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Whitham averaged equations and modulational
stability of periodic traveling waves of a

hyperbolic-parabolic balance law
Blake Barker Mathew A. Johnson Pascal Noble

L.Miguel Rodrigues Kevin Zumbrun
Abstract

In this note, we report on recent findings concerning the spectral and
nonlinear stability of periodic traveling wave solutions of hyperbolic-parabolic
systems of balance laws, as applied to the St. Venant equations of shallow
water flow down an incline. We begin by introducing a natural set of spectral
stability assumptions, motivated by considerations from the Whitham aver-
aged equations, and outline the recent proof yielding nonlinear stability under
these conditions. We then turn to an analytical and numerical investigation of
the verification of these spectral stability assumptions. While spectral insta-
bility is shown analytically to hold in both the Hopf and homoclinic limits, our
numerical studies indicates spectrally stable periodic solutions of intermediate
period. A mechanism for this moderate-amplitude stabilization is proposed in
terms of numerically observed “metastability" of the the limiting homoclinic
orbits.

1. Introduction
Nonclassical viscous conservation or balance laws arise in many areas of mathemat-
ical modeling including the analysis of multiphase fluids or solid mechanics. Such
equations are known to exhibit a wide variety of traveling wave phenomena such as
homoclinic or heteroclinc solutions, corresponding to the standard pulse and front
or shock type solutions, respectively, as well as solutions which are spatially peri-
odic. Historically, a great deal of effort has been applied to understanding the time-
evolutionary stability of the homoclinic/heteroclinic solutions of such equation, and
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their spectral and nonlinear stability theories are well understood (in general). In
contrast, until recently the analogous stability theories of the periodic counterparts
has received relatively little attention. The goal of this paper is to present recent
progress towards the understanding of periodic traveling-wave solutions within the
context of a particular physically interesting hyperbolic–parabolic system of second
order PDE’s which we describe below. We begin, however, by briefly recalling the
known theory in the case of a strictly parabolic system.

There has been a great deal of recent progress towards the understanding of the
stability properties of periodic traveling waves of viscous strictly parabolic systems
of conservation laws of the form

ut +∇ · f(u) = ∆u, x ∈ Rd, u ∈ Rn. (1.1)

In particular, using delicate analysis of the resolvent of the linearized operator it has
been shown that any periodic traveling wave solution of (1.1) which is spectrally
stable to localized (L2) perturbations is (time-evolutionary) nonlinearly stable in Lp
or Hs for appropriate values of p and s. In fact, such solutions are asymptotically
stable (in an appropriate sense) for dimensions d ≥ 2, while they are only nonlinearly
bounded stable for dimensions d = 1. While these results may seem mathematically
satisfactory at first glance, unfortunately the fact remains that an example of a
spectrally stable periodic solution of equations of the form (1.1) have yet to be
found. In fact, in dimension one it was found in [OZ1] by rigorous Evans function
computations that such solutions can not exist for a few model systems of form (1.1)
admitting a Hamiltonian structure due to the existence of a spectral dichotomy.
While these isolated results may seem discouraging, it should be noted that in
most explicit examples of form (1.1) considered so far have possibly had too much
structure to admit stable periodic solution. In particular, it may very well be the
case that by considering more exotic potentials1 it may be possible to find a stable
periodic solution within this class of examples. Thus, while none of these necessarily
arguments precludes the existence of a stable periodic solution of (1.1), it may
possibly be more natural for more general systems which are not necessarily strictly
parabolic to support periodic solutions which are spectrally stable, which leads us
to investigations presented in this paper.

