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The proof of the Nirenberg-Treves conjecture

Nils Dencker

Abstract
We prove the Nirenberg-Treves conjecture: that for principal type pseudo-

differential operators local solvability is equivalent to condition (Ψ). This
condition rules out certain sign changes of the imaginary part of the principal
symbol along the bicharacteristics of the real part. We obtain local solvability
by proving a localizable estimate for the adjoint operator with a loss of two
derivatives (compared with the elliptic case).

The proof involves a new metric in the Weyl (or Beals-Fefferman) calculus.
This makes it possible to reduce to the case when the gradient of the imaginary
part is non-vanishing, and then the zeroes form a smooth submanifold. The
estimate uses a new type of weight, which measures the change of the distance
to the zeroes of the imaginary part along the bicharacteristics of the real
part between the minima of the curvature of this submanifold. By using
condition (Ψ) and this weight, we can construct a multiplier which gives the
estimate.

1. Introduction

We shall study the question of local solvability of a classical pseudo-differential
operator P ∈ Ψm

cl (M) on a C∞ manifold M . Thus, we assume that the symbol of P
is an asymptotic sum of homogeneous terms, and that p = σ(P ) is the homogeneous
principal symbol of P . We shall also assume that P is of principal type, which means
that the Hamilton vector field Hp and the radial vector field are linearly independent
when p = 0.

Local solvability of P at a compact set K ⊆ M means that the equation

Pu = v (1.1)

has a local solution u ∈ D′(M) in a neighborhood of K for any v ∈ C∞(M) in a set
of finite codimension. We can also define microlocal solvability at any compactly
based cone K ⊂ T ∗M , see Definition 26.4.3 in [10].
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It was conjectured by Nirenberg and Treves [19] that condition (Ψ) was equiva-
lent to local solvability of pseudo-differential operators of principal type. Condition
(Ψ) means that

Im(ap) does not change sign from − to +

along the oriented bicharacteristics of Re(ap) (1.2)

for any 0 6= a ∈ C∞(T ∗M); actually it suffices to check this for some a ∈ C∞(T ∗M)
such that HRe(ap) 6= 0 by Theorem 26.4.12 in [10]. By oriented bicharacteristics of
Re(ap) we mean the positive flow-out of the Hamilton vector field HRe(ap) 6= 0 on
Re(ap) = 0, these are also called semi-bicharacteristics. Condition (1.2) is invariant
under conjugation with elliptic Fourier integral operators and multiplication with
elliptic pseudo-differential operators, see Lemma 26.4.10 in [10].

For differential operators, condition (Ψ) is equivalent to condition (P ), which
rules out any sign changes of Im(ap) along the bicharacteristics of Re(ap) for 0 6=
a ∈ C∞(T ∗M). The sufficiency of (P ) for local solvability of principal type pseudo-
differential operators was proved by Nirenberg and Treves [19] in the case when the
principal symbol is real analytic, and by Beals and Fefferman [1] in the general case.

The necessity of (Ψ) for local solvability of principal type pseudo-differential
operators was proved by Moyer in two dimensions and by Hörmander in general, see
Corollary 26.4.8 in [10]. In the analytic category, the sufficiency of condition (Ψ) for
solvability of principal type microdifferential operators acting on microfunctions was
proved by Trépreau [20] (see also [11, Chapter VII]). The sufficiency of condition (Ψ)
for local solvability of principal type pseudo-differential operators in two dimensions
was proved by Lerner [13], leaving the higher dimensional case open.

Lerner [14] constructed counterexamples to the sufficiency of (Ψ) for local opti-
mal (L2) solvability of first order principal type pseudo-differential operators, rais-
ing doubts on whether the condition really was sufficient for solvability. But it was
proved by the author [4] that Lerner’s counterexamples are locally solvable with loss
of at most two derivatives (compared with the elliptic case). Observe that optimal
solvability of first order principal type pseudo-differential operators means a loss of
one derivative. There are several results giving local solvability under conditions
stronger than (Ψ), see [5], [12], [15] and [17].

In this paper we shall prove local solvability of principal type pseudo-differential
operators P ∈ Ψm

cl (M) satisfying condition (Ψ), this resolves the Nirenberg-Treves
conjecture. To get local solvability we shall assume a strong form of the non-trapping
condition at x0: that all semi-characteristics are transversal to the fiber T ∗

x0
Rn, i.e.,

p(x0, ξ) = 0 =⇒ ∂ξp(x0, ξ) 6= 0.

Theorem 1.1. If P ∈ Ψm
cl (M) is of principal type satisfying condition (Ψ) near

x0 ∈ M and ∂ξp(x0, ξ) 6= 0 when p(x0, ξ) = 0, then P is locally solvable at x0.

It follows from the proof that we lose at most two derivatives in the estimate of
the adjoint, which is one more compared with the condition (P ) case. Thus the
result has the consequence that hypoelliptic operators of principal type can lose at
most two derivatives. In fact, if the operator is hypoelliptic of principal type, then
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the adjoint is solvable of principal type, thus satisfying condition (Ψ) and we obtain
an estimate of the operator.

Theorem 1.1 is going to be proved by the construction of a pseudo-sign which
will be used in a multiplier estimate. The symbol of the pseudo-sign is, modulo
elliptic factors, essentially a perturbation of the signed homogeneous distance to the
sign changes of the imaginary part of the principal symbol.

Observe that Theorem 1.1 can be microlocalized: if condition (Ψ) holds mi-
crolocally near (x0, ξ0) ∈ S∗(M) then P is microlocally solvable near (x0, ξ0), see
Corollary 2.4. Since we lose two derivatives in the estimate this is not trivial, it
is a consequence of the special type of estimate (see Remark 2.3). This paper is a
shortened version of [7], we have excluded some of the longer and more technical
proofs.

We would like to thank Lars Hörmander and Nicolas Lerner for valuable com-
ments leading to corrections and improvements of the proof.

2. Reduction to the multiplier estimate

In this section we shall reduce the proof of Theorem 1.1 to an estimate for a microlo-
cal normal form of the adjoint for the operator. By using Darboux’ theorem and the
Malgrange Preparation Theorem, we may obtain the adjoint P ∗ on the following
microlocal normal form

P0 = Dt + iF (t, x,Dx) (2.1)

where F ∈ C(R, Ψ1
cl(T

∗Rn)) has real principal symbol σ(F ) = f . Observe that we
do not assume that t 7→ f(t, x, ξ) is differentiable. Since P satisfies condition (Ψ)
we find that P0 satisfies condition (Ψ):

t 7→ f(t, x, ξ) does not change sign from + to − with increasing t for any (x, ξ).
(2.2)

We shall use the Weyl quantization of symbols a(x, ξ) ∈ C∞(T ∗Rn)
⋂
S ′(T ∗Rn):

aw(x, Dx)u(x) = (2π)−n

∫∫
exp (i〈x− y, ξ〉)a

(
x+y

2
, ξ
)
u(y) dydξ u ∈ C∞

0 (Rn).

For Weyl calculus notations and results, see [10, Section 18.5]. Observe that Re aw =
(Re a)w is the symmetric part and i Im aw = (i Im a)w the antisymmetric part
of the operator aw. Also, if a ∈ Sm

1,0(T
∗Rn) then a(x, Dx) ∼= aw(x, Dx) modulo

Ψm−1
1,0 (T ∗Rn). In the following, we shall denote Sm

%,δ(T
∗Rn) by Sm

%,δ, 0 ≤ δ ≤ % ≤ 1.

Definition 2.1. We say that the symbol b(x, ξ) is in Sm
1/2,1/2 of first order, if b

satisfies the estimates in Sm
1/2,1/2 for derivatives of order ≥ 1.

This means that the homogeneous gradient (∂xb, |ξ|∂ξb) ∈ S
m+ 1

2

1/2,1/2, and implies

that the commutators of bw with operators in Ψk
1,0 are in Ψ

m+k−1/2
1/2,1/2 . Observe that

this condition is preserved when multiplying with symbols in S0
1,0.

We are going to prove an estimate for operators P0 which satisfy condition (2.2).
Let ‖u‖(s) be the usual Sobolev norm, let ‖u‖ = ‖u‖(0) be the L2 norm, and 〈u, v〉
the corresponding inner product.
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Proposition 2.2. Assume that P = Dt + iFw(t, x,Dx), with F ∈ C(R, S1
cl) having

real principal symbol f satisfying condition (2.2). Then there exists T0 > 0 such that
if 0 < T ≤ T0 then we can choose a real valued symbol bT (t, x, ξ) ∈ L∞(R, S

1/2
1/2,1/2)

uniformly, with the property that bT ∈ S0
1/2,1/2 of first order uniformly, and

‖u‖2
(−1/4) ≤ T Im〈P0u, bw

T u〉 (2.3)

for u(t, x) ∈ C∞
0 (R×Rn) having support where |t| ≤ T ≤ T0.

Note that we have to change the multiplier bT when we change T , but that
the multipliers are uniformly bounded in the symbol class. By the calculus, the
conditions on bT are preserved when composing bw

T with symmetric operators in
L∞(R, Ψ0

1,0).

Remark 2.3. The estimate (2.3) can be perturbed with terms in L∞(R, S0
1,0) in the

symbol of P0 for small enough T . Thus it can be microlocalized: if φ(x, ξ) ∈ S0
1,0 is

real valued then we have

Im〈P0φ
wu, bw

T φwu〉 ≤ Im〈P0u, φwbw
T φwu〉+ C‖u‖2

(−1/4) (2.4)

where φwbw
T φw satisfies the same conditions as bw

T .

