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Billiards and boundary traces of eigenfunctions

Steve Zelditch
Abstract

This is a report on recent results with A. Hassell on quantum ergodicity
of boundary traces of eigenfunctions on domains with ergodic billiards, and
of work in progress with Hassell and Sogge on norms of boundary traces.
Related work by Burq, Grieser and Smith-Sogge is also discussed.

1. Introduction

This is a report on recent work (and work in progress) with A. Hassell and C. Sogge
on boundary traces of eigenfunctions of the Laplacian on bounded domains and their
relations to the dynamics of the billiard map. Boundary traces of eigenfunctions
arise when one makes a reduction of the interior/exterior eigenvalue problem or
wave equation of a domain to its boundary. In the classical approach to boundary
problems of Neumann and Fredholm, the boundary reduction is made via layer
potentials and associated boundary integral operators. Our results are based on an
analysis of these operators as semiclassical Fourier integral operators.

We work on a Lipschitz domain Ω ⊂ Rn which is assumed to be compact and
piecewise smooth with corners. We give a precise definition below. The interior
eigenvalue problem is:

−∆uj = λ2
juj in Ω, 〈uj, uk〉 = δjk

Buj = 0 on ∂Ω,
(1.1)

where

Buj =


uj|∂Ω (Dirichlet), resp.

∂νuj +Ku|∂Ω, (Neumann, Robin)
(1.2)

Here, ∂ν denotes the unit interior normal derivative.
By the boundary trace ub

j of an interior eigenfunction uj, we mean the comple-
mentary operator to B, namely

ub
j(q) = ∂νuj|∂Ω (Dirichlet), resp. ub

j(q) = uj|∂Ω (Neumann, Robin). (1.3)
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These boundary traces are a reduction to the boundary of the eigenfuncions, and
they become eigenfunctions of a reduction to the boundary of the resolvent, given
by the boundary integral operator Fλ on ∂Ω defined by

Fλf(y) =


−2

∫
∂Ω

∂
∂νy′

G0(y, y
′, λ)f(y′)dA(y′), Neumann

2
∫

∂Ω
∂

∂νy
G0(y, y

′, λ)f(y′)dA(y′), Dirichlet

(1.4)

where dA(y) is the induced boundary area form, and where

G0(z, z
′, λ) = (2π)−nλn−2

∫
eiλ(z−z′)·ξ 1

|ξ|2−1−i0
dξ

= Cλn−2(λ|z − z′|)−(n−2)/2 Ha
(1)
n/2−1(λ|z − z′|).

is the free outgoing Green’s function Rn. Here, Ha
(1)
n/2−1, is the Hankel function.

Thus, the Dirichlet boundary integral operator has kernel

Fλ(y, y
′) = (2π)−nλn−1

∫
eiλ(y−y′)·ξ ξ·νz

|ξ|2−1−i0
dξ.

where νz is the unit inward pointing normal at z. It is elementary and classical
(from Green’s formula) that

Fλj
ub

j =


ub

j, Neumann

−ub
j, Dirichlet.

(1.5)

One may think of Fλ as a transfer operator or effective Hamiltonian in the reduction
to the boundary. More precisely, as we will explain in Section 3, Fh is the quanti-
zation of the billiard map β on the ball bundle B∗∂Ω, and is thus the reduction to
the boundary of the quantum dynamics of the wave group in the interior. Yet it is
clearly a more elementary operator than the Dirichlet and Neumann wave groups.

Our interest is in the relation between the dynamics of β on B∗∂Ω and the
asymptotics of the boundary traces ub

j. In particular we study:

• Asymptotics of matrix elements 〈A(hj)u
b
j, u

b
j〉;

• Asymptotics of Lp norms: ||ub
j||Lp .

• Asymptotics of ratios ||ub
j||Lp/||ub

j||L2

The problems and results we present are to some extent analogues for boundary
traces of results of [SZ, ZZw] on eigenfunctions on boundaryless manifolds or on
interior eigenfunctions of manifolds with boundary. In the next section, we state
the main results at this time.

Besides A. Hassell and C. Sogge, the author would like to thank M. Zworski for
helpful discussions about non-convex domains and ghost orbits, and D. Tataru for
checking the statements of his results in Section 5 (they are stated differently in
[T]).
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2. Statement of results

Let Ω be a bounded subdomain of Rn with closure Ω.

Definition: We say that Ω ⊂ Rn is a piecewise smooth manifold if the boundary
Y = ∂Ω is strongly Lipschitz, and can be written as a disjoint union

Y := ∂Ω = H1 ∪ · · · ∪Hm ∪ Σ,

where each Hi is an open, relatively compact subset of a smooth embedded hyper-
surface Si, and Σ is a closed set of (n− 1)-measure zero.

The sets Hi are called boundary hypersurfaces of Ω. We call Σ the singular set,
and write Y o = Y \ Σ for the regular part of the boundary.

2.1. Statement of results on quantum ergodicity

Our main results concern the quantum ergodicity of boundary traces. To state the
results, we need some notation. In the table, κ denotes a C∞ function on Y while k
is the principal symbol of the operator K ∈ Ψ1(Y ), and dσ is the natural symplectic
volume measure on B∗Y . We also define the function γ(q) on B∗Y by

γ(q) =
√

1− |η|2, q = (y, η). (2.1)

