we have not yet discussed the possible validity of (4.7)
in higher dimensions n ≥ 2. In fact, it was shown in [2] that (4.7) holds for the value r = 2 as
a consequence of dispersion of the kinetic transport flow combined with the classical Hilbertian
result from Theorem 1.1, which is precisely the content of the following result.

Theorem 8.1 ([2]). In any dimension n ≥ 1, let f, g ∈ L
2n
n+1

(
Rnx ;L

2n
n−1 (Rnv )

)
such that (0.2)

holds true. Then, ∫
Rn
f(x, v)ϕ(v)dv ∈ Hs (Rnx) ,

for all 0 ≤ s < 1
2 and any ϕ ∈ L∞c (Rn).

Remark. Such a result had already been hinted at in [16, 17], where it had been established that,
in two dimensions only (n = 2), velocity averages of f belong to Hs

x, for any 0 ≤ s < 1
2 , provided

f and g belong to L
4
3
xL∞v (see [17, Theorem 1.3]).

Sketch of proof. As usual, this result follows from the boundedness of the velocity averaging op-
erator T : L

2n
n+1
x L

2n
n−1
v → Hs

x defined by (1.2), where ρ(r) is a smooth cutoff function such that
ρ(0) = 1, and of a similar operator where ρ(r) is replaced by τ(r) = 1−ρ(r)

ir . For simplicity, we only
deal with the cutoff ρ(r) and refer to [2] for full details.

The following basic dispersive estimate on the kinetic transport flow was established in [7], for
all 1 ≤ q ≤ p ≤ ∞ and any t 6= 0:

‖f(x− tv, v)‖LpxLqv = 1
|t|

n
q

∥∥∥∥f (y, x− yt
)∥∥∥∥

LpxL
q
y

≤ 1
|t|

n
q

∥∥∥∥f (y, x− yt
)∥∥∥∥

LqyL
p
x

= 1
|t|n( 1

q−
1
p ) ‖f(x, v)‖LqxLpv .
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Combining the above kinetic dispersion with a TT ∗-argument, it is then readily seen that, for all
p ≥ 2,∥∥∥∥∫

R
f(x− tv, v)ρ̃(t)dt

∥∥∥∥2

L2
x,v

=
∥∥∥∥∫

R×R
f (x− tv, v) ρ̃(t)f (x− sv, v) ρ̃(s)dsdt

∥∥∥∥
L1
x,v

≤
∫
R×R
‖f (x, v) f (x− (s− t) v, v)‖L1

x,v
|ρ̃(s)ρ̃(t)| dsdt

≤
∫
R×R
‖f (x, v)‖

Lp
′
x L

p
v
‖f (x− (s− t) v, v)‖

LpxL
p′
v
|ρ̃(s)ρ̃(t)| dsdt

≤ ‖f‖2
Lp
′
x L

p
v

∫
R×R

1

|s− t|n(1− 2
p ) |ρ̃(s)ρ̃(t)| dsdt.

Therefore, further requiring that 2 ≤ p < 2n
n−1 so that the last integral above is finite by virtue of

the Hardy-Littlewood-Sobolev inequality, we deduce that∥∥∥∥∫
R
f(x− tv, v)ρ̃(t)dt

∥∥∥∥
L2
x,v

≤ C ‖f‖
Lp
′
x L

p
v
, (8.1)

where C > 0 is a finite independent constant.
We employ now a trick which has already proved itself extremely useful in the proofs of The-

orems 6.1 and 7.1. Namely, we assume that the cutoff function ρ(r) may be decomposed as a
product ρ(r) = ρ1(r)ρ2(r), so that ρ̃(s) = ρ̃1 ∗ ρ̃2(s). Naturally, we denote by T i, where i = 1, 2,
the operators T where we replace the cutoff ρ by ρi. According to the representation formula (3.1),
it then holds that

Tf(x) =
∫
Rn

∫
R

∫
R
f (x− (s+ t)v, v) ρ̃1(s)ρ̃2(t)ϕ(v)dsdtdv

= T 2
(∫

R
f(x− sv, v)ρ̃1(s)ds

)
(x).

Thus, combining the classical Hilbertian boundedness of T 2 : L2
x,v → H

1
2
x (from the proof of

Theorem 1.1) with the dispersive bound (8.1), we conclude that

‖Tf‖
H

1
2
x

≤ C
∥∥∥∥∫

R
f(x− sv, v)ρ̃1(s)ds

∥∥∥∥
L2
x,v

≤ C ‖f‖
Lp
′
x L

p
v
,

for any 2 ≤ p < 2n
n−1 , which establishes the boundedness of T : Lp′x Lpv → H

1
2
x . Since this result

is local in v, we infer the boundedness of T : Lp′x L
2n
n−1
v → H

1
2
x , as well. Finally, by allowing an

arbitrarily small loss of regularity, that is by replacing s = 1
2 by a slightly smaller value 0 < s < 1

2 ,
it is also possible to replace, using a Sobolev embedding, the space Lp′x by L

2n
n+1
x . This establishes

the boundedness of T : L
2n
n+1
x L

2n
n−1
v → Hs

x, for any 0 < s < 1
2 , and thus concludes the proof of the

theorem. �

Remark. As previously mentioned, the preceding theorem establishes the validity of (4.7) for the
value r = 2 in every dimension. However, nothing is claimed regarding other values r 6= 2, which
remains open.