In fact, assume that P0 = Dt + ifw(t, x,Dx)+ rw(t, x,Dx) with r ∈ L∞(R, S0
1,0).

By conjugation with Ew(t, x,Dx) where

E(t, x, ξ) = exp

(
−
∫ t

0

Im r(s, x, ξ) ds

)
∈ L∞(R, S0

1,0),

we can reduce to the case when Im r ∈ L∞(R, S−1
1,0). We find that bw

T is replaced
with Bw

T = Ewbw
T Ew, which is real and satisfies the same conditions as bw

T since E
is real. Clearly, the estimate (2.3) can be perturbed with terms in L∞(R, S−1

1,0) in
the symbol expansion of P0, and if a(t, x, ξ) ∈ L∞(R, S0

1,0) is real valued, then

Im〈awu, bw
T u〉 =

1

2i
〈[bw

T , aw]u, u〉 ≤ C‖u‖2
(−1/4) (2.5)

since bT ∈ S0
1/2,1/2 of first order, ∀ t. We also find that [P0, φ

w] ∼= { f, φ }w modulo
L∞(R, Ψ−1

1,0) where { f, φ } ∈ L∞
(
R, S0

1,0

)
is real valued. By using (2.5) with a =

{ f, φ }, we obtain that the estimate (2.3) is localizable.

Proof of Theorem 1.1. By using Darboux’ theorem and the Malgrange Preparation
Theorem, we may assume that the adjoint P ∗ is equal to P0 microlocally, where P0

satisfies the conditions in Proposition 2.2 (see [10, Th. 21.3.6]). By using (2.3),
a partition of unity, and the Cauchy-Schwarz inequality, we obtain R ∈ S0

1,0, such
that x0 /∈ sing supp R and

‖u‖(−1/4) ≤ C‖P ∗u‖(7/4−m) + ‖Rwu‖(−1/4) (2.6)

for u(x) ∈ C∞
0 (Rn) having support where |x| ≤ T0 is small enough. Now conjugation

with 〈Dx〉s does not change the principal symbol of P . Thus, for any s ∈ R we may
replace −1/4 by s and 7/4 by s+2 in (2.6) after changing T0 and R. This gives the
local solvability of P with a loss of at most two derivatives, and finishes the proof
of Theorem 1.1.
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Corollary 2.4. If P ∈ Ψm
cl (M) is of principal type near (x0, ξ0) ∈ T ∗M , satisfying

condition (Ψ) microlocally near (x0, ξ0), then P is microlocally solvable at (x0, ξ0).

In order to prove Proposition 2.2 we shall need to make a “second microlocal-
ization” using the specialized symbol classes of the Weyl calculus (see [10, Section
18.5]). Assume that gx,ξ(dx, dξ) is a σ temperate metric on T ∗Rn, and let m be
a σ, g temperate. Let S(m, g) be the class of symbols a ∈ C∞(T ∗Rn) with the
seminorms

|a|gj (x, ξ) = sup
Ti 6=0

|a(j)(x, ξ, T1, . . . , Tj)|∏j
1 gx,ξ(Ti)1/2

≤ Cjm(x, ξ) ∀ (x, ξ) for j ≥ 0.

We shall use metrics which are conformal, they shall be on the form gx,ξ(dx, dξ) =
H(x, ξ)g](dx, dξ) where 0 < H(x, ξ) ≤ 1 and g] is a constant symplectic metric:
(g])σ = g]. In the following, we say that m > 0 is a weight for a metric g if m is σ,
g temperate.

Definition 2.5. Let m be a weight for the σ temperate metric g. We say that
a ∈ S+(m, g) if |a|gj ≤ Cjm for j ≥ 1.

For example, b ∈ S+(1, g1/2,1/2), with g1/2,1/2 = 〈ξ〉|dx|2 + |dξ|2/〈ξ〉 at (x, ξ), if
and only if b ∈ S0

1/2,1/2 of first order. After microlocalizing where 〈ξ〉 ∼= h−1 ≥ 1 is
constant, and doing a microlocal change of coordinates, we find that Sk

1,0 corresponds
to S(h−k, hg]) and Sk

1/2,1/2 corresponds to S(h−k, g]) microlocally. Thus we may
reduce to the case in the following result (see the proof of Proposition 2.2 in [7]).

Proposition 2.6. Assume that P0 = Dt + ifw(t, x,Dx), with real valued f(t, x, ξ) ∈
C(R, S(h−1, hg])) satisfying condition (2.2), here 0 < h ≤ 1 and g] = (g])σ are
constant. Then there exists T0 > 0, such that if 0 < T ≤ T0 there exist a weight h ≤
HT ≤ 1 for g] and a real valued symbol bT (t, x, ξ) ∈ L∞(R, S(H

−1/2
T , g])

⋂
S+(1, g]))

uniformly, so that

h1/2

∫
‖u‖2(t) dt ≤ C0T

∫
Im〈Pu, bw

T u〉(t) dt (2.7)

for u(t, x) ∈ C∞
0 (R×Rn) having support where |t| ≤ T ≤ T0.

The conditions on bT means in g] orthonormal coordinates that |bT | ≤ CH
−1/2
T

and |∂α
x ∂β

ξ bT | ≤ Cαβ when |α| + |β| ≥ 1. As before, the estimate (2.7) can be
perturbed with terms in L∞(R, S(1, hg])) in the symbol of P0 for small T (with
changed bT ), and it can be localized with respect to the metric hg]. Next, we shall
state and prove the multiplier estimate that we are going to use for the proof of
Proposition 2.6.

Let B = B(L2(Rn)) be the set of bounded operators L2(Rn) 7→ L2(Rn). We say
that A(t) ∈ C(R,B) if A(t) ∈ B for all t ∈ R and t 7→ A(t)u ∈ C(R, L2(Rn)) for
any u ∈ L2(Rn). We shall consider the operator

P = Dt + iF (t) (2.8)
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where F (t) ∈ C(R,B). In the applications, we will have F (t) ∈ C(R, Op S(h−1, hg]))
where h is constant. But we shall also use multipliers which are not continuous in
t. In the following, we let ‖u‖(t) be the L2 norm of u(t, x) in Rn for fixed t,
and 〈u, v〉(t) the corresponding inner product.

Definition 2.7. We say that A(t) is in L∞loc(R,B) if A(t) ∈ B for any t, and
t 7→ A(t)u is in L∞loc(R, L2(Rn)) for any u ∈ L2(Rn), i.e., t 7→ 〈A(t)u, v〉 is in
L∞loc(R) for any u, v ∈ L2(Rn).

If A(t) ∈ L∞loc(R,B), then we find that t 7→ 〈A(t)u, u〉 ∈ L∞loc(R) has weak
derivative 〈 d

dt
A(·)u, u〉 ∈ D′(R) for any u ∈ S(Rn) given by

〈 d
dt

A(·)u, u〉(φ) = −
∫
〈A(t)u, u〉φ′(t) dt, φ(t) ∈ C∞

0 (R).

It is also easy to see that if u(t), v(t) ∈ C(R, L2(Rn)) and A(t) ∈ L∞loc(R,B), then
t 7→ 〈A(t)u(t), v(t)〉 ∈ L∞loc(R).

We shall use the following multiplier estimate (see also [13] and [15] for
similar estimates).

Proposition 2.8. Let P = Dt + iF (t) with F (t) ∈ C(R,B). Assume that B(t) =
B∗(t) ∈ L∞loc(R,B) satisfies

Re〈 d
dt

B(t)u, u〉+ 2 Re〈B(t)u, F (t)u〉 ≥ Re〈m(t)u, u〉 in D′(I) ∀ u ∈ C∞
0 (Rn)

(2.9)
where m(t) ∈ L∞loc(R,B) and I ⊆ R is an open interval. Then we have∫

Re〈m(t)u(t), u(t)〉 dt ≤ 2

∫
Im〈Pu(t), B(t)u(t)〉 dt (2.10)

for any u ∈ C1
0(I, C∞

0 (Rn)).

Proof. Since B(t) ∈ B is weakly measurable and locally bounded, we may for u ∈
C∞

0 (Rn) define the regularization

〈Bε(t)u, u〉 = ε−1

∫
〈B(s)u, u〉φ((t− s)/ε) ds = 〈Bu, u〉(φε,t) ε > 0

where φε,r(s) = ε−1φ((r − s)/ε) with 0 ≤ φ ∈ C∞
0 (R) satisfying

∫
φ(t) dt = 1.

Then t 7→ 〈Bε(t)u, u〉 is in C∞(R) with derivative at t = r equal to 〈 d
dt

Bε(r)u, u〉 =
d
dt
〈Bu, u〉(φε,r). Let I0 be an open interval such that I0 b I. Then for small enough

ε > 0 we find from condition (2.9) that

Re〈 d
dt

Bε(t)u, u〉+ 2 Re〈Bu, Fu〉(φε,t) ≥ Re〈mu, u〉(φε,t) t ∈ I0 u ∈ C∞
0 (Rn).