Boundary Values
B Bu ub dµB

Dirichlet u|Y ∂νu|Y γ(q)dσ

Neumann ∂νu|Y u|Y γ(q)−1dσ

Robin (∂νu− κu)|Y u|Y γ(q)−1dσ

Ψ1-Robin (∂νu−Ku)|Y u|Y
γ(q)dσ

γ(q)2 + k(q)2

Theorem 1. Let Ω ⊂ Rn be a bounded piecewise smooth manifold (see Definition 2)
with ergodic billiard map. Let {ub

j} be the boundary traces f the eigenfunctions {uj}
of ∆B on L2(Ω) in the sense of the table above. Let Ah be a semiclassical operator
of order zero on Y . Then there is a subset S of the positive integers, of density one,
such that

lim
j→∞,j∈S

〈Ahj
ub

j, u
b
j〉 = ωB(A), B = Neumann, Robin or Ψ1-Robin,

lim
j→∞,j∈S

λ−2
j 〈Ahj

ub
j, u

b
j〉 = ωB(A), B = Dirichlet,

(2.2)

where hj = λ−1
j and ωB(A) =

∫
B∗Ω

σAdµB.
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We note that the boundary traces are only normalized by ||uj||L2(Ω) = 1. We
obtain new results on L2 norms by taking A = I. For the Neumann case, we have

lim
j→∞,j∈S

‖ub
j‖2

L2(Y ) =
2 vol(Y )

vol(Ω)
, (2.3)

while for the Dirichlet boundary condition they imply

lim
j→∞,j∈S

λ−2
j ‖ub

j‖2
L2(Y ) =

2 vol(Y )

n vol(Ω)
. (2.4)

To our knowledge, the only prior results on L2 norms of boundary traces are the
upper and lower bounds of [BLR, HT] in the Dirichlet case, and the bounds implicit
in [T] in the Neumann case. We review the latter in the last section.

2.2. Statement of results on Lp norms of boundary traces

We now consider Lp norms of boundary traces for general domains. We state a
number of results of work in progress [HSZ]. For simplicity of exposition, we only
state the results for L∞ norms.

First we consider estimates of boundary traces and state general L∞ bounds
analogous to those which follow from the remainder estimate of Avakumovic-Levitan
for the spectral function of the Laplacian on a boundaryless manifold (see [SZ] for
references). We denote by

Eb
[a,b](x, x) =

∑
j:λj≤λ∈[a,b]

|ub
j(q)|2 (2.5)

the boundary trace of spectral projections kernel (on the diagonal) for
√

∆ corre-
sponding to the interval [a, b].

Proposition 2.1. We have:

∑
j:λj≤λ

|ub
j(q)|2 =


Cλn+2 +O(λn+1), Dirichlet

λn +O(λn−1), Neumann.

Hence,

||Eb
[λ,λ+1](x, x)||L∞ =


O(λn+1), Dirichlet

O(λn−1), Neumann.

Of course, the estimate holds for each term ||ub
j(q)|2||L∞(∂Ω) separately. We state

it in the above form because it is sharper than the statement for boundary traces
of eigenfunctions: for instance, the results implies the same bound for boundary
traces ψb

j of quasimodes of order 0 satisfying ||(∆−λ2
j)ψj|| = O(1). We also wish to

emphasize that our estimates on boundary traces of eigenfunctions cannot be better
than estimates for the above spectral projections.

XV–4



Even for boundary traces of eigefunctions, the above estimate on L∞ norms
is sharp among all compact Riemannian domains with boundary. Indeed, they
are achieved on the northern hemisphere of the standard Sn by zonal spherical
harmonics with pole on the boundary: let x0 be a point on the boundary of the
northern hemisphere (i.e. the equator), and let Y Nx0

0 be the L2-normalized zonal
spherical harmonic of degree N with pole at x0, i.e. the spherical harmonic which
is invariant under rotations fixing x0. Then 1

2
[Y Nx0

0 (x) + Y Nx0
0 (x∗)] is a Neumann

eigenfunction which is essentially L2-normalized and which has the same L∞ norm
as Y Nx0

0 . Here, x∗ is the reflection of x through the equation, i.e. (x1, . . . , xn)∗ =
(x1, . . . , xn−1,−xn). Taking the normal derivative of the odd part of Y N

1 under the
reflection produces a similar sharp example in the Dirichlet case. Eucliean examples
will be discussed in the final section.

However, our main result on norms of boundary traces, as in the interior case
studied in [SZ], shows that this result is generically not sharp. In the following,
the symbol f(x) = Ω(g(x)) is the negative of f(x) = o(g(x)), i.e. f(x) grows at
least as fast as g(x) along a subsequence. In the following, E[λ,λ+o(1)] is short for
E[a,b] where a, b are the endpoints of a sequence of shrinking intervals satisfying
a = λ, b = λ+ ε(λ) where 0 < ε(λ) = o(1).

Theorem 2. Suppose that

||ub
j||L∞ =


Ω(λ

n+1
2

j ), Dirichlet

Ω(λ
n−1

2
j ), Neumann.

or more generally that

||E[λ,λ+o(1)](x, x)||L∞ =


Ω(λ

n+1
2 ), Dirichlet

Ω(λ
n−1

2 ). Neumann.

Then there exists a recurrent point q ∈ ∂Ω, i.e. there exists T > 0 and a positive
measure set of directions ξ ∈ S∗q Ω such that the billiard orbit expq(tξ) returns to q
at time T .

To put this another way, if the set of looping directions at q has measure zero
for all q ∈ ∂Ω, then for any ε > 0,

lim sup
λ→∞

λ−
n+1

2 ||E[λ,λ+ε](q, q)||L∞ → 0 as ε→ 0. . (2.6)

As pointed out in Section 5.4, a recurrent point in the sense above cannot occur in
a convex analytic Euclidean domain. Hence,

Corollary 2.2. If Ω ⊂ Rn is a convex analytic domain with Euclidean metric,
then

||ub
j||L∞ =


o(λ

n+1
2

j ), Dirichlet

o(λ
n−1

2
j ), Neumann.
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The hypothesis in the Corollary can probably be weakened quite a bit. For
instance, it seems unlikely that real analytic Euclidean domains of any kind can
have recurrent points in our sense, and the same may be true for smooth Euclidean
domains (see also [SV] for related conjectures).

