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Abstract
We define scattering phases for Schrödinger operators on Rd as limit of

arguments of relative determinants. These phases can be defined for long
range perturbations of the Laplacian and therefore they can replace the usual
spectral shift function (SSF) of Birman-Krein’s theory, which can be defined
for only special short range perturbations (relatively trace class perturba-
tions). We prove the existence of asymptotic expansions for these phases,
which generalize results on the SSF.

1. Introduction

1.1. Assumptions and statement of the problem

In this article, we will mainly consider perturbations of the Laplacian operator
H0 = −

∑d
j=1 ∂2

j on L2(Rd), d ≥ 1. These perturbations are self-adjoint and defined
by

H1 = H0 + V = −
∑

1≤j,k≤d

gjk(x)∂j∂k +
d∑

j=1

bj(x)∂j + c(x)

which means that the perturbation V is a differential operator of order ≤ 2.
We assume that H1 is uniformly elliptic, that is∑

1≤j,k≤d

gjk(x)ξjξk ≥ c|ξ|2, ∀ x, ξ ∈ Rd

for some c > 0; its coefficients are smooth and satisfy for each multiindex α∑
j,k

|∂α (gjk(x)− δjk) |+
∑

j

|∂αbj(x)|+ |∂αc(x)| ≤ Cα〈x〉−ρ−|α|, (1)

for all x ∈ Rd; here δjk is the usual Kronecker’s symbol and 〈x〉 = (1 + |x|2)1/2.
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The number ρ > 0 is a real number, and the condition (1) is a long range
condition. Our purpose is to define and study relative scattering determinants

Dp(z) = Detp(1 + V (H0 − z)−1), z ∈ C \ R

and the associated phases which are, in a sense, the limits of π−1 arg Dp(z) when z
approaches the real axis. The important point is that we will consider (1), with a
general ρ > 0 in order to relax the usual condition ρ > d needed to use Birman-
Krein’s theory.

Our definition of Detp is an extension of the Fredholm determinants defined for
compact perturbations of identity which are in Sp, the Schatten class of order p (see
the next subsection for the standard definition of Detp). We need such an extension
since we want to consider second order perturbations of the Laplacian, for which
V (H0 − z)−1 is not compact in general.

The organization of this paper is the following: in the very next subsection, we
recall some points on perturbations by compact operators in Sp, especially for p = 1,
with the Birman-Krein’s theory of trace class perturbations, and in the next one
we review the applications of this theory to differential operators. In section 2, we
explain the definitions of Dp(z) and of the scattering phase sp, and we state our
main theorem on the asymptotic behavior of sp. In the last section we sketch the
proof of this theorem.

1.2. Compact perturbations. Birman-Krein’s and Koplienko’s
theories

Let A0 be a self-adjoint operator, bounded or not, on a separable Hilbert space.
We want to study another self-adjoint operator A1, considered as a perturbation of
A0. If the difference W := A1 − A0 is trace class, i.e. is compact and such that its
spectrum, spec(W ) = (µj)j∈N, satisfies

∑
N |µj| < ∞, Krein has proved that for a

wide class of functions f , including the Schwartz class S(R), f(A1)− f(A0) is trace
class and there exists a measurable function s1 such that

Tr (f(A1)− f(A0)) = −
∫

f ′(λ)s1(λ)dλ, ∀ f ∈ S(R). (2)

This identity defines s1 up to a constant term, however, under our assumptions,
s1 can be chosen in L1(R), and with this condition it is uniquely determined. Fur-
ther on we shall write s1(λ) = s1(A0, A1, λ) to specify the operators (see the next
subsection).