(2.11)
In fact, φε,t ≥ 0 and supp φε,t ∈ C∞

0 (I) for small enough ε when t ∈ I0.
Now we define for u ∈ C1

0(I0, C
∞
0 (Rn)) and small enough ε > 0

Mε,u(t) = Re〈Bεu, u〉(t) = ε−1

∫
〈B(s)u(t), u(t)〉φ((t− s)/ε) ds. (2.12)

V–6



By differentiating under the integral sign we obtain that Mε,u(t) ∈ C1
0(I0), with

derivative d
dt

Mε,u = Re〈( d
dt

Bε)u, u〉 + 2 Re〈Bεu, ∂tu〉 since B(t) ∈ L∞loc(R,B). By
integrating with respect to t, we obtain the vanishing average

0 =

∫
Mε,u(t) dt =

∫
Re〈( d

dt
Bε)u, u〉 dt +

∫
2 Re〈Bεu, ∂tu〉 dt (2.13)

when u ∈ C1
0(I0, C

∞
0 (Rn)). Since ∂tu = iPu+Fu we obtain from (2.11) and (2.13)

that

0 ≥
∫∫ (

Re〈m(s)u(t), u(t)〉+ 2 Re〈B(s)u(t), iPu(t)〉

+ Re〈B(s)u(t),
(
F (t)− F (s)

)
u(t)〉

)
φε,t(s) dsdt.

By letting ε → 0 we obtain by dominated convergence that

0 ≥
∫

Re〈m(t)u(t), u(t)〉+ 2 Re〈B(t)u(t), iPu(t)〉 dt

since F (t) ∈ C(R,B), u ∈ C1
0(I0, C

∞
0 (Rn)), m(t) and B(t) are uniformly bounded

in B when t ∈ supp u. Now 2 Re〈Bu, iPu〉 = −2 Im〈Pu, Bu〉, thus we obtain (2.10)
for u ∈ C1

0(I0, C
∞
0 (Rn)). Since I0 is an arbitrary open subinterval with compact

closure in I, this completes the proof of the proposition.

Now we can reduce the proof of Proposition 2.6 to the construction of a pseudo-
sign B = bw in a fixed interval.

Proposition 2.9. Assume that f ∈ C(R, S(h−1, hg])) is a real valued symbol sat-
isfying condition (Ψ) given by (2.2), here 0 < h ≤ 1 and g] = (g])σ are constant.
Then there exist a positive constant c0, a weight h ≤ H1 ≤ 1 for g], real valued
symbols b(t, x, ξ) ∈ L∞(R, S(H

−1/2
1 , g])+S+(1, g])) and µ(t, x, ξ) ∈ L∞(R, S(1, g]))

such that for any u(x) ∈ C∞
0 (Rn) we have{

〈∂t(b
w)u, u〉 ≥ 〈µwu, u〉 ≥ c0h

1/2‖u‖2

Re〈bwfwu, u〉 ≥ −〈µwu, u〉/c0

in D′(R) when |t| < 1.

Here c0, and the seminorms of b and m only depend on the seminorms of f in
S(h−1, hg]) for |t| ≤ 1.

Proof of Proposition 2.6. By doing a dilation s = t/T , we find that P transforms
into T−1PT = T−1(Ds + i Tfw

T (s, x, Dx)), where fT (s, x, ξ) = f(Ts, x, ξ) satisfies the
conditions in Proposition 2.9 uniformly in T when 0 < T ≤ 1. Thus we obtain real
bT , µT and c0 such that when |s| < 1 we have{

〈∂s(b
w
T )u, u〉 ≥ 〈µw

T u, u〉 ≥ c0h
1/2‖u‖2

Re〈bw
T fw

T u, u〉 ≥ −〈µw
T u, u〉/c0

in D′(R)

for u ∈ C∞
0 (Rn). This implies that

〈∂sb
w
T (s, x, Dx)u, u〉+ 2 Re〈Tfw

T (s, x, Dx)u, bw
T (s, x, Dx)u〉

≥ (1− 2T/c0)〈µw
T (s, x, Dx)u, u〉 in D′(]−1, 1[

)
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for u ∈ C∞
0 (Rn). Thus, for T ≤ c0/4 we obtain by using Proposition 2.8 with

PT = Ds + i Tfw
T (s, x, Dx), B(s) = bw

T (s, x, Dx) and m(s) = µw
T (s, x, Dx) that

c0h
1/2

∫
‖u‖2 ds ≤

∫
〈µw

T u, u〉 ds ≤ 4

∫
Im〈PT u, bw

T u〉(s) ds

if u ∈ C∞
0 (R×Rn) has support where |s| < 1. Finally, we obtain that

c0h
1/2

∫
‖u‖2 dt ≤ 4T

∫
Im〈Pu, b̃w

T u〉(t) dt

with b̃T (t, x, ξ) = bT (t/T, x, ξ) for u ∈ C∞
0 (R × Rn) has support where |t| < T ≤

c0/4.

It remains to prove Proposition 2.9, which will be done in Section 5.

3. Symbol Classes and Weights

Next, we shall define the symbol classes we shall use. In the following, we shall
denote (x, ξ) by w ∈ T ∗Rn, and we shall assume that f ∈ C(R, S(h−1, hg])) satisfies
condition (Ψ) given by (2.2), here 0 < h ≤ 1 and g] = (g])σ are constant. We
shall only consider the values of f(t, w) when |t| ≤ 1, thus for simplicity we let
f(t, w) = f(1, w) when t ≥ 1 and f(t, w) = f(−1, w) when t ≤ −1. In the following,
the results will be uniform in the sense that they will only depend on the seminorms
of f in S(h−1, hg]).

First, we shall define the signed distance function δ0(t, w) in T ∗Rn for fixed
t ∈ R, with the property that t 7→ δ0(t, w) is non-decreasing and δ0f ≥ 0. Let

X+ = { (t, w) ∈ R× T ∗Rn : ∃ s ≤ t, f(s, w) > 0 } (3.1)
X− = { (t, w) ∈ R× T ∗Rn : ∃ s ≥ t, f(s, w) < 0 } . (3.2)

We have that X± are open in R × T ∗Rn, and by condition (Ψ) we obtain that
X−
⋂

X+ = ∅ and ±f ≥ 0 on X±. Let X0 = R × T ∗Rn \ (X+

⋃
X−), which is

closed in R× T ∗Rn, by the definition of X± we have f = 0 on X0. Let

d0(t0, w0) = inf
{

g](w0 − z)1/2 : (t0, z) ∈ X0

}
which is the g] distance in T ∗Rn to X0 for fixed t0, it is identically equal to +∞ in
the case that X0

⋂
{ t = t0 } = ∅.

Definition 3.1. We say that w 7→ a(w) is Lipschitz continuous on T ∗Rn with
respect to the metric g] if

sup
w 6=z∈T ∗Rn

|a(w)− a(z)|/g](w − z)1/2 = C < ∞

and then C is the Lipschitz constant of a. We shall denote by Lip(T ∗Rn) the
Lipschitz continuous functions on T ∗Rn with respect to the metric g].
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By using the triangle inequality and taking the infimum over z we find that
w 7→ d0(t, w) is Lipschitz continuous with respect to the metric g] with Lipschitz
constant equal to 1, for those t when it is not identically equal to ∞.

Definition 3.2. We define the sign of f by sgn(f) = ±1 on X± and sgn(f) = 0
on X0, then t → sgn(f)(t, w) is non-decreasing and sgn(f) · f ≥ 0. We define the
signed distance function δ0 by

δ0(t, w) = sgn(f)(t, w) min(d0(t, w), h−1/2). (3.3)

By the definition we have that |δ0| ≤ h−1/2 and |δ0| = d0 when |δ0| < h−1/2. The
signed distance function has the following properties.

Remark 3.3. The signed distance function w 7→ δ0(t, w) given by Definition 3.2 is
Lipschitz continuous with respect to the metric g] with Lipschitz constant equal to
1. We also find that δ0(t, w)f(t, w) ≥ 0 and t 7→ δ0(t, w) is non-decreasing.

In fact, since δ0 = 0 on X0 it suffices to show the Lipschitz continuity of w 7→
δ0(t, w) on X+ and X−, which follows from the Lipschitz continuity of w 7→ d0(t, w).
Since (t, w) ∈ X+ implies (s, w) ∈ X+ for s ≥ t and (t, w) ∈ X− implies (s, w) ∈ X−
for s ≤ t, it is easy to see that t 7→ δ0(t, w) is non-decreasing. Since t 7→ δ0(t, w)
is non-decreasing and bounded, it is a regulated function. This means that the left
and right limits δ0(t±, w) = lim0<ε→0 δ0(t± ε, w) exist for any (t, w) (see [8]).

In the following, we shall omit the parameter t, and denote f ′ = ∂wf and
f ′′ = f (2), where the differentiation is in the w variables only. We shall also in the
following assume that we have choosen g] orthonormal coordinates so that g](dw) =
|dw|2. We shall use the norms |f ′|g] = |f ′| and ‖f ′′‖g] = ‖f ′′‖, but omit the index
g].

Definition 3.4. Let

H
−1/2
1 = 1 + |δ0|+

|f ′|
‖f ′′‖+ h1/4|f ′|1/2 + h1/2

(3.4)

and G1 = H1g
] the corresponding metric.