We note that although the result on boundary traces appears similar to that of
[SZ] on eigenfunctions on manifolds without boundary, there is a serious difference
in that the estimate in the boundaryless case is on the ratio ||uj||Lp/||uj||L2 whereas
in the case of boundary traces, it is the interior eigenfunction and not the boundary
trace which is L2 normalized. In the Dirichlet case, ||ub

j||L2 is known to be bounded
above and below by a constant times λj [BLR, HT], so one could restate the result
in terms of the ratio ||ub

j||L∞/||ub
j||L2 . In the Neumann case, ||ub

j||L2 can vary with
the domain and metric.

2.3. Remarks on methods and related results

As mentioned above, our approach to boundary problems is to work entirely on
the boundary. In a recent article [Bu], Burq takes the opposite route of ‘reducing’
the study of ergodicity of bounday traces to the interior. He extends the methods
of Gerard-Leichtnam [GL] to reduce the proof of ergodicity of boundary traces to
the results of Zelditch-Zworski [ZZw] on ergodicity of interior eigenfunctions. Both
approaches have their advantages, to which we devote a few remarks.

Our motivation for working entirely on the boundary comes from several sources.
First, it seems to us natural to prove results about boundary traces by working with
quantum dynamics on the boundary, i.e. by making a semiclassical analysis of the
operator Fh. We also hope (and believe) that the semiclassical analysis of Fh and
related operators has an independent interest and other applications, for instance
to inverse spectral theory (see [Z1]).

A second motivation is that the use of semiclassical asymptotics of the resolvent
and of Fh to relate spectrum and billiards is now the standard approach in the
physics literature on eigenvalues of bounded domains. The method originated in
the articles of Balian-Bloch [BB1, BB2] and has been developed in, for instance, the
articles [AG, B, BS, BFSS, GP, THS, THS2, TV]. A key reason for the wide use of
the boundary reduction (as explained to the author by A. Backer and R. Schubert)
is that boundary traces of eigenfunctions on smooth domains are much easier to
compute numerically than interior eigenfunctions. See the expository article [B]
by A. Backer (especially sections (3.3.1) - (3.3.7) and figure 20) for a discussion of
the numerical methods, for further references, and for pictures of boundary traces
of eigenfunctions. Despite the classical nature of layer potentials and the induced
boundary integral operators, and their common use in physics and engineering, we
are not aware of prior mathematical studies of their semiclassical properties.

The boundary integral method based on Fh seems to us more elementary than
the interior methods, but it does have the disadvantage that the phase of Fh, given
by the distance function between boundary points, is the generating function of both
the interior and exterior billiard maps. Hence one has to deal with the so-called ghost
billiard orbits which have links outside the domain (see Section 4.1.4). In the original
version of [HZ], we restricted to convex domains where ghost orbits do not arise.

XV–6



Using his interior method, Burq [B] then proved a more general ergodicity result for
non-convex as well as convex domains. After that, in the second version of [HZ], we
extended our methods and results to general (possibly non-convex) domains. In the
interim, discussions with M. Zworski were very helpful. The additional complication
of ghost orbits of non-convex domains does not in the end turn out to be serious.

3. Boundary integral operators as semiclassical Fourier in-
tegral operators

We begin by explaining the sense in which Fh is the boundary reduction or effective
Hamiltonian for the resolvent. It is a classical result of potential theory.

We recall that the single, resp. double layer potentials of a domain Ω ⊂ Rn are
the operators 

S`(λ)f(x) =
∫

∂Ω
G0(x, q, λ)f(q)dA(q),

D`(λ)f(x) =
∫

∂Ω
∂

∂νy
G0x, q, λ)f(q)dA(q),

(3.1)

where dA(q) is the surface area measure on ∂Ω, where ν is the interior unit normal
to Ω, and where ∂ν = ν · ∇. They induce the boundary integral operators (1.4).

Denote by RD
Ω (λ) (resp. RN

Ωc(λ)) the resolvent of the interior Dirichlet Laplacian
(resp. the exterior Neumann Laplacian). Then the Fredholm-Neumann reduction
takes the form:

RD
Ω (λ) = 1ΩR0(λ)1Ω + 1ΩD`(λ)(I + Fλ)

−1S(λ)tr1Ω,

RNtr
Ωc (λ) = 1ΩcRtr

0 (λ)1Ωc + 1ΩcD`(λ)(I + Fλ)
−1S`(λ)tr1Ωc

(3.2)

This formula has the form of a Grushin reduction of the Laplacians to operators
on the boundary in the sense of Sjostrand (see e.g. [DS]). Although we are not
studying trace formula here, we note that the combination of these two formula
implies that (in the sense of distributions),

TrR2 [RΩc

D (λ)⊕RΩ
N −R0ρ(λ)] = d

dλ
log det(I + Fλ), .

where det(I + Fλ) is the Fredholm determinant. This formula is often used to
determine the eigenvalues and resonances of domains.

It should be observed that the Dirichlet resolvent has the complexity of the
Dirichlet wave group, while Fλ is no more complicated that the free resolvent. It
is (I + Fλ)

−1 which has the complexity of the Dirichlet resolvent or the Dirichlet-
to-Neumann operator. The relative simplicity of Fλ is one of the attractions of the
boundary reduction.

3.1. Quantized billiard map: Neumann

Since Fλ is a reduction to the boundary of the resolvent, it should be a kind of
quantization of the billiard map. We now explain in what sense this is true.
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The billiard map β : B∗Y o → T̃ ∗Y is defined on the open ball bundle B∗Y o as
follows: given (y, η) ∈ T ∗Y , with |η| < 1 we let (y, ζ) ∈ S∗Ω be the unique inward-
pointing unit covector at y which projects to (y, η) under the map T ∗

∂ΩΩ → T ∗Y .
Then we follow the geodesic (straight line) determined by (y, ζ) to the first place it
intersects the boundary again; let y′ ∈ Y denote this first intersection. If y′ ∈ Σ
then we define β(y, η) = y′. Otherwise, let η′ be the projection of ζ to T ∗

y′Y . Then
we define

β(y, η) = (y′, η′).