This function is usually called the spectral shift function. For references see Krein
[20], Birman-Krein [1], Yafaev [26] and the survey by Birman-Yafaev [2]. There is a
huge litterature on the spectral shift function and we only quote the first two papers
which are historical ones, the book [26] where one can also find proofs and a nice
presentation on the subject, and the complete survey [2]. Notice that the essential
spectrum of A0, and hence the one of A1, may be non empty; in particular, there can
be absolutely continuous spectrum, therefore s1 is an important tool in scattering
theory. It is also called scattering phase because of the following Krein’s formula

Det1 S(λ) = e2iπs1(λ), a.e. on σac(A0), (3)

II–2



where S(λ) is the scattering matrix of the pair A0, A1 at energy λ, and σac(A0) the
absolutely continuous spectrum of A0. The function s1 can be considered as a phase
for another reason which is the following

s1(λ) = − 1

π
lim

δ↘+0
arg Det1

(
1 + W (A0 − λ− iδ)−1

)
, a.e. on R. (4)

In these last two formulas, we have used the functional Det1 which is defined as
follows. The Schatten ideal S1 of trace class operators is the set of bounded operators
T such that |T | = (T ?T )1/2 is compact with a spectrum in l1(N); if T ∈ S1 then it
is compact as well, its spectrum (λj)j∈N is in l1(N) and one can set

Det1(1 + T ) =
∏
j∈N

(1 + λj).

Formula (3) makes sense because, for trace class perturbations W , the operator
S(λ)− 1 is a trace class operator as well.

This perturbation theory by trace class operators will be called Birman-Krein’s
theory throughout this paper. We can justify the introduction of such concepts in
a very elementary way. If M is a n× n hermitian matrix (M? = M), its spectrum
Λ1, · · · , Λn is real and given as the roots of its characteristic polynomial, or equiva-
lently by the poles of D(z) = Det(M−z)−1. Using d

dz
log D(z) = −

∑n
j=1(Λj−z)−1,

combined with the elementary identity 2iπδ0(λ) = (λ− i0)−1 − (λ + i0)−1, and the
fact that the imaginary part of log D(z) is the argument of D(z), we get easily

lim
δ↘0

d

dλ
arg D(λ + iδ) = −π

n∑
j=1

δΛj
(λ). (5)

The right hand side, up to the factor −π, is the spectral measure associated to
M , that is the derivative of the counting function N(λ) defined as the number of
eigenvalues of M lower than λ. The connection with the Birman-Krein’s theory is
the following: since Det1(1 + W (A0 − z)−1) = Det1((A1 − z)(A0 − z)−1), it can be
viewed as ” Det(A1 − z)/ Det(A0 − z)”, and formula (4) tells us that s1 should be
considered as the difference of the counting functions associated to A0 and A1 (this
is compatible with formula (2)) and thus measures the shift of the spectrum of A0

when we add the perturbation W . Of course this is completely heuristic since, in
general, the spectra of A0 and A1 are not discrete, but it explains why the arguments
of some determinants are interesting.

So far we have only considered operators W which are trace class, but one can
be interested in more general compact perturbations, for example with W in the
Hilbert-Schmidt class S2. More generally, we now assume that W ∈ Sp, for some
integer p ≥ 1 (recall that T ∈ Sp if |T | is compact with a spectrum in lp(N)); of
course S1  Sp when p ≥ 2, thus one cannot use Birman-Krein’s theory. In order
to replace (2), Koplienko introduced the following functional in [18]

< up, f >= Tr

(
f(A0 + W )−

p−1∑
j=0

1

j!

dj

dεj
f(A0 + εW )|ε=0

)
. (6)
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In his paper, the functions f are rational fractions; the point is that the operator
considered on the right hand side of (6) is trace class. Heuristically this is clear
because we get somehow “O(W p)” which is trace class, by basic properties of the
Schatten classes (W ∈ Sp ⇒ W p ∈ S1). Analogously to formula (4), up is naturally
linked to the Fredholm determinant Detp(1+W (A0−z)−1); we recall that if T ∈ Sp,
its spectrum (λj)j∈N belongs to lp(N) and one can define

Detp(1 + T ) =
∏
j∈N

(1 + λj) exp

(
p−1∑
k=1

(−1)k

k
λk

j

)
(7)

where the product is convergent since the Weierstrass function on the right hand side
is 1 +O(λp

j). It is convinient to use such determinants (instead of Det1(1 + T p) for
example) because the multiplicity of 1 + λj as a root of the product is independent
of p (for all p such that the product exists).