A particular class of examples of more general (non-strictly parabolic) balance
laws which have been recently seen (numerically) to admit stable periodic traveling
wave solutions is given by the generalized St. Venant equations

ht + (hu)x = 0,
(hu)t + (h2/2F + hu2)x = h− u|u|r−1/hs + ν(hux)x,

(1.2)

where 1 ≤ r ≤ 2 and 0 ≤ s ≤ 2. Unlike (1.1), the St. Venant equations are a
second order hyperbolic–parabolic system of PDE’s in balance law form (due to the
non-differentiated source term in the parabolic part). Equations of this form arise
naturally when approximating shallow water flow on an inclined ramp, in which case
h represents the height of the fluid, u the velocity average with respect to height, ν
is a nondimensional viscosity equal to the inverse of the Reynolds number, and F is
the Froude number, which here is the square of the ratio between the speed of the

1In particular, potentials for which the period is decreasing with respect to amplitude in some
regime.
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fluid and the speed of gravity waves2. Further, the term u|u|r−1/hs models turbulent
friction along the bottom surface and x measures longitudinal distance along the
ramp. Finally, we point out that the form of the viscosity term ν(hux)x is motivated
by the formal derivations from the Navier Stokes equations with free surfaces; other
choices are obviously available and are sometimes used in the literature [HC]. Typical
choices for the parameters (r, s) are r ∈ {1, 2} and s ∈ {0, 1, 2}; see [BM, N1, N2]
and references therein. The choice (r, s) = (2, 0) is considered in detail in the works
[N1, N2, JZN, BJRZ].

Periodic and solitary traveling waves, known as roll waves, are well-known to
appear as solutions of (1.2), generated by competition between gravitational force
and friction along the bottom. Such patterns have been used to model phenomena
in several areas of the engineering literature, including landslides, river and spillway
flow, and the topography of sand dunes and sea beds and their stability properties
have been much studied numerically, experimentally, and by formal asymptotics;
see [BM] and references therein. However, until very recently, there was no rigorous
linear (as opposed to spectral, or normal modes) or nonlinear stability theory for
these waves.

For the physically relevant system (1.2), it turns out that we are able to perform a
complete spectral, linear, and nonlinear stability analysis of the associated periodic
traveling wave solutions. Indeed, although the abstract nonlinear stability theory
of [JZ2], developed for equations of form (1.1) does not apply directly to the St.
Venant equations due to its hyperbolic-parabolic nature and source terms, a suitable
modification of this theory can be made to establish that spectral stability of a
given periodic traveling wave implies nonlinear bounded stability. This theory will
be outlined briefly in the proceeding sections. The interested reader is invited to
find more details in [JZN, N1, N2, NR, BJNRZ].

The outline of this paper is as follows. In the next subsection, we briefly review
the existence theory for the periodic traveling wave solutions of the generalized St.
Venant equations (1.2). In particular, we will derive the Hopf bifurcation conditions
which guarantee the bifurcation of a family of periodic orbits from the equilibrium
solution. In Section 2 then, we outline the known stability theory for the periodic
solutions found in Section 1.1. The main result of this section is that, under some
“natural" spectral stability assumptions, the given periodic wave is nonlinearly stable
under the PDE dynamics in an appropriate sense. The aforementioned spectral sta-
bility assumptions are motivated through consideration of the associated Whitham
averaged system and its hyperbolicity, i.e. local well-posedness. The details of the
nonlinear stability proof are beyond the scope of the current presentation and hence
only an outline of the argument is given: the interested reader is referred to [JZN]
for details.

After establishing that (an appropriate sense of) spectral stability implies nonlin-
ear stability, we then turn our attention in Section 3 to the verification of spectral
stability assumptions. We begin by looking in the Hopf and homoclinic limits, as
these limits are amendable to direct analysis. Unfortunately, however, it is found
that, for particular example chosen, corresponding to (r, s) = (2, 0) in (1.2), all con-
stant solutions in the region of existence of periodic orbits are spectrally unstable in
a neighborhood of the origin. It immediately follows that periodic waves sufficiently

2In particular, the Froude number F depends on the angle of inclination of the incline.
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close to either the Hopf equilibrium or bounding homoclinic orbit must be spec-
trally unstable. However, all hope is not lost: the instability is due to the unstable
constant states and hence it is possible that waves of intermediate amplitude may
be stabilized due to dynamic effects, i.e. non-trivial variation of the gradient. We
pursue this line of investigation by conducting a numerical study of the spectrum
of the intermediate amplitude waves in Section 3.2 and we find numerically that
there indeed exist periodic waves between the Hopf and homoclinic orbits which are
spectrally stable, and hence are nonlinearly stable by the main theorem in Section
2. We then conclude with a brief conclusion and discussion of the future directions
of this project.