The map β− : B∗Y o → T̃ ∗Y is defined similarly, following the backward billiard
trajectory (that is, the straight line with initial condition (y, 2(ζ · νy)νy − ζ)).

The graph
Cbill = graph β ≡ {(β(q), q) | q ∈ R1}. (3.3)

of β is a smooth Lagrangian submanifold of B∗Y o × B∗Y o. In a neighbourhood of
(y0, η0, y

′
0, η

′
0) it is given by

Cbill = {(y,−∇yd(y, y
′), y′,∇y′d(y, y

′)), (3.4)

where d(y, y′) is the Euclidean distance function. For strictly convex Ω it is given
globally by (3.4), for y, y′ ∈ Y o, but this is not true in general. This causes ex-
tra difficulties for nonconvex domains, namely it introduces spurious billiard orbits
(known as ghost orbits in the physics literature) which do not remain entirely in the
domain, and which have to be shown to be irrelevant.

We see directly from (1.4) that Fh is an oscillatory integral operator with phase
equal to the generating function d(y, y′) of Cbill. This is especially clear in dimension
3 when

G(x, x′, λ) =
1

4π

eiλ|x−x′|

|x− x′|
.

However, it is also clear that Fh(y, y
′) has the homogeneous singularity on the di-

agonal of a pseudodifferential operator of order −1, and this is how it is usually
described. At least in the convex case, one may extend β to the boundary |η| = 1 of
B∗Y by fixing S∗Y pointwise. Then the diagonal of B∗Y ×B∗Y and Cbill intersect
in the diagonal of S∗Y × S∗Y , so one may view the wave front set of Fh as being
the union of two intersecting Lagrangeans. Fh(y, y

′) thus has similarities to the the
oscillatory integral operator kernels associated to two intersecting Lagrangeans of
Melrose-Uhlmann. However, the intersection occurs at the boundary of both La-
grangeans and is thus outside the scope of the class of Melrose-Uhlmann operators,
presumably explaining the unusual composition law described in [Z1]. Due to the
explicit nature of our problem, we carry out the analysis by hand without making
use of general operator theories. The main point to observe is that the Fourier
integral part is of order 0 while the pseudodifferential part is of order −1, so the
Fourier integral part dominates.

Proposition 3.1. Assume that ∂Ω is smooth. Let U be any neighbourhood of
∆S∗∂Ω. Then there is a decomposition of Fλ as

Fλ = F1,λ + F2,λ + F3,λ,
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where F1 is a Fourier Integral operator of order zero associated with the canonical
relation Cbill = graph(β), F2 is a pseudodifferential operator of order −1 and F3 has
operator wavefront set contained in U .

This implies an Egorov type result for the operator Fλ:

Proposition 3.2. Let Ah = Op(ah) be a zeroth order operator whose symbol
a(y, η, 0) at h = 0 is supported away from |η| = 1. Put h = λ−1 and let γ be
as above, and let β denote the billiard ball map on B∗Y . Then

F ∗
λAhFλ = Ãh + Sh,

where Ãh is a zeroth order pseudodifferential operator and ‖Sh‖L2→L2 ≤ Ch. The
symbol of Ãh is

ã =

{
γ(q)[γ−1(β(q))a(β(q))], q ∈ B∗Y

0, q /∈ B∗Y.
(3.5)

This is a rigorous version of the statement that Fh quantizes the billiard ball
map.

4. Boundary quantum ergodicity

Quantum ergodicity is concerned with quantizations of classically ergodic Hamilto-
nian systems. It is essentially a convexity result relating the time average

〈A〉 := lim
T→∞

1

2T

∫ T

−T

UtAU
∗
t dt,

and the (constant) space average,
ω(A) I

of an observable. Here, we use the notation of the interior problem where Ut is the
wave group. Also, ω(A) is an invariant state on the algebra of observables, which
arises from the local Weyl law:

lim
λ→∞

1

N(λ)

∑
λj≤λ

〈Auj, uj〉 = ω(A). (4.1)

The system is quantum ergodic if

〈A〉 = ω(A) I + K, with
1

N(λ)
||ΠλKΠλ||HS → 0, (4.2)

where || · ||HS is the Hilbert-Schmidt norm and where Πλ is the spectral projection
onto the span of eigenfunctions of

√
∆ of eigenvalue ≤ λ. In terms of the L2-

normalized eigenfunctions uj, QE says:
1

N(λ)

∑
j:λj≤λ

|〈Auj, uj〉 − ω(A)|2 → 0,

for any observable A. Following the work of Schnirelman, Colin de Verdiere, Zelditch
in the boundaryless case, it was proved by Gerard-Leichtnman [GL] (C1,1 domains
with Dirichlet boundary conditions) and Zelditch-Zworski [ZZw] (general case with
corners) that domains with ergodic billiards are quantum ergodic.
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4.1. Proof of Theorem 1

The main steps in the proof are:

• The local Weyl law;

• Analysis of the classical limit state and the L2 ergodic theorem on the classical
level.

• A convexity inequality to convert quantum ergodicity to the classical L2 er-
godic theorem.

4.1.1. Local Weyl law

It states:

Proposition 4.1. Let Ah be a semiclassical operator of order zero on ∂Ω. Then
for any of the above boundary conditions B, we have:

lim
λ→∞

1

N(λ)

∑
λj≤λ

〈Ahj
u[

j, u
[
j〉 = ωB(A), hj = λ−1

j , (4.3)

where ωB is the state defined in the table in Section 4.2.

In the case of multiplication operators, the Weyl law was first proved by S.
Ozawa [O].