As shown by the proof above, the case r = 2 in (4.7) is a consequence of the action of dispersion
on the estimate provided by the case r = 2 in (4.6). In fact, it seems natural to believe that this is
the same for every admissible value of r, i.e. that every valid estimate in (4.7) is the consequence of
the action of dispersion on the estimate provided by the same value r in (4.6). In particular, notice
that the pair of exponents

(
2nr

2n+r ,
2n
n−1

)
in (4.7) has the same harmonic mean 4r

2+r as the pair of
exponents (r, 2) in (4.6), which is a requirement for the application of kinetic dispersive estimates
such as (8.1) (see also the more general dispersive estimates from [2]). This viewpoint suggests
that estimates (4.6) and (4.7) are valid on the exact same range of parameters. Unfortunately, we
do not have any counterexample to substantiate this claim.
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9. Open problems and final thoughts

The search for maximal regularity in velocity averaging lemmas first motivated by [17] and then
conducted in [2] has proved so far a very rich endeavor requiring diverse and original methods
(extending beyond the classical settings of velocity averaging), producing interesting new results
and leading to exciting research perspectives.

Thus, a straightforward dimensional analysis performed in Section 4 first revealed that this
problem can be reduced to establishing estimates of the types (4.6) and (4.7), whose exact range
of validity remains yet to be determined in general.

This task turns out to be heavily dependent on the dimension where it is set. The one-
dimensional setting presented in Section 5 has been fully solved by showing that both esti-
mates (4.6) and (4.7) are valid in the largest possible range of admissible parameters, i.e. 1 < r <∞
for (4.6) and 2 < r <∞ for (4.7).

The higher-dimensional setting tells a whole different story.
In two dimensions, the results described in Section 6 establish that (4.6) holds for values 4

3 ≤
r ≤ 2. Moreover, as explained therein, a counterexample from [17] to the boundedness of certain
operators strongly suggests that this range of parameters is optimal. In higher dimensions n ≥ 3, a
formal extrapolation argument of the results from Section 7 further implies that (4.6) should only
hold in the range 2n

n+1 ≤ r ≤ 2. We summarize these considerations in the following conjecture.

Conjecture 9.1. In any dimension n ≥ 2, let 2n
n+1 ≤ r ≤ 2 and f, g ∈ Lr

(
Rnx ;L2 (Rnv )

)
be such

that (0.2) holds true. Then, ∫
Rn
f(x, v)ϕ(v)dv ∈W s,r (Rnx) ,

for all 0 ≤ s < 1
2 and any ϕ ∈ L∞c (Rn). Moreover, this result does not hold for values 1 ≤ r < 2n

n+1 .

The behavior of the range of admissible parameters conjectured above is strikingly reminiscent
of the famous problems of boundedness of Bochner-Riesz multipliers and Fourier restriction op-
erators (see [15] and the references therein). From this viewpoint, by further analogy with the
unboundedness results from [11] for the ball multiplier, we can only hypothesize the following.

Conjecture 9.2. In any dimension n ≥ 2, let 2n
n+1 ≤ r ≤ 2 satisfy that, for any f, g ∈

Lr
(
Rnx ;L2 (Rnv )

)
such that (0.2) holds true, one has∫

Rn
f(x, v)ϕ(v)dv ∈W 1

2 ,r (Rnx) ,

for any ϕ ∈ L∞c (Rn). Then, necessarily r = 2.

As for the validity of estimate (4.7), it was addressed by the results from Section 8, where it
was identified that dispersion of the kinetic flow could produce bounds such as the ones predicted
in (4.7). Theorem 8.1 is very satisfying in that it holds in every dimension. However, it only handles
the case r = 2 in (4.7). One could further argue that any estimate of the type (4.7) is produced
by the effects of dispersion on an estimate of the type (4.6) for the same parameter r. From this
perspective and in view of the above conjectures, it is then only natural to speculate that the
following should hold.

Conjecture 9.3. In any dimension n ≥ 2, let 2n
n+1 ≤ r ≤ 2 and f, g ∈ L

2nr
2n+r

(
Rnx ;L

2n
n−1 (Rnv )

)
be

such that (0.2) holds true. Then,∫
Rn
f(x, v)ϕ(v)dv ∈W s,r (Rnx) ,

for all 0 ≤ s < 1
2 and any ϕ ∈ L∞c (Rn). Moreover, this result does not hold for values 1 ≤ r < 2n

n+1 .

The above set of problems provides many interesting research perspectives. We believe that any
progress (positive or negative) in this area will require new and original ideas. It would be judicious
though to search first for definitive counterexamples, directly applicable to the equation (0.2),
capable of probing the limits of validity of such conjectures, which would also greatly strenghten
their plausibility.
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Finally, as mentioned before, the results presented here and their proofs bear a strong re-
semblance with the famous and notoriously difficult problems of boundedness of Bochner-Riesz
multipliers and Fourier restriction operators. One may also debate about their similitude with
smoothing conjectures for Schrödinger and wave equations. These considerations thus suggest the
possibility of interesting links between kinetic theory, dispersive equations and harmonic analysis,
which should be investigated.
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