Since |f ′|/(‖f ′′‖ + h1/4|f ′|1/2 + h1/2) is continuous in (t, w) we find that t 7→
H

1/2
1 (t, w) is a regulated function. We also have

1 ≤ H
−1/2
1 ≤ 1 + |δ0|+ h−1/4|f ′|1/2 ≤ Ch−1/2 (3.5)

since |f ′| ≤ C1h
−1/2 and |δ0| ≤ h−1/2. Moreover, |f ′| ≤ H

−1/2
1 (‖f ′′‖ + h1/4|f ′|1/2 +

h1/2) so the Cauchy-Schwarz inequality gives

|f ′| ≤ 2‖f ′′‖H−1/2
1 + 3h1/2H−1

1 ≤ CH
−1/2
1 . (3.6)

In the case 1 + |δ0(w0)| ≤ H
−1/2
1 (w0)/2 we have

H
−1/2
1 (w0) ≤ 2|f ′(w0)|/(‖f ′′(w0)‖+ h1/4|f ′(w0)|1/2 + h1/2), (3.7)
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then we find

‖f ′′(w0)‖ ≤ 2H
1/2
1 (w0)|f ′(w0)| and (3.8)

h1/2 ≤ 4H1(w0)|f ′(w0)|. (3.9)

By Proposition 3.6 below the metric G1 is σ temperate. The denominator

D = ‖f ′′‖+ h1/4|f ′|1/2 + h1/2 (3.10)

in (3.4) may seem strange, but it has the following natural explanation which we
owe to Nicolas Lerner [18]. We have F = h−1/2f ∈ S(h−3/2, g), and the largest
H2 ≤ 1 for which F ∈ S(H

−3/2
2 , H2g

]) is given by

H
−1/2
2

∼= 1 + |F |1/3 + |F ′|1/2 + ‖F ′′‖ = 1 + h−1/6|f |1/3 + h−1/4|f ′|1/2 + h−1/2‖f ′′‖

modulo bounded factors. We obtain that H
−1/2
2

∼= 1 + h−1/4|f ′|1/2 + h−1/2‖f ′′‖ =

Dh−1/2 and H
−1/2
1

∼= 1 + |δ0|+ |F ′|H1/2
2 ≤ CH

−1/2
2 in a G2 neighborhood of f−1(0),

and H
−1/2
2

∼= H
−1/2
1 + ‖F ′′‖ in a G1 neighborhood of f−1(0).

Definition 3.5. Let

M = |f |+ |f ′|H−1/2
1 + ‖f ′′‖H−1

1 + h1/2H
−3/2
1 . (3.11)

Then we have h1/2 ≤ M ≤ ch−1, and M has the following properties.

Proposition 3.6. We find that G1 is σ temperate such that G1 = H2
1G

σ
1 and

H1(w) ≤ C0H1(w0)(1 + H1(w)g](w − w0)) ≤ C0H1(w0)(1 + g](w − w0)). (3.12)

We also have that M is a weight for G1 such that

M(w) ≤ C1M(w0)(1+H1(w0)g
](w−w0))

3/2 ≤ C1M(w0)(1+g](w−w0))
3/2 (3.13)

and f ∈ S(M, G1).

Observe that HT is a weight for g] since GT ≤ g]. The advantage of using the
metric G1 is that in the case H1 � 1 in a G1 neighborhood of the sign changes,
we obtain that |f ′| ≥ ch1/2 is a weight for G1, δ0 ∈ S(H

−1/2
1 , G1) and the curvature

of f−1(0) is bounded by CH
1/2
1 (see Remark 3.7 and Proposition 3.8 below).

Proof of Proposition 3.6. Now, if G1,w0(w−w0) ≥ c then g](w−w0) = |w−w0|2 ≥
cH−1

1 (w0) which immediately gives (3.12). Thus it suffices to show that G1 is slowly
varying in order to prove (3.12).

First we consider the case 1 + d0(w0) ≥ H
−1/2
1 (w0)/2. Then we find by the

uniform Lipschitz continuity of w 7→ d0(w) that

H
−1/2
1 (w) ≥ 1 + d0(w) ≥ 1 + d0(w0)−H

−1/2
1 (w0)/6 ≥ H

−1/2
1 (w0)/3

when |w − w0| ≤ H
−1/2
1 (w0)/6, which gives slow variation in this case.
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In the case 1+d0(w0) ≤ H
−1/2
1 (w0)/2 we obtain from Taylor’s formula and (3.8)

that

|f ′(w)| ≤ |f ′(w0)|+ εH
−1/2
1 (w0)‖f ′′(w0)‖+ Cε2h1/2H−1

1 (w0)

≤ (1 + 2ε + 4Cε2)|f ′(w0)| when |w − w0| ≤ εH
−1/2
1 (w0)

and similarly |f ′(w)| ≥ (1− 2ε− 4Cε2)|f ′(w0)|. Thus we obtain that

1− C ′ε ≤ |f ′(w)|/|f ′(w0)| ≤ 1 + C ′ε when |w − w0| ≤ εH
−1/2
1 (w0) (3.14)

in the case H
1/2
1 ≤ 1/4 and |δ0| ≤ H

−1/2
1 /4 at w0. Taylor’s formula and (3.9) gives

‖f ′′(w)‖ ≤ ‖f ′′(w0)‖+ CεH
−1/2
1 (w0)h

1/2 ≤ ‖f ′′(w0)‖+ 4CεH
1/2
1 (w0)|f ′(w0)|

when |w − w0| ≤ εH
−1/2
1 (w0). Thus we obtain from (3.7) and (3.14) that

H
1/2
1 (w) ≤ ‖f ′′(w)‖|f ′|−1(w) + h1/4|f ′|−1/2(w) + h1/2|f ′|−1(w) ≤ 3H

1/2
1 (w0)

when |w−w0| ≤ εH
−1/2
1 (w0) and ε is small enough, which gives the slow variation.

Next, we prove (3.13). Taylor’s formula gives as before that

‖f (k)(w)‖ ≤ C

(
2−k∑
j=0

‖f (k+j)(w0)‖|w − w0|j + h1/2|w − w0|3−k

)
0 ≤ k ≤ 2.

(3.15)
Thus we obtain from Definition 3.5 that

M(w) ≤ C
2∑

k=0

‖f (k)(w0)‖(|w − w0|+ H
−1/2
1 (w))k + Ch1/2(|w − w0|+ H

−1/2
1 (w))3.

We obtain from (3.12) that H
−1/2
1 (w) ≤ C(H

−1/2
1 (w0) + |w − w0|). This gives

M(w) ≤ C

2∑
k=0

‖f (k)(w0)‖H−k/2
1 (w0)(1 + H

1/2
1 (w0)|w − w0|)k

+ Ch1/2H
−3/2
1 (w0)(1 + H

1/2
1 (w0)|w − w0|)3 ≤ C ′M(w0)(1 + H

1/2
1 (w0)|w − w0|)3

and (3.13).
It is clear from the definition of M that ‖f (k)‖ ≤ MH

k/2
1 when k ≤ 2, and when

k ≥ 3 we have
‖f (k)‖ ≤ Ckh

k−2
2 ≤ C ′

kh
1/2H

k−3
2

1 ≤ C ′
kMH

k
2
1

since h ≤ CH1 by (3.5) and h1/2H
−3/2
1 ≤ M . This completes the proof.

Observe that f ∈ S(M, H1g
]) for any choice of H1 ≥ ch in Definition 3.5, we do

not use any other property of H1.
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Remark 3.7. When 1 + |δ0(w0)| ≤ H
−1/2
1 (w0)/2 we find that |f ′(w0)| ≥ h1/2/4 and

1/C ≤ |f ′(w)|/|f ′(w0| ≤ C for |w − w0| ≤ εH
−1/2
1 (w0). (3.16)

We also have that f ′ ∈ S(|f ′|, G1), i.e.,

|f (k)(w0)| ≤ Ck|f ′(w0)|H
k−1
2

1 (w0) for k ≥ 1 (3.17)

when 1 + |δ0(w0)| ≤ H
−1/2
1 (w0)/2.

In fact, (3.17) is trivial if k = 1, follows from (3.8) for k = 2, and when k ≥ 3
we have

|f (k)(w0)| ≤ Ckh
k−2
2 ≤ 4Ck|f ′|H1h

k−3
2 ≤ C ′

k|f ′|H
k−1
2

1

by (3.5) and (3.9).

Proposition 3.8. Let H
−1/2
1 be given by Definition 3.4 for f ∈ S(h−1, hg]). There

exists κ1 > 0 so that if |δ0(w0)| ≤ κ1H
−1/2
1 (w0), H

1/2
1 (w0) ≤ κ1 and

∂w1f(w0) ≥ κ1|f ′(w0)| (3.18)

then there exists c1 > 0 such that

f(w) = α1(w)(w1 − β(w′)) (3.19)
δ0(w) = α0(w)(w1 − β(w′)) (3.20)

when |w − w0| ≤ c1H
−1/2
1 (w0). Here 0 < c1 ≤ α0 ∈ S(1, G1), c1|f ′| ≤ α1 ∈

S(|f ′|, G1) and β ∈ S(H
−1/2
1 , G1) only depends on w′, w = (w1, w

′).

Proof. We shall choose coordinates so that w0 = 0, and put H1 = H1(0). Since
H

1/2
1 ≤ κ1 and δ0(0) = 0 we find from (3.7) and the slow variation that

‖f ′′(w)‖|f ′(w)|−1 + h1/4|f ′(w)|−1/2 ≤ CH
1/2
1 (3.21)

when |w| ≤ εH
−1/2
1 for sufficiently small ε and κ1. Remark 3.7 gives that |f ′(w)| ≤

C|f ′(0)| when |w| ≤ εH
−1/2
1 for small ε. We find from (3.21) that

∂w1f(w) ≥ ∂w1f(0)− C ′ε|f ′(0)| ≥ κ1|f ′(0)|/2 ≥ ch1/2

when |w| ≤ εH
−1/2
1 and ε > 0 is small enough. Thus, by the implicit function

theorem we can solve

f(w) = 0 ⇐⇒ w1 = β(w′) when |w| ≤ εH
−1/2
1

for sufficiently small ε > 0. We find that β(0) = 0, |β′| = |∂w′f |/|∂w1f | = O(1) and

|β′′| ≤ C(|∂2
w1

f ||β′|2 + 2|∂w′∂w1f ||dβ|+ ‖∂2
w′f‖)/|∂w1f | = O(H

1/2
1 )

when w1 = β(w′) and |w| ≤ εH
−1/2
1 .
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Assume by induction that |∂αβ| ≤ CkH
(|α|−1)/2
1 when |w| ≤ εH

−1/2
1 (0) for |α| <

N , where N ≥ 3. Then we find for |α| = N

∂αβ = −
(∑

cγ∂
k
w1

∂γ0

w′f

k∏
j=1

∂
γj

w′β+∂α
w′f
)
/∂w1f when w1 = β(w′) and |w| ≤ εH

−1/2
1

where the sum is over k ≥ 2 and
∑k

j=1 γj +γ0 = α; or k = 1, γ0 6= 0 and γ0 +γ1 = α.
In any case, we obtain that k + |γ0| ≥ 2.