4.1.2. Mean ergodic theorem for the classical limit states

It is obvious that the states

ρ[
j(A) := 〈Ahj

u[
j, u

[
j〉 (4.4)

are invariant for Fλj
:

ρ[
j(F

∗
λj
AFλj

) = ρ[
j(A) (4.5)

Here, as above, hj = λ−1
j .

Since any average or limit of averages of these states will be invariant, the local
Weyl law implies:

Corollary 4.2. The states ωB are invariant under Fλ: ωB(F ∗
λAFλ) = ωB(A).

The formulae for the limit states in the table in Section 2.1 are found by explicit
calculation of traces, e.g. of the dual heat or wave traces. The limit measures may
be understood as follows:

• The Neumann limit measure dσ
γ(q)

is the projection to B∗Ω of the interior
Liouville measure restricted to the set S∗∈∂Ω of inward pointing unit vectors
to Ω along ∂Ω under the map π(x, ξ) = (x, ξT ) taking a (co)-vector to its
tangential component.
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• The Dirichlet limit measure γ(q)dσ arises because boundary values of eigen-
functions involve the normal derivative in both factors before restricting to
the boundary. The symbol of h∂ν , restricted to the spherical normal bundle,
and then projected to B∗∂Ω is equal to γ, so we expect to get the square of
this factor in the Dirichlet case compared to the Neumann case.

We now consider the mean ergodic theorem for these classical limit states. Let us
first recall the result for the standard ‘Koopman’ operator associated to the billiard
map:

T : L2(B∗∂Ω, dσ) → L2(B∗∂Ω, dσ), T f(ζ) = f(β(ζ)).

From the invariance it follows that T is a unitary operator. When β is ergodic, the
unique invariant L2-normalized eigenfunction is a constant c, and one has the mean
ergodic theorem

lim
N→∞

|| 1

N

N∑
n=1

T n
F (f)− 〈f, c〉|| → 0. (4.6)

But the transformation provided by Proposition 3.2 ( Egorovs theorem) is defined
by:

Tf(ζ) =
γ(ζ)

γ(β(ζ))
f(β(ζ)).

This T is not unitary on L2(B∗∂Ω, dσ). The invariance ωB(A) = ωB(F ∗
hAFh) implies

that the associated measure dµB is invariant under

T ∗f(ζ) =
γ(β(ζ))

γ(ζ)
f(β(ζ)).

Simple calculations show:

• (i) The unique positive T ∗-invariant density is given by γ−1dµ. The unique
positive T -invariant density is given by γdµ.

• (ii) T is unitary relative to the inner product 〈〈, 〉〉 on B∗∂Ω defined by the
measure dν = γ−2dµ.

When β is ergodic, the orthogonal projection P onto the T -invariant L2-eigen-
vectors has the form

P (f) = 〈〈f, γ〉〉 = [

∫
B∗∂Ω

fγγ−2dµB]γ

Thus, P (σA) = [
∫

B∗∂Ω
σAγ

−1dµB]γ = ωB(A)γ.
The mean ergodic theorem thus says:

1

N

N−1∑
k=0

T kσA → ωB(A)γ.
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4.1.3. Convexity

To show that
〈Au[

j, u
[
j〉 → ωB(A),

along a density one subsequence of integers j is essentially to show that

lim sup
λ→∞

1

N(λ)

∑
λj<λ

∣∣∣〈(A− ωB(A))u[
j, u

[
j〉

∣∣∣2 = 0. (4.7)

Due to the novel form of the local Weyl law and the Egorov theorem, we first
prove an auxiliary result of this kind for the quantization of the invariant symbol

σR(q) ∼ cγ(q) = c(1− |η|2)1/2, (4.8)

with c a normalizing constant.

Lemma 4.3. For all ε > 0, there exists a pseudodifferential operator R of the form
(4.8) such that

lim sup
λ→∞

1

N(λ)

∑
λj<λ

∣∣∣〈(A− ωB(A) R)u[
j, u

[
j〉

∣∣∣2 < ε.

We prove this intermediate step by the usual time-average + convexity:

1
N(λ)

∑
λj<λ

∣∣∣〈(A− ωB(A) R)u[
j, u

[
j〉

∣∣∣2
=

∑
λj<λ

∣∣∣〈(〈Ah〉N − ωB(A) R)u[
j, u

[
j〉

∣∣∣2,
≤ C

∑
λj<λ〈|〈Ah〉N − ωB(A) R|2ub

j, u
b
j〉,

where 〈Ah〉N = 1
N

∑N
k=1((F

k
h )∗AhF

k
h . By the local Weyl law, the limit equals ωB((AN−

ωB(A)R)2), or

=

∫
B∗∂Ω

(
〈σA〉N − ωB(A)σ(R)

)2

dµB. (4.9)

By Proposition 3.2, the symbol σ〈A〉N of 〈A〉N is 1
N

∑N
k=0 T

k
F (σA). By the mean

ergodic theorem, this converges to

P (σA) = cγ(q)×
∫
σAγ

−1 dσ = c ωB(A) γ(q) .

This is approximately equal to the symbol of ωB(A)R. Thus,∫
B∗∂Ω

(
σAN

− ωB(A)σ(R)
)2

dµB

becomes small as N →∞. Thus, 1
N(λ)

∑
λj<λ

∣∣∣〈(A− ωB(A) R)u[
j, u

[
j〉

∣∣∣2 is arbitarily
small as N →∞, proving Lemma 4.3.
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Finally, we need to go from

1

N(λ)

∑
λj<λ

∣∣∣〈(A− ωB(A) R)u[
j, u

[
j〉

∣∣∣2
to

1

N(λ)

∑
λj<λ

∣∣∣〈(A− ωB(A) I)u[
j, u

[
j〉

∣∣∣2.
It suffices to show that 1

N(λ)

∑
λj<λ

∣∣∣〈(I − R)u[
j, u

[
j〉

∣∣∣2 is arbitrarily small. But
this is the case A = I above, since ωB(I) = 1.