This is the model of a perturbation theory that we may wish to apply to self-
adjoint differential operators. However, for such operators, the perturbation is never
compact, thus the application of the above considerations is not straightforward,
except for the case ρ > d (with the notation of (1)). This is the purpose of the next
subsection.

1.3. Differential operators

Now we consider the differential operators H0 and H1 = H0 + V introduced in
subsection 1.1. When ρ > d, the following difference is trace class

(H1 + E)−N − (H0 + E)−N (8)

for some E > 0 and N > 0 large enough. This is due to the fact (with p = 1 here)
that

〈x〉−ν〈D〉−ν ∈ Sp when ν > d/p. (9)

Using Birman’s invariance principle (IP) (see [1]), we can use the theory of trace
class perturbations of Birman-Krein to define a function s1 ∈ L1

loc(R) such that

Tr (f(H1)− f(H0)) = −
∫

f ′(λ)s1(λ)dλ, f ∈ S(R). (10)

To do so, we consider Aj = (Hj + E)−N , j = 0, 1, and then

s1(H0, H1, λ) = −s1(A0, A1, (λ + E)−N)

satisfies (10). The function s1 is uniquely by (10) up to a constant term. More-
over (10) shows clearly that s1 is constant below the spectrum of H1, thus we can
normalize it with the condition s1(λ) = 0 when λ � 0. Moreover by Birman’s IP,
the scattering matrix of H0, H1 is still a trace class perturbation of identity and its
determinant is e2iπs1(λ).

It is an important problem in scattering theory, for mathematical and physical
reasons, to know the asymptotic behavior of s1 when λ ↗ +∞. Two types of
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asymptotic expansions can be obtained, the weak and the strong (or pointwise)
ones, and their applications are various: relative index theory, inverse problems,
traces formulae, resonances...

The weak asymptotics are obtained by choosing a function f in (10) which
depends on a small parameter, and by considering the expansion with respect to
this parameter. For example, we quote the so called heat expansion

Tr
(
e−tH1 − e−tH0

)
∼ t−d/2

∑
n≥0

α1
nt

n, t ↘ +0, (11)

which has been proved by Buslaev [11], Colin-De-Verdière [13], Guillopé [15], Robert
[24] and Bruneau [8] in various settings. Such expansions can be obtained under
more general conditions; in particular the unperturbed operator H0 may have vari-
able coefficients (periodic, for example) and no assumption on the classical flow is
needed. This kind of expansion is similar to the one used to prove index theorems
for elliptic operators on compact manifolds; actually (11) is a tool in the proof of
relative index theorems see [3, 4, 8].

The pointwise asymptotic behavior of s1 is much more difficult to study and
depends strongly on the classical flow associated to H1, i.e. the geodesics of the
metric g(x) = (gjk(x)) := (gjk(x))−1. Notice that g(x) − Id = O({x}−ρ), which
means that the metric is asymptotically euclidean.

The existence of a (strong) complete asymptotic expansion can only be proved
under a non trapping condition. The metric is non trapping if all the geodesics escape
to infinity; equivalently this means that |ΠΦt(x, ξ)| → ∞ when |t| → ∞, uniformly
on all compact subset of T ?Rd \ 0 (here Π : T ?Rd → Rd is the projection and Φt

is the Hamiltonian flow of the principal symbol of H1). We quote the following
theorem which states the result that we are going to generalize

Theorem 1.1 [12, 13, 15, 24, 25] Assume that ρ > d, then:
i) s1 is smooth on (0,∞),
ii) if the metric is non trapping we have a complete asymptotic expansion

s′1(λ) ∼ λ
d
2
−1
∑
n≥0

β1
nλ

−n, λ ↗ +∞.

This theorem was proved successively by Buslaev-Faddeev [12], Colin-De-Verdière
[13], Guillopé [15] and Robert [24, 25]. We won’t discuss the computation of the coef-
ficients β1

n (and α1
n), but we just mention that βn

1 is proportional to
∫

Rd(det g(x))1/2−
1 dx. Notice that the integral is convergent since (det g(x))1/2− 1 = O(〈x〉−ρ) with
ρ > d.