When |α| = N ≥ 3 we find |∂αf/∂w1f | ≤ CNh(|α|−2)/2/|∂w1f | ≤ C ′
NH

(|α|−1)/2
1 ,

since we have h ≤ CH1 by (3.5) and h1/2/|∂w1f | ≤ CH1 by (3.21) when |w| ≤
εH

−1/2
1 . Similarly, for k + |γ0| ≥ 2 we find by the induction hypothesis that∣∣∣∣∣∂k

w1
∂γ0

w′f

k∏
j=1

∂
γj

w′β/∂w1f

∣∣∣∣∣ ≤ CNH
(|α|−1)/2
1

when |w| ≤ εH
−1/2
1 . In fact, the case k + |γ0| ≥ 3 works as before since

∑k
j=0 |γj| =

|α|, and when k+ |γ0| = 2 we use that ‖f ′′(w)‖/|∂w1f(w)| ≤ CH
1/2
1 . This completes

the induction argument.
Now by using Taylor’s formula we find f(w) = α(w)(w1 − β(w′)) where

α(w) =

∫ 1

0

∂w1f(θw1 + (1− θ)β(w′), w′) dθ |w| ≤ εH
−1/2
1 .

Thus α(w) ∼= |f ′(0)| since |β(w′)| ≤ CεH
−1/2
1 when |w| ≤ εH

−1/2
1 . Now we have

∂w1f ∈ S(|df |, G1) by Remark 3.7, so α(w) = f0(w, β(w′)) for some f0 ∈ S(|df |, G1)

when |w| ≤ εH
−1/2
1 . Thus differentiation gives

|∂γα| ≤ C
∑

Pk
j=1 γj+γ0=γ

∣∣∣∣∣∂k
w1

∂γ0

w′f0

k∏
j=1

∂γjβ

∣∣∣∣∣ ≤ C ′|df |H |γ|/2
1

which proves (3.19).
It remains to prove the statements about δ0(w). Let G1,0 = H1g

] = H1(0)g
] be

the signed G1,0 distance to X0, then it suffices to show that δ1(w) = H
1/2
1 δ0(w) ∈

S(1, G1,0). By chosing {
z1 = H

1/2
1 (w1 − β(w′))

z′ = H
1/2
1 w′

as new coordinates, then we find that G1,0 transforms to a uniformly bounded C∞

metric in a neighborhood of the origin. Now δ1(z) is sgn(z1) times the distance
to z1 = 0 with respect to this metric, and this is a C∞ function in a sufficiently
small neighborhood of the origin. Clearly, |∂zδ1| ≥ c > 0 in a fixed neighborhood
of the origin, so Taylor’s formula gives δ1 = α0z1, where c/2 ≤ α0 ∈ C∞ in that
neighborhood. This completes the proof of the proposition.
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We shall compare our metric with the Beals–Fefferman metric G = Hg] on
T ∗Rn, where

H−1 = 1 + |f |+ |f ′|2 ≤ Ch−1. (3.22)

This metric is continuous in t, σ temperate on T ∗Rn and sup G/Gσ = H2 ≤ 1. We
also have that f ∈ S(H−1, G) (see the proof of Lemma 26.10.2 in [10]).

Proposition 3.9. We have that H−1 ≤ CH−1
1 and M ≤ CH−1

1 , which implies that
f ∈ S(H−1

1 , G1).

Thus, the metric G1 gives smaller localization errors than the Beals-Fefferman
metric.

Proof. First note that by the Cauchy-Schwarz inequality we have

M = |f |+ |f ′|H−1/2
1 + ‖f ′′‖H−1

1 + h1/2H
−3/2
1 ≤ C(H−1 + H−1

1 ).

Thus we obtain M ≤ CH−1
1 if we show that H−1 ≤ CH−1

1 . Observe that we only
have to prove this when |δ0| � H−1/2, since else H−1/2 ≤ C|δ0| ≤ CH

−1/2
1 .

If |δ0(w0)| ≤ κH−1/2(w0) ≤ Cκh−1/2 for Cκ < 1, then there exists w ∈ f−1(0)
such that |w − w0| ≤ κH−1/2(w0). For sufficiently small κ we find from Taylor’s
formula and the slow variation that |f(w0)| ≤ CκH−1(w0). When Cκ ≤ 1/2 we
obtain that

H−1(w0) ≤ (1− Cκ)−1(1 + |f ′(w0)|2) ≤ 2H−1
1 (w0)

which completes the proof.

4. The Weight function

Next, we shall define the weight m% we shall use, for technical reasons it will depend
on a parameter 0 < % ≤ 1. The weight will essentially measure how much t 7→
δ0(t, w) changes between the minima of t 7→ H

1/2
1 (t, w). Since H

1/2
1 gives an upper

bound on the curvature of the zero set when H
1/2
1 � 1, the weight will give a

bound on the sign changes of the symbol (see Lemma 4.4). In the following, we let
〈s〉 = 1 + |s|.

Definition 4.1. For 0 < % ≤ 1 and (t0, w0) ∈ R× T ∗Rn we define

m±,%(t0, w0) = inf
±(t−t0)≥0

{
%2|δ0(t, w0)− δ0(t0, w0)|+ H

1/2
1 (t, w0)〈%δ0(t, w0)〉

}
≤ 1

(4.1)
and

m% = min(max(m+,%, m−,%), %
2). (4.2)

thus m1 = max(m+,1, m−,1).

We find that ch1/2 ≤ m±,% ≤ H
1/2
1 〈%δ0〉 so

min(ch1/2, %2) ≤ m% ≤ min(H
1/2
1 〈%δ0〉, %2). (4.3)
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by (3.5). Now we have

m1(t0, w0) ∼= inf
t′≤t0≤t′′

{
δ0(t

′′, w0)− δ0(t
′, w0)

+ H
1/2
1 (t′, w0)〈δ0(t

′, w0)〉+ H
1/2
1 (t′′, w0)〈δ0(t

′′, w0)〉
}

and thus m1(t0, w0) ∼= 1 when |δ0(t, w0)| ∼= H
−1/2
1 (t, w0) for t ≥ t0 or for t ≤ t0.

When t 7→ δ0(t, w0) is constant, we find that m% is proportional to the quasi-convex
hull of t 7→ H

1/2
1 (t, w0) (i.e., it is convex with respect to the constant functions). The

weight also has the “convexity property” given by Proposition 4.7: if maxI m1 �
minI m1 on I = { (t, w) : a ≤ t ≤ b }, then the variation in t of δ0 on I is bounded
from below: |∆Iδ0| ≥ c maxI m1 > 0. We shall use the parameter % to obtain
suitable norms, but this is just a technicality: all m% are equivalent according to the
following proposition.

Proposition 4.2. Assume that % = 1 or m%(t0, w0) < %2 < 1. For this choice of %
there exist t′ ≤ t0 ≤ t′′ such that

|δ0(t, w0)− δ0(t0, w0)| < %−2m%(t0, w0) ≤ 1 (4.4)

H
1/2
1 (t, w0)〈%δ0(t, w0)〉 < 2m%(t0, w0) ≤ 2%2. (4.5)

for t = t′ and t′′. The function t 7→ m%(t, w) is regulated such that

%2
1/%

2
2 ≤ m%1(t, w)/m%2(t, w) ≤ 1 (4.6)

when 0 < %1 ≤ %2 ≤ 1.

We obtain from the proposition that

H
1/2
1 (t, w0) < 2m1(t0, w0) and |δ0(t, w0)| < 2m1(t0, w0)H

−1/2
1 (t, w0)

for t = t′, t′′ corresponding to m1(t0, w0). When m1(t0, w0) � 1 we may use
Proposition 3.8 at (t′, w0) and (t′′, w0). We also obtain from (4.4) that

1/2 ≤ 〈δ0(t, w0)〉/〈δ0(t0, w0)〉 ≤ 2 (4.7)

for t = t′, t′′ corresponding to m1(t0, w0) in Proposition 4.2, which together with
(4.3) gives

H
−1/2
1 (t0, w0) ≤ 4 min(H

−1/2
1 (t′, w0), H

−1/2
1 (t′′, w0)). (4.8)

Proof of Proposition 4.2. We have that m±,% ≤ m% when m% < %2 < 1 or when
% = 1. By approximating the limit, we may choose t′′ ≥ t0 so that

%2(δ0(t
′′, w0)− δ0(t0, w0)) + H

1/2
1 (t′′, w0)〈%δ0(t

′′, w0)〉 < m+,%(t0, w0) + ch1/2 (4.9)

where c is chosen as in (3.5). Then we find %2(δ0(t
′′, w0)−δ0(t0, w0)) < m+,%(t0, w0)

and H
1/2
1 (t′′, w0)〈%δ0(t

′′, w0)〉 < m+,%(t0, w0) + ch1/2 ≤ 2m+,%(t0, w0), since we have
ch1/2 ≤ m+,%(t0, w0). We similarly obtain these estimates for m−,% with t′ ≤ t0,
which gives (4.4)–(4.5).
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To prove (4.6) we let F%(t, s, w) = %2|δ0(s, w)− δ0(t, w)|+H
1/2
1 (s, w)〈%δ0(s, w)〉.