4.1.4. Non-convex domains

We now adapt the argument to nonconvex domains. The problem with the argument
above is that the canonical relation of Fλ is larger than the billiard relation, since
it relates points on the boundary which are connected by a straight line even if
the line passes outside the domain (ghost orbits). However, one can modify Fλ

so that it leaves the boundary traces invariant and so that its wave front relation
has an arbitrarily small measure of ghost orbits. That this should be possible was
emphasized to us by M. Zworski.

As is easy to see, the property Fλj
ub

j = ub
j (which follows from Green’s formula)

is valid for any choice of Green’s function on a neighborhood of Ω. So we modify the
metric outside the domain, while keeping it Euclidean inside. Let b be a smooth,
compactly supported nonnegative function on Rn which vanishes on Ω. Consider
the metric

gs = (1 + sb)gEuclidean on Rn.

For sufficiently small s, no geodesics of gs starting at a point in Ω have conjugate
points in Ω. Let Gs(z, z, λ) = (∆s − (λ + i0)2)−1(z, z′) denote the kernel of the
outgoing resolvent of the Laplacian on Rn with respect to the metric gs. It has the
parametrix

Gt(z, z
′, λ) = λn−2eiλ dists(z,z′)a(z, z′, λ), z 6= z′.

We then define:
F s

λ(y, y′) = 2
∂

∂νy

Gs(y, y
′, λ), y, y′ ∈ Y,

and average over s to obtain the operator

F̃λ =

∫ 1

0

χ(s)F s
λ ds. (4.10)

Here χ is smooth, supported in (0, δ), and nonnegative with integral 1. This averag-
ing removes all but an arbitrarily small measure of ghost orbits or spurioius points
from the WF′(Fλ), i.e. points (y, η, y′, η′), with η = dy|y− y′|, η′ = −dy′|y− y′| such
that the line yy′ leaves Ω. We still have

F̃λj
ub

j = ub
j.
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and in addition the averaged operator has, as in the convex case, a decomposition

F̃λ = F̃1,λ + F̃2,λ + F̃3,λ,

where F̃1 is a Fourier Integral operator of order zero associated with the canonical
relation Cbill, F̃2 is a pseudodifferential operator of order −1 and F̃3 has operator
wavefront set contained in U . Moreover, the symbol of F̃1,λ is the same as for Fλ.
Thus, the proof of quantum ergodicity in the non-convex case now runs as in the
convex case, with this averaged operator in place of Fλ.

5. Norm estimates of boundary traces

We now turn to the results on Lp norms of boundary traces. They are derived from
an analysis of the singularities of the boundary trace

Eb
B(t, q, q) =

∞∑
j=1

eitλj |ub
j(q)|2 (5.1)

of the kernel of the wave operator cos t
√

∆B on Ω with boundary condition B. The
nice feature of the boundary trace of EB(t, x, x) is that the singularity at t = 0 be-
comes uniformly isolated from other singularities, while the interior kernel E(t, x, x)
has singularities at t = 2d(x) arbitrarily close to t = 0. We note that Eb

B(t, q, q′) is
a spectral transform of the Dirichlet-to-Neumann kernel.

We recall that the boundary traces ub
j are normalized by ||uj||L2(Ω), so that it

is of interest even to obtain estimates on ||ub
j||L2(∂Ω). In (2.3)-(2.4) we obtained

asymptotics of a density one sequence of boundary traces in the ergodic case. In
general, the results are:

• Under a non-trapping assumption, C1λ ≤ ||ub
j||L2(∂Ω)/||uj||L2(Ω) ≤ C2λ in the

Dirichlet case [BLR, HT];

• For any smooth domain and metric, ||ub
j||L2(∂Ω)/||uj||L2(Ω) = O(λ

1/3
j ) in the

Neumann case (Tataru, [T], Theorem 3);

• For a Sinai billiard on a torus (the exterior of a convex smooth domain in the
torus), ||ub

j||L2(∂Ω/||uj||L2(Ω) = O(λ
1/6
j ) in the Neumann case ([T], Theorem 5).

We introduce some notation. Given (q, η) ∈ B∗
q∂Ω, we let ξ(q, η) ∈ S∗in,qΩ be the

inward pointing unit vector to Ω obtained from (q, η) by adding a multiple of the
unit normal. We further denote by Φt the broken bicharacteristic flow of the wave
group, i.e. the flow which carries singularities of the solution of the wave equation.
Finally, we let vT denote the tangential projection of v ∈ S∗q Ω at q ∈ ∂Ω. Finally, we
denote by γB

q the boundary trace in the q variable corresponding to the boundary
condition B.
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5.1. Singularity of boundary trace of wave kernel at t = 0

Isolation of the singularity at t = 0 of Eb
B(t, q, q) follows from simple wave front set

considerations. We first note that

WF (γB
q γ

B
q′E(t, q, q′)) ⊂ {(t, τ, q, η, q′, η′) : [Φt(q, ξ(q, η))]T = (q′, η′), τ = −|ξ|},

which follows from propagation of singularities for the wave equation. Composition
with the boundary trace just pulls back (i.e. restricts) this wave front relation to
the boundary.

It follows that

WF (γB
q γ

B
q′E(t, q, q)) ⊂ {(t, τ, q, η, q, η′) : [Φt(q, ξ(q, η))]T = (q, η′), τ = −|ξ(q, η)|}.

Thus, the singularities of the boundary trace γB
q γ

B
q′E(t, q, q) at q ∈ ∂Ω to broken

bicharacteristic loops based at q in Ω. Let us first consider loops in convex domains.
They are either:

• closed geodesics on Y = ∂Ω;

• m-link transversal reflecting rays with m vertices in Y , one of which is at q
and which satisfy Snell’s law of equal angles except possibly at q.