Now we turn to the question that we want to address in this paper: what happens
if we only know that ρ > 0 ? By choosing p ≥ 1 such that ρ > d/p, it is easy to
prove that (8) belongs to the Schatten class Sp. Unfortunately, one cannot use
Birman’s IP any longer, if p ≥ 2, to apply Koplienko’s theory of Sp perturbations,
as mentionned in [18]. To overcome this problem, the following result, inspired by
Koplienko’s idea, was proved in [5, 6]
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Theorem 1.2 If ρ > d/p, then for all f ∈ S(R), we can define

< up, f >= Tr

(
f(H0 + V )−

p−1∑
j=0

1

j!

dj

dεj
f(H0 + εV )|ε=0

)
,

which means, in particular, that the operator considered on the right hand side is
trace class.

The functional up is a temperate distribution supported in spec(H1), and the
following heat expansion holds

< up, e
−t(.) >∼ t−d/2

∑
n≥0

αp
nt

n, t ↘ +0, (12)

with the notation e−t(.) for the function λ 7→ e−tλ.

We must precise that in [19], Koplienko had already defined u2 for the Schrödinger
operator on the half-line. Moreover, the case p = 2 is a special one in [18, 19], and
was also studied for more general pseudo-differential operators (in any dimension)
in [5, 6].

Another way of regularizing trace formulae for long range Schrödinger operators,
still based on Taylor’s formula, has been considered by Melin in [21] where weak
expansions are proved.

2. Results

We want to consider two questions, the first one being the relation of up with some
scattering determinants. The second one deals with the asymptotic behavior of up.
In this section ρ > 0 is an arbitrary real number and p ≥ 1 is an integer such that

ρ > d/p.

As mentionned before, V (H0 − z)−1 is not compact in general, unless
(gjk(x)) is the unit matrix, thus we cannot consider Detp(1 + V (H0 − z)−1),

and we have to extend the definition of the determinants. In order to extend this
definition, we consider the following regularized Zeta function

ζp(z, s) = Tr

(
(H0 + V − z)−s −

p−1∑
j=0

1

j!

dj

dεj
(H0 + εV − z)−s

|ε=0

)
which is well defined for z ∈ C \ R and Re s � 1. When p = 1, relations between
Zeta functions and scattering determinants are reviewed and studied by Müller in
[22].

For general p ≥ 1, we prove the following theorem:

Theorem 2.1 [7] i) The function s 7→ ζp(z, s) has a meromorphic continuation to
the complex plane which is regular at s = 0.
ii) The function Dp(z) = exp(−∂sζp(z, 0)) is holomorphic on C \ R and we have

lim
δ↘+0

d

dλ
arg Dp(λ + iδ) = −πup(λ), in D′(R). (13)
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The only non elementary tool of the proof is the heat expansion (12); most of the
other ingredients can be found in [22].

By analogy with the results for p = 1 we can set:

Definition 2.2 i) Dp(z) is the regularized determinant of order p associated to
H0, H1.
ii) The regularized scattering phase sp ∈ S ′(R) is the unique primitive of up which
vanishes near −∞.

We can prove that Dp(z) coincides with the Fredholm determinant, for a lot of
relatively compact perturbations. For example, if V is only a potential which is
O(〈x〉−ρ), and if 2 > d/p, then V (H0 − z)−1 ∈ Sp (by (9)) and Dp(z) = Detp(1 +
V (H0 − z)−1), with Detp defined by (7). This justify the name determinant for
Dp(z).

Notice moreover that the definition of sp makes sense since up is a temperate
distribution which vanishes below the spectrum of H1. Of course, when p = 1, we
get the usual SSF, and (13) can be considered as a generalization of (4).

Now we are in position to state our main result.

Theorem 2.3 Here we suppose that d ≥ 2. Assume that ρ > d/p, then:
i) sp is smooth on (0,∞) \ σpp(H1),
ii) if the metric is non trapping we have a complete asymptotic expansion

s′p(λ) ∼ λ
d
2
−1
∑
n≥0

βp
nλ

−n, λ ↗ +∞.