Then we have F%1 ≤ F%2 and %2
1F%2 ≤ %2

2F%1 when %1 ≤ %2. Since these estimates
are preserved when taking infima and suprema, we obtain (4.6) for m±,%j

and m%j
,

j = 1, 2.
To prove that t 7→ m%(t, w) is a regulated function, it suffices to prove that

t 7→ m±,%(t, w) is a regulated function since this property is preserved when taking
maxima and minima. We note that

t 7→ m+,%(t, w0) = inf
t≤t′′

{
%2δ0(t

′′, w0) + H
1/2
1 (t′′, w0)〈%δ0(t

′′, w0)〉
}
− %2δ0(t, w0)

and since the infimum is non-decreasing and bounded, we find that this gives a
regulated function in t. A similar argument works for m−,%, which proves the
result.

In the following we shall assume the coordinates chosen so that g](w) = |w|2.
Observe that m% is not a weight for G1, but the following proposition shows that it
is a weight for g% = %2g] uniformly in %.

Proposition 4.3. We find that there exists C > 0 such that

m%(t, w) ≤ Cm%(t, w0)(1 + %2g](w − w0)) (4.10)

uniformly when 0 < % ≤ 1, which implies that m% is a weight for g% = %2g].

Proof. Since m% ≤ %2 we only have to consider the case when

m%(t0, w0) < %2. (4.11)

Now, it suffices to show that

m%(t0, w)/m%(t0, w0) ≤ C(1 + %2|w − w0|2) when |w − w0| ≤ %m−1
% (t0, w0)

(4.12)
uniformly in 0 < % ≤ 1. In fact, when |w − w0| > %m−1

% (t0, w0) we obtain that
%2|w − w0|2 > %4m−2

% (t0, w0) > m%(t0, w)/m%(t0, w0) by (4.11). Thus (4.10) is
trivially satisfied with C = 1 when |w − w0| > %m−1

% (t0, w0), thus in the following
we shall assume that |w − w0| ≤ %m−1

% (t0, w0).
Now, if (4.10) holds for m%0 then it holds for m% when %0 ≤ % ≤ 1, with C

replaced by C/%2
0. Thus, in the following we shall assume 0 < % ≤ %0 is sufficiently

small. Let m% = m%(t0, w0), then for % small enough one can show that

|δ0(t
′, w)− δ0(t

′′, w)| ≤ C2(%
−2m% + H

1/2
0 |w′|2) when |w − w0| ≤ 2%H

−1/2
0 ,

(4.13)
where 2%H

−1/2
0 ≥ %m−1

% (see the proof of Proposition 6.3 in [7]). We obtain from
(4.13) and the monotonicity of t 7→ δ0(t, w) that

%2|δ0(t, w)− δ0(t0, w)| ≤ %2|δ0(t
′, w)− δ0(t

′′, w)| ≤ C2m%(1 + %2|w′|2) (4.14)

when t = t′, t′′ and |w−w0| ≤ 2%H
−1/2
0 . Since G1 is slowly varying we find for small

% > 0 that H
1/2
1 (t, w) ≤ C3H

1/2
1 (t, w0) when |w − w0| ≤ 2%H

−1/2
0 ≤ 2%H

−1/2
1 (t, w0)

and t = t′, t′′. By the uniform Lipschitz continuity we find

〈%δ0(t, w)〉 ≤ 〈%δ0(t, w0)〉(1 + %|w − w0|) for t = t′, t′′, (4.15)
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which implies that

H
1/2
1 (t, w)〈%δ0(t, w)〉 ≤ C3H

1/2
1 (t, w0)〈%δ0(t, w0)〉(1 + %|w − w0|) (4.16)

when t = t′, t′′ and |w − w0| ≤ 2%H
−1/2
0 . By using (4.4)–(4.5), (4.14), (4.16) and

taking the infimum we obtain

m±,%(t0, w) ≤ C4m%(t0, w0)(1+%|w−w0|)2 when |w−w0| ≤ %m−1
% (t0, w0) ≤ 2%H

−1/2
0

uniformly for small %. By taking the maximum and then the minimum, we ob-
tain (4.12) and Proposition 4.3.

By using the properties of m%, H1 and condition (Ψ) we can prove the following
result (see the proof of Proposition 6.4 in [7]).

Lemma 4.4. There exists 0 < %0 < 1 and c0 > 0 such that if m1 ≤ %2
0 at (t0, w0) ∈

R× T ∗Rn, then there exist g] orthonormal coordinates so that w0 = (z1, 0), |z1| <
|δ0(t0, w0)|+ 1 and

sgn(w1)f(t0, w) ≥ 0 when |w1| ≥ (1 + H
1/2
0 |w′|2)/c0 and |w| ≤ c0H

−1/2
0 (4.17)

where H
1/2
0 = max(H

1/2
1 (t′, w0), H

1/2
1 (t′′, w0)) ≤ 4m1(t0, w0)/〈%0δ0(t0, w0)〉 ≤ 4%2

0.

In section 5, we shall choose a fixed % � 1 in order to get invertible operators and
suitable norms. In the following, we shall for simplicity only consider m1, since all
the m% are equivalent when % ≥ c > 0 by (4.6), this is really no restriction. In order
to get lower bounds in terms of the weight m1 we need the following proposition,
which will be important for the proof.

Proposition 4.5. Let the weight M be given by Definition 3.5. Then there exists
C0 > 0 such that

MH
3/2
1 〈δ0〉 ≤ C0m1 (4.18)

which gives S(MH
3/2
1 , G1) ⊆ S(m1〈δ0〉−1, g]).

We shall use the following result, for a proof see Proposition 5.2 in [7].

Proposition 4.6. Let f ∈ S(h−1, hg]) and let H
1/2
1 be given by by Definition 3.4.

Assume that

sgn(w1)f(w) ≥ 0 when (1 + H
1/2
0 |w′|2)/C0 ≤ |w1| ≤ C0H

−1/2
0 and |w′| ≤ C0H

−1/2
0

(4.19)
where w = (w1, w

′) and H
1/2
0 ≥ h1/2/C0. If H

1/2
0 is sufficiently small, then there

exist c1 and C1 such that

|f(0)| ≤ ∂w1f(0)% + C1h
1/2%3 (4.20)

‖f ′′(0)‖ ≤ ∂w1f(0)/% + C1h
1/2% (4.21)

for any 1 ≤ % ≤ c1H
−1/2
0 .
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Proof of Proposition 4.5. We shall put m1 = m1(t0, w0), note that if m1 ≥ c > 0,
then MH

3/2
1 〈δ0〉 ≤ C ≤ Cm1/c at (t0, w0), since 〈δ0〉 ≤ H

−1/2
1 and M ≤ CH−1

1 by
Proposition 3.9. Thus, we only have to consider the case m1 � 1. Let 0 < %0 < 1
be given by Lemma 4.4. If m1 ≤ %2

0, we may use Lemma 4.4 to obtain g] or-
thonormal coordinates so that |w0| ≤ |δ0(t0, w0)|+ 1 ≤ H

−1/2
1 (t0, w0) and f satisfies

the conditions in Proposition 4.6 with H
1/2
0 = max(H

1/2
1 (t′, w0), H

1/2
1 (t′′, w0)) ≤

4m%(t0, w0)/〈%0δ0(t0, w0)〉 ≤ 4%2
0. In the following, we shall omit the dependence on

t0. Since %0〈δ0〉 ≤ 〈%0δ0〉 we obtain that

H
1/2
0 < 4%−1

0 m1/〈δ0(w0)〉

so we only have to prove the estimate

MH
3/2
1 ≤ C1H

1/2
0 at w = w0, (4.22)

and we shall start by proving this estimate at w = 0.
First we observe that if H

1/2
1 (0) ≤ C0H

1/2
0 then M(0)H

3/2
1 (0) ≤ CH

1/2
1 (0) ≤

CC0H
1/2
0 by Proposition 3.9. Thus, in the following we shall assume H

1/2
0 ≤

ε0H
1/2
1 (0) for some ε0 > 0 to be determined later. >From the definition of M

we find
MH

3/2
1 = |f |H3/2

1 + |f ′|H1 + ‖f ′′‖H1/2
1 + h1/2.

When κ0 is small enough, we find from Proposition 4.6 that |f(0)| ≤ C(|f ′(0)|+h1/2)
and since H1 ≤ 1 it suffices to estimate ‖f (k)(0)‖ for k = 1, 2. We obtain from (3.6)
that

|f ′(0)|H1(0) ≤ 2‖f ′′(0)‖H1/2
1 (0) + 3h1/2. (4.23)

Thus, we only have to estimate ‖f ′′(0)‖H1/2
1 (0) in order to obtain (4.22) at w = 0.