In the non-convex case, the description is more complicated since there exist
additional gliding rays and since boundary geodesics need not carry singularities.
For instance, for Euclidean plane domains in dimension 2, bicharacteristics enter
and exit the boundary at inflection points and glide only over the convex part of
the boundary.

By definition of normal singularity, there exists r ∈ R+ such that trEb(t, q, q) ∈
C∞ near t = 0. Thus, there exist coefficients aj(q) such that

Eb(t, q, q) ∼ t−r

∞∑
j=0

aj(q)t
j (5.2)

The next step is to calculate the coefficients of the singularity.
Using a method of Ivrii, we first prove:

Proposition 5.1. The singularity of Eb(t, x, x) at t = 0 is a classical conormal
singularity.

Granted the proposition, we can calculate the coefficients (and the order) of the
singularity using Hadamard type variational formulae for eigenvalues:

δλj =

∫
Y

ρ|ub
j(y)|2dA(y),

where δ denotes a variation of either the boundary or the boundary conditions and ρ
represents the tangent vector to the variation. Thus, we can determine the integrals∫

∂Ω
ρ(q)aj(q)dA(q) and hence the coefficients aj(q) asymptotically by considering

the variation of the wave trace
1

it
δ

∑
j

eitλj =
∑

j

(δλj)e
itλj =

∑
j

eitλj

∫
Y

ρ|ub
j(y)|2dA(y). (5.3)
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5.1.1. Dirichlet

In this case, we vary the boundary in the normal direction with variation vector
field ρν. The wave trace formula has the form:∑

j

eitλj = CnV oln(Ω)(t+ i0)−n +Cn−1V oln−1(∂Ω)(t+ i0)−n+1 +a1(t+ i0)−n+2 + · · ·

where · · · represents lower order terms (cf. [I], Theorem 2.1 or [M], Corollary (3.6)).
It follows that∑

j

eitλj

∫
Y

ρ|ub
j(y)|2dA(y) = CnδV oln(Ω)(t+i0)−n−1+Cn−1δV oln−1(∂Ω)(t+i0)−n+· · ·

(5.4)
Here, we divided by the coefficient it in (5.3). The variation of V ol(Ω) is non-zero,
so we get a (t+ i0)−n−1 term on the right.

5.1.2. Neumann boundary conditions

In this case, we vary the boundary conditions, and therefore consider more general
boundary conditions of the form

∂νφ(q) + κ(q)φ(q) = 0, q ∈ ∂Ω.

We denote by δ the first variation relative to a change in the boundary condition
from κ → κ + ερ. By the Hadamard variational formula (studied by S. Ozawa for
general boundary conditions), the jth Neumann eigenvalue µj has the variation

δµj =

∫
∂Ω

|ub
j(q)|2ρ(q)dσ(q).

We now consider the first variation of the Neumann wave trace under variations
of pseudodifferential boundary conditions. We obtain:

δTrE(t) = it
∑

j

δµje
itµj . (5.5)

The ρ term only influences the third term of the singularity trace expansion at t = 0
for Neumann-Robin boundary conditions (see [GM] for the calculation) Hence the
variation has the form

δTrE(t) = Cn(

∫
S∗∂Ω

ρdµ)(t+ i0)−n+2 + · · · , (5.6)

from which we conclude∑
j

eitµj [

∫
∂Ω

ρ|ub
j|2dA] = Cn(

∫
S∗∂Ω

ρdµ)(t+ i0)−n+1 + · · · (5.7)
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5.2. Spectral asymptotics of boundary traces

We apply standard Tauberian theorems to obtain spectral asymptotics of boundary
traces from the singularity of the boundary trace of the wave kernel.

Proposition 5.2. We have:

∑
j:λj≤λ

|ub
j(q)|2 =


Cλn+2 +O(λn+1), Dirichlet

Cλn +O(λn−1), Neumann.

Proof. It follows by Proposition 5.1 and a standard Tauberian argument that there
exists a two-term asymptotic expansion for some principal coefficient. We may
determine it from an integrated version of the asymptotics where we integrate the
left side against a smooth function ρ on ∂Ω. The integrated version follows from
(5.4) in the Dirichlet case and (5.7) in the Neumann case.

Lemma 5.3. For any smooth ρ on ∂Ω,

∑
j:λj≤λ

∫
Y

ρ|ub
j(q)|2dA =


∫

∂Ω
ρdAλn+2 +O(λn+1), Dirichlet∫

∂Ω
ρdAλn +O(λn−1), Neumann.

We now improve the result in the generic case:

Theorem 5.4. Suppose that the set of loops at q has measure 0 in B∗
q∂Ω. Then

∑
j:λj≤λ

|ub
j(q)|2 =


Cλn+2 + o(λn+1), Dirichlet

Cλn + o(λn−1), Neumann.

It follows that ||ub
j||L∞(∂Ω) = o(λ

n+1
2 ) in the Dirichlet case, resp. o(λ

n−1
2 ) in the

Neumann case. These results are sharp.

Proof. The proof follows the outline of that in [SZ]. We write the left side as the
boundary trace Eb

[0,λ](q, q) of the spectral projections, and define the remainders in
the local Weyl laws by

Eb
[0,λ](q, q) =


Cλn+2 +RD(λ, q), Dirichlet

Cλn +RN(λ, q), Neumann.