A similar result concerning perturbations by potentials (hence non-trapping) has
been announced by Hitrik-Polterovitch [16], where Melin’s regularization [21] is
considered.

We conclude with remarks on other asymptotic properties of sp (see [7]), when
trapped trajectories exist. We can prove a Weyl formula, sp(λ) = cλd/2 +O(λ

d−1
2 ),

however our proof relies on a priori estimates for (H0 +V −λ± i0)−1 of exponential
type. Such estimates are known for a wide class of long range perturbations, thanks
to the works of Burq [10] and Bruneau-Petkov [9]. Nevertheless, we recall that, for
p = 1 such estimates are not necessary; in [24], Robert proves the Weyl formula
without any assumption on the resolvent, by splitting s1 into non deacreasing terms
which allows him to use a Tauberian theorem. For general p, our method is different.

In [7], we also prove a Breit-Wigner formula for sp, in the semiclassical limit: it
describes how s′p can blow up near trapping energy levels, when resonances are close
to the real axis.

3. Proof of theorem 2.3

We are going to prove the existence of the asymptotic expansion, since the arguments
of the proof of the smoothness are contained in what follows.

By a rescaling argument, the problem can be treated as a semiclassical one by
considering the operators Ĥε := h2(H0 + εV ), with the small parameter h = λ−1/2.
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This is a consequence of the simple fact that up(µ/h2) = h2up(µ, h), if up(., h) is
associated to Ĥ0, Ĥ1. Thus we are going to prove an expansion with respect to
h ↘ 0 for up(µ, h), when the rescaled energy variable µ is close to 1.

We assume first that the coefficients of V are compactly supported. More pre-
cisely, we consider a sequence Vn converging to V in the sense that the compactly
supported coefficients of Vn converge to the ones of V in Bρ′ for all ρ′ < ρ, where

a ∈ Bρ′ ⇔ sup
Rd

|〈x〉ρ′+|α|∂αa(x)| < ∞, ∀ α.

Notice that, if ρ > d/p, we can choose ρ > ρ′ > d/p.
Then, we can define un

p (associated to Ĥ0, Ĥ0+V̂n)for all p ≥ 1 and by considering
un

1 (µ, ε, h), associated to Ĥ0, Ĥ0 + εV̂n, we have

un
p (µ, h) = un

1 (µ, 1, h)−
p−1∑
j=0

1

j!

∂j

∂εj
un

1 (µ, 0, h) (14)

in the weak sense, i.e. the equality makes sense when tested against a Schwartz’s
function in the µ variable. The assumption on the fast decay of the coefficients of
Vn is only needed to use u1. Moreover, in the weak sense again, we have near µ = 1

un
1 (µ, ε, h) = Tr

(
f(Ĥn

ε )
∂En

ε

∂µ
− f(Ĥ0)

∂E0

∂µ

)
, Ĥn

ε = Ĥ0 + εV̂n (15)

where En
ε (.) is the spectral resolution associated to Ĥn

ε , and f ∈ C∞
0 (R) such that

f ≡ 1 near µ = 1. Formulas (14) and (15) suggests that we have to study the
differentiability of the spectral projections with respect to ε, or equivalently, after
semiclassical Fourier transform, the one of the propagators Un

ε (t) = exp(−itĤn
ε /h).

To do so, we are going to use Isozaki-Kitada’s parametrix (see [17] and [14, 25]).
Notice that, by simple considerations on functional calculus (see [5, 6]), we have

un
p ⇀ up in D′(f−1(1)). The point here is to prove that the limit of un

p belongs to C∞

and has an expansion in increasing powers of h (with respect to the C∞ topology).
We choose a cutoff function χ ∈ C∞

0 , with χ ≡ 1 on the ball of radius R > 0 (we
shall choose R later).

First we consider Tr(χf(Ĥn
1 )dEn

1 /dµ). Thanks to χ we can let n go to infin-
ity. Moreover, the existence of an asymptotic expansion for Tr(χf(Ĥ1)dE1/dµ) is
already well known (see [23]) under the non trapping condition.