Now by (4.21) we have

‖f ′′(0)‖H1/2
1 (0) ≤ H

1/2
1 (0)(|f ′(0)|/% + C1h

1/2%)

for any 1 ≤ % ≤ c1H
−1/2
0 . Thus, if ε0 ≤ c1/4, we can choose % = 4H

−1/2
1 (0) ≤

4ε0H
−1/2
0 ≤ c1H

−1/2
0 which gives

‖f ′′(0)‖H1/2
1 (0) ≤ 1

4
|f ′(0)|H1(0) + Ch1/2 ≤ 1

2
‖f ′′(0)‖H1/2

1 (0) + C2h
1/2. (4.24)

by (4.23). This gives ‖f ′′(0)‖H1/2
1 (0) ≤ 2C2h

1/2 ≤ 2C2C0H
1/2
0 and (4.22) at w = 0.

It remains to prove the estimate M(w0)H
3/2
1 (w0) ≤ CM(0)H

3/2
1 (0) when |w0| ≤

H
−1/2
1 (w0). By Proposition 3.6 we have that

M(w0) ≤ CM(0)(1 + H
1/2
1 (0)|w0|)3 (4.25)

and
H(w0) ≤ CH(0)(1 + H

1/2
1 (w0)|w0|)2. (4.26)
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In the case H
1/2
1 (0) ≤ H

1/2
1 (w0) we find that |w0| ≤ H

−1/2
1 (w0) ≤ H

−1/2
1 (0) and

thus M(w0)H
3/2
1 (w0) ≤ 64C5/2M(0)H

3/2
1 (0) by (4.25)–(4.26). When H

1/2
1 (w0) ≤

H
1/2
1 (0) we don’t use (4.26), instead we find from (4.25) that

M(w0)H
3/2
1 (w0) ≤ CM(0)H

3/2
1 (0)(H

1/2
1 (w0)H

−1/2
1 (0) + 1)3 ≤ 8CM(0)H

3/2
1 (0)

since |w0| ≤ H
−1/2
1 (w0). This completes the proof of the proposition.

Finally, we shall prove the “convexity property” mentioned earlier.

Proposition 4.7. Let m1 be given by Definition 4.1. There exist κ0 > 1, c0 > 0
and ε0 > 0 such that if κ ≥ κ0, t′ < t0 < t′′ and

m1(t0, w0) = κ max(m1(t
′, w0), m1(t

′′, w0)) (4.27)

then we have

δ0(t
′′, w)− δ0(t

′, w) ≥ c0m1(t0, w0) = c0κ max(m1(t
′, w0), m1(t

′′, w0)) (4.28)

when |w − w0| ≤ ε0.

Proof. Since t0 < t′′ we have by the triangle inequality

m+,1(t0, w0) ≤ inf
t′′≤t

(δ0(t, w0)− δ0(t0, w0) + H
1/2
1 (t)〈δ0(t, w0)〉)

≤ δ0(t
′′, w0)− δ0(t0, w0) + m+,1(t

′′, w0)

and similarly m−,1(t0, w0) ≤ δ0(t0, w0) − δ0(t
′, w0) + m−,1(t

′, w0). Since m±,1 ≤ m1

we find that

m1(t0, w0) = max(m−,1(t0, w0), m+,1(t0, w0))

≤ δ0(t
′′, w0)− δ0(t

′, w0) + max(m1(t
′, w0), m1(t

′′, w0))

which gives (4.28) for w = w0 with κ0 = 2 and c0 = 1/2.
If we choose ε0 > 0 so that 1/C0 ≤ m1(t, w)/m1(t, w0) ≤ C0 for |w − w0| ≤ ε0

and all t, then we obtain (4.28) with κ0 = 2C2
0 and c0 = (2C0)

−1.

5. The Pseudo-Sign

In order to construct a pseudo-sign we shall use the Wick quantization. For a(x, ξ) ∈
L∞(T ∗Rn) we define the Wick quantization:

aWick(x, Dx)u(x) =

∫
T ∗Rn

a(y, η)Σw
y,η(x, Dx)u(y) dydη u ∈ S(Rn)

using the projections Σw
y,η(x, Dx) with symbol

Σy,η(x, ξ) = π−n exp(−g](x− y, ξ − η)) = π−n exp(−|x− y|2 − |ξ − η|2).
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We find that aWick : S(Rn) 7→ S ′(Rn) is symmetric on S(Rn) if a is real valued,

a ≥ 0 in L∞(T ∗Rn) ⇒ 〈aWick(x, Dx)u, u〉 ≥ 0 for u ∈ S(Rn) (5.1)

(see [15, Proposition 4.2]). We obtain from the definition that aWick = aw
0 where

a0(w) = π−n

∫
a(z) exp(−|w − z|2) dz (5.2)

is the Gaussian regularization. Observe that real Wick symbols have real Weyl
symbols.

Proposition 5.1. Assume that a ∈ L∞(T ∗Rn), then aw
0 = aWick where a0 is given

by (5.2). If |a| ≤ CM then we find that a0 ∈ S(M, g]). If also a ∈ S(M, G1) in a
G1 ball of fixed radius with center w, then a0

∼= a modulo symbols in S(H1M, G1)
in a fixed G1 neighborhood of w. If a ≥ M we obtain a0 ≥ cM , and if a ≥ M
in a G1 ball of fixed radius with center w then a0 ≥ cM − CH1M in a fixed G1

neighborhood of w, for some constants c, C > 0. If |da| ≤ C almost everywhere,
then a0 ∈ S+(1, g]).

Proof. Since a is measurable satisfying |a| ≤ CM , we find that aWick = aw
0 where

a0 is given by (5.2). Since M(z) ≤ CM(w)(1 + |z − w|)3 by (3.13), we obtain
that a0(w) = O(M(w)). By differentiating on the exponential factor, we find a0 ∈
S(M, g]), and similarly we find that a0 ≥ M/C if a ≥ M .

If a ∈ S(M, H1 g]) in a G1 ball of radius c > 0 and center at w, then we write

a0(w) = π−n

∫
T ∗Rn

a(z) exp(−|w − z|2) dz

= π−n

∫
|w−z|≤cH

−1/2
1 (w)/2

a(z) exp(−|w − z|2) dz

+ π−n

∫
|w−z|≥cH

−1/2
1 (w)/2

a(z) exp(−|w − z|2) dz

where the last term is O(HN
1 (w)M(w)) for any N . Thus, after multiplying with a

cut-off function, we may assume that a ∈ S(M, G1) everywhere. Taylor’s formula
gives

a0(w) = π−n

∫
T ∗Rn

a(w + z) exp(−|z|2) dz

= a(w) + π−n

∫ 1

0

∫
T ∗Rn

(1− θ)〈a′′(w + θz)z, z〉e−|z|2 dzdθ

where a′′ ∈ S(MH1, G1) since G1 = H1g
]. Since differentiation commutes with

convolution, we find from (3.12)–(3.13) that a0(w) ∼= a(w) modulo symbols in
S(H1M, G1). Similarly, we obtain that a0 ≥ cM modulo S(H1M, g]) for some c > 0
if a ≥ M in a fixed G1 ball. Since da0(w) = π−n

∫
T ∗Rn da(z) exp(−|w − z|2) dz, we

obtain the last statement.
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Remark 5.2. If a(t, w) and g(t, w) ∈ L∞(R× T ∗Rn) such that ∂ta(t, w) ≥ g(t, w)
in D′(R) for almost all w ∈ T ∗Rn, then we find 〈∂t(a

Wick)u, u〉 ≥ 〈gWicku, u〉 in
D′(R) when u ∈ S(Rn).

In fact, the condition means that

−
∫

a(t, w)φ′(t) dt ≥
∫

g(t, w)φ(t) dt 0 ≤ φ ∈ C∞
0 (R)

for almost all w ∈ T ∗Rn, and then (5.1) gives

−
∫
〈aWick(t, x,Dx)u, u〉φ′(t) dt ≥

∫
〈gWick(t, x,Dx)u, u〉φ(t) dt 0 ≤ φ ∈ C∞

0 (R)

for u ∈ S(Rn).
We are going to use the symbol classes S(mk

%, g%) where g% = %2g] and m% is
given by Definition 4.1. Observe that S(mk

%, g%) = S(mk
1, g

]) for all 0 < % ≤ 1. In
fact, g% = %2g] and m% ≤ m1 ≤ %−2m% by (4.6). By [2, Corollary 6.7] we can define
Sobolev spaces H(mk

%, g%) with the following properties: S is dense in H(mk
%, g%),

the dual of H(mk
%, g%) is naturally identified with H(m−k

% , g%), and

u ∈ H(mk
%, g%) ⇐⇒ awu ∈ L2 = H(1, g%) ∀ a ∈ S(mk

%, g%) (5.3)

and then u = aw
0 v for some a0 ∈ S(m−k

% , g%) and v ∈ L2. Observe that H(mk
%, g%) =

H(mk
1, g

]) for all 0 < % ≤ 1, but not uniformly. We also find from [2, Corollary
4.4] that aw is bounded as an operator:

u ∈ H(mj
%, g%) 7→ awu ∈ H(mj−k

% , g%) when a ∈ S(mk
%, g%), (5.4)

and the bound only depends on the seminorms of a in S(mk
%, g%).

Let µw
% = mWick

% , i.e.,

µ%(t, w) = π−n

∫
T ∗Rn

m%(t, z) exp(−|w − z|2) dz. (5.5)

Since m% satisfies (4.10) we find from Proposition 5.1 that

m%/c0 ≤ µ% ∈ L∞(R, S(m%, g%))

uniformly for 0 < % ≤ 1 for some c0 > 0.