We first show that if the set of billiard loops at q ∈ ∂Ω has measure zero in
B∗

q∂Ω, then given ε > 0, we can find a ball B centered at q and a Λ < ∞ so that
for λ ≥ Λ, 

|RD(λ, q)| ≤ ελn+1, q ∈ B,

|RN(λ, q)| ≤ ελn−1, q ∈ B.
(5.8)
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To prove this, we need some more notation. The loop-length function on B∗∂Ω
is the lower semi-continuous funciton defined by

L∗(q, η) =


inf{n > 0 : π ◦ βn(q, η) = q},

∞, if no such n exists.
(5.9)

The set of loop directions at q ∈ ∂Ω is defined by:

Lq = {η ∈ B∗
q∂Ω 1/L∗(q, η) 6= 0}. (5.10)

We construct two semiclassical pseudodifferential operators b(q,D), B(q,D) =
I − b(x,D) on L2(∂Ω) with the property that B is microsupported in the set where
L∗(q, η) >> T . We then study Eb

[0,λ](q, q) by writing it in the form:

Eb
[0,λ](q, q, ) = [(B + b)Eb

λ(B + b)](q, q). (5.11)

We choose b ∈ C∞(Sn−1) so that∫
Sn−1

b(η)dσ(η) ≤ 1/T 2, (5.12)

and
|L∗(q, η)| ≤ 1/T, on N × supp B,

where N is a neighborhood of q. We then put

B(ξ) = 1− b(ξ).

By construction,

Eb(t)B∗(q, q), BEb(t, q, q) ∈ C∞(0, T ). (5.13)

A calculation using the conormal singularity at t = 0 of BEb(t, q, q), bEb(t, q, q)
shows that, for λ ≥ 1, ∣∣RN(λ, q)

∣∣ ≤ CT−1λn−1 + CTλ
n−2, (5.14)

where CT depends on T but C does not. This of course yields (5.8). The argument
is similar for the Dirichlet case.

5.3. Applications to eigenfunctions

We now use that bounds on eigenfunctions (or for spectral projections for intervals
of shrinking width) can be obtained from the jump in the remainder:∑

j:λj=λ

|ub
j(q)| =

√
R(λ, q)−R(λ− 0, q). (5.15)
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To complete the proof, we observe that for fixed q ∈ ∂Ω and any ε > 0 then one can
find a neighborhood Nε(q) of q and an Λε(q) so that when λ ≥ Λε(xq) and y ∈ Nε(q)
we have |R(λ, y)| ≤ ελn−1. This implies that |ub

j(y)| ≤ ελ(n−1)/2 if y ∈ Nε(q) and
λ ≥ Λε(q). Since M is compact and since the Nε(q) form open cover of M , we may
choose a finite subcover and extract the largest Λε(q). For this Λε, we get

|ub
j(y)| ≤ ελ(n−1)/2, λ ≥ Λε,

The o(λ(n−1)/2) bound follows since Λε depends only on ε.

5.4. Examples

For generic metrics and/or boundaries, there are no recurrent points [SZ]. Moreover,
convex analytic domains in Rn never have have recurrent points on the boundary.
Suppose to the contrary that there exists x0 ∈ ∂Ω such that a positive measure
of geodesic rays starting at x0 return to x0 at the same time. By analyticity, all
rays starting at x0 return to x0, and they must all return at the same time. In
particular, boundary geodesics have to return to x0. So do creeping rays which
make a small angle to the boundary, and which accumulate at boundary geodesics.
But the creeping rays which approach a boundary geodesic are strictly shorter than
the limiting boundary geodesic in the Euclidean metric, so the return time could
not be the same. Therefore, the L∞ estimate on boundary traces of eigenfunctions
or spectral projections is never sharp for convex analytic Euclidean domains.

On the other hand, the L∞ bound is sharp for the Euclidean half-circle or for any
sector of a circle. Indeed, the invariant Neumann eigenfunctions (under rotations) of
the disc achieve the interior L∞ bound at the center. On a half-circle or sector, they
remain Neumann eigenfunctions and their boundary traces achieve the maximal
L∞ bound above. In the case of Dirichlet boundary conditions, the bounds are also
saturated on such domains (by taking the boundary trace of the imaginary part of
the eigenfunction transforming by eiθ under rotation by angle θ).

Above, we have mainly considered simply connected domains, but the same
questions may be posed for multiply connected plane domains (for instance). It
seems likely that any analytic (or even piecewise analytic) domain which achieves
the maximum L∞ bound must be simply connected. This would generalize the
topological result of [SZ] that the maximum L∞ bound can only be achieved for
metrics on the sphere.

The question thus arises to find the maximal growth rate of L∞ norms of bound-
ary traces of eigenfunctions of smooth Euclidean domains, (or of convex analytic
Euclidean domains), and which domains achieve the bounds? In fact, the answer de-
pends on whether one studies relative sup-norms ||ub

j||L∞(∂Ω)/||ub
j||L2(∂Ω) or absolute

sup-norms ||ub
j||L∞(∂Ω). Moreover, the sharpness depends on whether we consider

individual eigenfunctions or spectral projections for shrinking intervals.
We do not know the answer to the question, but offer some speculations. By

recent results of Smith-Sogge [SS], following earlier results of Grieser (in his unpub-
lished PhD thesis and in [G]; (see also [S])), it is known that whispering gallery Neu-
mann modes of two-dimensional convex Euclidean domains saturate the Lp norms
with 2 ≤ p ≤ 8 because they live in thin λ−2/3 layers around the boundary and
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therefore are of size λ1/3 there. The analogous problem in higher dimensions is still
open.

However, they are not extremal for relative sup norms because are spread out
all over the boundary. For instance, in the case of the disc, the relative sup norm
||ub

j||L∞(∂Ω)/||ub
j||L2(∂Ω) is equal to one. A better guess is that boundary traces of

modes (or quasimodes) associated to stable elliptic orbits are extremals for the
relative sup norm ||ub

j||L∞(∂Ω)/||ub
j||L2(∂Ω). They live in λ−1/2 tubes around the orbits

and therefore the modes have size λ(n−1)/4 along the orbit in dimension n. The
boundary trace is therefore concentrated in small balls of radius λ−1/2 around the
bounce points of the orbit. So the L2 norm of the boundary trace should be ∼ 1.
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