Then it is not very difficult to prove that

∂j

∂εj
Tr

(
f(Ĥε)

∂Eε

∂µ
χ

)
|ε=0

has a complete asymptotic expansion. Notice that, here again, it is sufficient to
consider directly the limit n → ∞ itself. We consider its semiclassical Fourier
transform, swhich is a linear combination of the following type of functions:

h−k

∫ t

0

∫ t1

0

· · ·
∫ tk−1

0

Tr
(
Kk(t− t1, t1 − t2, · · · , tk−1 − tk, tk, h)χ

)
dtk · · · dt2dt1, (16)
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where 0 ≤ k ≤ j, and by convention, there is no
∫

sign if k = 0, and t0 = t. The
operator Kk(t1, · · · , tk+1, h) has the following form

Kk(t1, · · · , tk+1, h) = a1(x, hD, h)U0(t1)a2(x, hD, h)U0(t2) · · · ak+1(x, hD, h)U0(tk+1)

This is simply due to the fact that f(Ĥε) is a smooth family of h−pseudo-differential
operators, with respect to ε ∈ [0, 1] and to the formula

∂

∂ε
Uε(t) = − i

h

∫ t

0

Uε(t− t1)V̂ Uε(t1)dt1, V̂ = h2V. (17)

By looking at the explicit Schwartz kernel of Kk, we can prove that the trace in
(16) is O

(
(h/t)∞

)
when |t| > T (for arbitrary T > 0), by a non stationary phase

argument. Then we get the expected complete asymptotic expansion thanks to
the stationary phase theorem, by computing the inverse Fourier transform of (16)
multiplied by a time cutoff.

We are now left to the study of Tr
((

f(Ĥn
ε )dEn

ε /dµ − f(Ĥ0)dE0/dµ
)
(1 − χ)

)
which we are going to analyze again thanks to its semiclassical Fourier transform.
Thanks to the energy cutoff f , and to the factor 1− χ, it is rather simple to prove
that we only have to consider

Tr ((Un
ε (t)− U0(t))χ±(x, hD)) (18)

Tr
(
Un

ε (t)χ̃±(x, hD)
(
f(Ĥn

ε )− f(Ĥ0)
))

(19)

where χ±, χ̃± are symbols supported in the following type of areas

Γ±(R, J, σ±) = {(x, ξ) ∈ R2d | |x| > R, |ξ|2 ∈ J, 〈x, ξ〉 > σ±|x||ξ|}

where J is a neighborhood of 1. In (18) we have χ+(x, ξ)+χ−(x, ξ) = (1−χ)(x)f(ξ2),
and in (19), χ̃+(x, ξ) + χ̃−(x, ξ) = (1 − χ)(x)f̃(ξ2), for some f̃ such that f̃f = f .
We can use such a decomposition because on the support of the principal symbol of
(1− χ)f(Ĥn

ε ), which is (1− χ)(x)f(ξ2 +O(〈x〉−ρ)), ξ2 must stay near the support
of f since x is large.

This microlocal partition of unit is interesting because now, we can use the
following Isozaki-Kitada’s expansion: provided that R is large enough, we have for
all N ≥ 0

Un
ε (t)χ±(x, hD) = An ±

N (h, ε)U0(t)B
n ±
N (h, ε)? + hNRn ±

N (h, ε, t), ±t ≥ 0. (20)

This means that (20) is valid for t ≥ 0 in the + case, and t ≤ 0 for −. The
operators An ±

N (h, ε) and Bn ±
N (h, ε) are Fourier integral operators (FIO) associ-

ated to time independent phase functions ϕn ±; for example we have An ±
N (h, ε) =∑

k≤N hkJϕ±(an ±
k ) where

Jϕ±(an ±
k )u(x) = (2πh)−d

∫ ∫
ei(ϕn

±(x,ξ,ε,h)−〈y,ξ〉)/han ±
k (x, ξ, ε)u(y)dydξ.
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We improve the estimates on the phase functions and the symbols an ±
k that are es-

tablished in [17, 14, 25] by considering the dependence with respect to the parameter
ε, and also with respect to n. More precisely, we prove in [7] that