Proposition 5.3. Assume that the symbol µ = µ%0 ∈ L∞(R, S(m1, g
])) is given

by (5.5) with % = %0 � 1, thus µw = mWick
%0

≤ mWick
1 . Then there exist positive

constants c0, c1 and C0 such that

c0h
1/2‖u‖2 ≤ c1‖u‖2

H(m
1/2
1 )

≤ 〈µwu, u〉 ≤ C0‖u‖2

H(m
1/2
1 )

. (5.6)

The proof relies on the fact that when 0 < % � 1 we have

(m1/2
% )w(m−1/2

% )w = γw
% is uniformly invertible in L2 (5.7)

1

2
≤ (m−1/2

% )wmw
% (m−1/2

% )w ≤ 2 in L2 (5.8)

when |t| ≤ 1 (see the proof of [7, Proposition 7.4]).
Next, we shall construct a perturbation B(t, w) = δ0(t, w)+%0(t, w) of δ0 so that

bw = BWick could be used as the pseudo-sign in Proposition 2.9.
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Proposition 5.4. Assume that δ0 is given by Definition 3.2 and m1 is given by
Definition 4.1. Then there exist a positive constant C1 and a real valued %0(t, w) ∈
L∞(R× T ∗Rn) such that

|%0| ≤ C1m1 (5.9)
∂t(δ0 + %0) ≥ m1/C1 (5.10)

in D′(R) when |t| < 1. We also have that t 7→ %0(t, w) is a regulated function,
∀w ∈ T ∗Rn, and w 7→ %0(t, w) ∈ Lip(T ∗Rn) uniformly for almost all |t| ≤ 1.

The proof is long and technical (see the proof of [7, Proposition 8.1]), but the
idea is as follows. When t 7→ m1(t, w) has a approximate minimum at t = t0
in the sense that m(s) ≤ Cm(t) when t ≤ s ≤ t0 or t0 ≤ s ≤ t, we may take
%0(t, w) = c

∫ t

t0
m1(s, w) ds since t 7→ δ0(t, w) is non-decreasing. In general, we have

to split the interval [−1, 1] into subintervals where t 7→ m1(t, w) has approximate
maximum and minimum, and use the “convexity property” of t 7→ δ0(t, w) given by
Proposition 4.7 in order to interpolate δ0 at the approximate maxima of t 7→ δ0(t, w).

By Proposition 5.4 and Remark 5.2 we obtain lower bounds on ∂tB
Wick if B =

δ0 + %0. But in order to prove Proposition 2.9 we also have to obtain lower bounds
on Re BWickfw. To obtain that, we have to compute the Weyl symbol for the
pseudo-sign BWick.

Proposition 5.5. Let B = δ0 +%0, where δ0 is given by Definition 3.2 and %0(t, w)
is the real valued symbol given by Proposition 5.4, satisfying |%0(t, w)| ≤ Cm1(t, w)
for almost all |t| ≤ 1. Then we find

BWick = bw |t| ≤ 1

where b = δ1 + %1 ∈ S(H
−1/2
1 , g])

⋂
S+(1, g]) is real valued and regulated in t, and

%1 ∈ S(m1, g
]) ⊆ S(H

1/2
1 〈δ0〉, g]) for almost all |t| ≤ 1. There also exists a positive

constant κ2 with the following properties. For any λ > 0, there exists cλ > 0 such
that if |δ0| ≥ λH

−1/2
1 and H

1/2
1 ≤ cλ then |b| ≥ κ2λH

−1/2
1 . If H

1/2
1 (t, w0) ≤ κ2

and |δ0(t, w0)| ≤ κ2H
−1/2
1 (t, w0) then we have S(H

−1/2
1 , G1) 3 δ1(t, w) = δ0(t, w) +

%2(t, w) when |w − w0| ≤ κ2H
−1/2
1 (t, w0) with real valued %2(t, w) ∈ S(H

1/2
1 , G1).

Proof. Let δWick
0 = δw

1 and %Wick
0 = %w

1 . Since |δ0| ≤ CH
−1/2
1 , |%0| ≤ Cm1 and

the symbols are real valued, we obtain from Proposition 5.1 and (4.3) that δ1 ∈
S(H

−1/2
1 , g]) and %1 ∈ S(m1, g

]) ⊆ S(H
1/2
1 〈δ0〉, g]) are real valued for almost all

|t| ≤ 1. Observe that m1 ≤ 1, and since |δ′0| ≤ 1 almost everywhere we find that
b ∈ S+(1, g]) for almost all |t| ≤ 1 by Proposition 5.1. Since δ0(t, w) and %0(t, w)
are regulated in t, we find from (5.2) that the same holds for δ1(t, w) and %1(t, w).

When |δ0| ≥ λH
−1/2
1 at (t, w), λ > 0, then by the Lipschitz continuity and

slow variation we find that |δ0| ≥ λH
−1/2
1 /C0 in a G1 neighborhood ω of (t, w)

(depending on λ). Since |%0| ≤ CH
1/2
1 〈δ0〉 we find by the slow variation that |δ0 +

%0| ≥ λH
−1/2
1 /2C0 in ω when H

1/2
1 (t, w) is small enough. Proposition 5.1 gives

|b| ≥ cλH
−1/2
1 /2C0−CλH

1/2
1 /2C0 ≥ cλH

−1/2
1 /3C0 at (t, w) when H

1/2
1 (t, w) is small

enough.
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If |δ0| ≤ κ2H
−1/2
1 and H

1/2
1 ≤ κ2 for sufficiently small κ2 > 0, then |δ0| ≤

C0κ2H
−1/2
1 and H

1/2
1 ≤ C0κ2 in a fixed G1 neighborhood. Thus, for κ2 � 1 we

obtain that δ0 ∈ S(H
−1/2
1 , G1) in a fixed G1 neighborhood. Then we obtain the last

statement from Proposition 5.1, which completes the proof.

Next, we shall obtain lower bounds on Re BWickfw = Re bwfw, and finally prove
Proposition 2.9.

Proposition 5.6. Assume that b = δ1 + %1 is given by Proposition 5.5. Then we
have

Re〈(bwfw)
∣∣
t
u, u〉 ≥ 〈Cw

t u, u〉 ∀ u ∈ C∞
0 (Rn) for almost all |t| ≤ 1 (5.11)

where Ct ∈ S(m1(t), g
]) has uniformly bounded seminorms.

The proposition is proved by localizing with respect to the metric G1 for fixed
t. Observe that we may ignore terms in Op S(MH

3/2
1 〈δ0〉, g]) ⊆ Op S(m1, g

]) by
Proposition 4.5, which makes the localization possible. Also, when H1

∼= 1 we have
bf ∈ S(MHN

1 , g]) for any N , thus we may assume H1 � 1.
By the slow variation of G1 and the uniform Lipschitz continuity of w 7→ δ0(w),

we may consider the domains where |δ0| ≷ κH
−1/2
1 for κ � 1. When |δ0| ≥ κH

−1/2
1

and H1 � 1 we use that bf is a product of a non-negative symbol and an elliptic
symbol. Moreover, we find that MH

3/2
1 〈δ0〉 ∼= MH1 in this case, so by perturbing

the Fefferman-Phong estimate for fw we obtain the lower bounds in this case.
When |δ0| � H

−1/2
1 and H1 � 1 we find that δ0 ∈ S(H

−1/2
1 , G1) but bf 6≥ 0. By

completing the square and taking an approximate square root, we obtain the lower
bounds by using the calculus (see the proof of Theorem 9.1 in [7]).

Proof of Proposition 2.9. Let BWick = (δ0 + %0)
Wick be the pseudo-sign, where δ0 +

%0 is given by Proposition 5.4. We find that BWick = bw = (δ1 + %1)
w where

b(t, w) ∈ L∞(R, S(H
−1/2
1 , g]) + S+(1, g])) is given by Proposition 5.5 for |t| ≤ 1.

Now ∂t(δ0 + %0) ≥ m1/C1 in D′(R) when |t| < 1 by Proposition 5.4. Let µw ∈
L∞(R, Op S(m1, g

])) be given by Proposition 5.3, then mWick
1 ≥ µw. Thus we find

by Remark 5.2 that

∂t〈bwu, u〉 = 〈∂tB
Wicku, u〉 ≥ C−1

1 〈µwu, u〉 in D′(R) (5.12)

when u ∈ C∞
0 (Rn). We obtain from Proposition 5.3 that there exist positive con-

stants c0 and c1 so that

〈µwu, u〉 ≥ c1‖u‖2

H(m
1/2
1 )

≥ c0h
1/2‖u‖2 u ∈ C∞

0 (Rn). (5.13)

Here ‖u‖
H(m

1/2
1 )

is the norm of the Sobolev space H(m
1/2
1 , g]) = H(m

1/2
1 ) given by

(5.3) with % = 1 and k = 1/2. By Proposition 5.6 we find for almost all |t| ≤ 1 that

Re〈(BWickfw)
∣∣
t
u, u〉 = Re〈(bwfw)

∣∣
t
u, u〉 ≥ 〈Cw

t u, u〉 u ∈ C∞
0 (Rn) (5.14)
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with Ct ∈ S(m1(t), g
]) uniformly. Thus we obtain from (5.4) and duality that there

exists a positive constant c2 such that

|〈Cw
t u, u〉| ≤ ‖u‖

H(m
1/2
1 )
‖Cw

t u‖
H(m

−1/2
1 )

≤ c2‖u‖2

H(m
1/2
1 )

≤ c2〈µwu, u〉/c1 (5.15)

for u ∈ C∞
0 (Rn) and almost all |t| ≤ 1. We obtain Proposition 2.9 from (5.12)–

(5.15), which completes the proof of Theorem 1.1 and the Nirenberg-Treves conjec-
ture.
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