∂α
x ∂β

ξ ∂j
ε∂

l
h

(
ϕn
±(x, ξ, ε, h)− 〈x, ξ〉

)
= O

(
〈x〉1−|α|−ρ′j+

)
, j+ = sup(j, 1)(21)

∂α
x ∂β

ξ ∂j
ε∂

l
h

(
an ±

0 (x, ξ, ε)− 1
)

= O
(
〈x〉−|α|−ρ′j+〈ξ〉−∞

)
, (22)

∂α
x ∂β

ξ ∂j
ε∂

n
han ±

k (x, ξ, ε) = O
(
〈x〉−k−|α|−ρ′j+〈ξ〉−∞

)
, k ≥ 1. (23)

(There are similar estimates for the symbols of Bn ±
N (h, ε).) Moreover we can control

all these estimates with a finite number of semi-norms of the coefficients of Vn in
Bρ′ . Precisely this means that the semi-norms of ϕn

± − ϕn′
± and an ±

k − an′ ±
k , k ≥ 0,

can be estimated by semi-norms of the coefficients of Vn − Vn′ in Bρ′ .
Let’s mention finally that the symbols are chosen so that

Bn ±
N (h, ε)?An ±

N (h, ε) = χ±(x, hD) +O(hN/2) (24)

where the remainder is a trace class operator.
Now we can come back to the study of (18) and (19), taking (20) into account.

We forget about the terms Rn ±
N (h, ε, t). They can be treated as in [25], using

propagation estimates on U1(t) (thanks to the non trapping condition) when ε =
1, and with the same non stationary phase argument as before, concerning their
derivatives at ε = 0.

By standard argument (see [23]), we just have to consider the case + for t ≥ 0.
Moreover, by the cyclicity trick of Robert [25], we have

Tr
(
An +

N (h, ε)U0(t)B
n +
N (h, ε)? −Bn +

N (h, 0)?An +
N (h, 0)U0(t)

)
= Tr

((
Bn +

N (h, ε)?An +
N (h, ε)−Bn +

N (h, 0)?An +
N (h, 0)

)
U0(t)

)
= Tr

(
O(hN/2)U0(t)

)
thanks to (24), thus (18) doesn’t contribute.

Now we have to study (19) that we can write, up to a remainder O(hN),

Tr
(
U0(t)B̃

n ±
N (h, ε)?κn(x, hD, h, ε)Ãn ±

N (h, ε)
)

since f(Ĥn
ε )− f(Ĥ0) is pseudodifferential. Here Ãn ±

N and B̃n ±
N are FIO as in (20),

associated to χ̃±.
Then using the estimates (21), (22), (23) and the semiclassical Egorov’s theo-

rem, it is very easy to prove that An ±(h, ε) := B̃n ±
N (h, ε)?κn(x, hD, h, ε)Ãn ±

N (h, ε)
satisfies

An ±(h, 1)−
p−1∑
j=0

1

j!

dj

dεj
An ±(h, ε)|ε=0 = cn ±

N (x, hD, h)

where the symbols cn±
N ∈ S−∞,−pρ′ depend continuously on the symbols of Vn in Bρ′ .

The class of symbols S−∞,−pρ′ is the following

m ∈ S−∞,−pρ′ ⇔ ∂α
x ∂β

ξ m(x, ξ) = O(〈ξ〉−∞〈x〉−pρ′), ∀ α, β
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and the point is that all the corresponding operators are trace class, since pρ′ > d.
Thus we can let n → ∞, which yields cn ±(x, hD, h) → c±(x, hD, h) in the trace
class. Then the asymptotic expansion of

∫
±t≥0

eiµt/h Tr(c±N(x, hD, h)U0(t))dt is a
simple consequence of the stationary phase theorem, because we can give the explicit
kernel of the operator and then express the trace as an oscillatory integral (see [25]).
The theorem is proved.
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