1.1. Periodic Traveling Waves
We begin with a brief discussion of the traveling wave solutions of the generalized St.
Venant equations. Following [JZN] we restrict ourselves to positive velocities u > 0
and consider (1.2) in Lagrangian coordinates

τt − ux = 0,
ut + ((2F )−1τ−2)x = 1− τ s+1ur + ν(τ−2ux)x,

(1.3)

where τ := h−1 and now the variable x denotes a Lagrangian marker, rather than
a physical location. Notice that since the equation (1.2) models waves propagating
down a ramp, there is no loss in enforcing the restriction u > 03. In this coordinate
frame, a traveling wave solution of (1.3) is a solution which is stationary in an ap-
propriate moving coordinate frame of the form x−st, where s ∈ R is the wavespeed.
That is, they take the form

U(x, t) = Ū(x− st),
where Ū(·) = (τ̄(·), ū(·)) is a solution of the ODE

−cτ̄ ′ − ū′ = 0,
−cū′ + ((2F )−1τ̄−2)′ = 1− τ̄ s+1ūr + ν(τ̄−2ū′)′.

(1.4)

Integration of the first equation yields ū = ū(τ ; q, s) := q − cτ̄ , where q is the
corresponding integration constant. Substitution of this identity into the second
equation yields the second-order scalar profile equation for the function τ̄ :

c2τ̄ ′ + ((2F )−1τ̄−2)′ = 1− τ̄ s+1(q − cτ̄)r − cν(τ̄−2τ̄ ′)′. (1.5)
The orbits of (1.5) can be studied by simple phase plane analysis. In particular, we
find that the equilibrium solutions τ0 satisfy the algebraic identity

τ s+1
0 (q − cτ0)r = 1.

Considering homoclinic solutions then, as in [BJRZ], under an appropriate nor-
malization we can assume τ0 = 1. Here, however, we are interested in the periodic
orbits of the profile ODE (1.5) which are easily seen not to exist in the case c = 0.
Indeed, in that case (1.5) reduces to the first order scalar ODE

τ̄ ′ = F τ̄ 3(τ̄ s+1qr − 1), (1.6)

3However, we must always remember to discard any spurious solutions for which u may become
negative.
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which clearly has no nontrivial solutions with τ̄ > 0. The existence of periodic
orbits for non-zero values of c was considered in [N1, N2], and are generically seen
to emerge from a Hopf bifurcation from the equilibrium state generating a family of
periodic orbits which terminate into the bounding homoclinic. The conditions for a
Hopf bifurcation to occur can be derived from straightforward Fourier analysis as in
[BJRZ]. Indeed, simply notice that the linearization of the profile ODE (1.5) about
an equilibrium solution τ0 (with q = u0 + cτ0) is given by(

s+ 1
τ0
− cr

u0

)
τ + (c2 − c2

s)τ ′ +
cντ ′′

τ 2
0

= 0,

where we have used the relation τ s+1
0 ur0 = 1. Taking the Fourier transform, it follows

that the Fourier frequency k must satisfy the polynomial equation
s+ 1
τ0
− cr

u0
+ ik(c2 − c2

s)−
cνk2

τ 2
0

= 0.

Evidently, such a k ∈ R exists if and only if c = cs and
(
s+1
r

)
u0
τ0

=
(
s+1
r

)
τ
−(r+s+1)/r
0 >

cs, in which case the solutions are ±kH with kH 6= 0. These translate then to the
Hopf bifurcation conditions

c = cs = τ
−3/2
0√
F

and
(
s+ 1
r

)
τ
−(r+s+1)/r
0 > cs. (1.7)

When (r, s) = (2, 0), which is the case considered in [JZN], this reduces to F > 4.
This is in agreement with the experiments of [N2, BJNRZ], which indicate that when
(r, s) = (2, 0) and F > 4 there exists a smooth family of periodic orbits of (1.5)
parametrized by the period, which increase in amplitude as the period is increased
and finally approaching a limiting homclinic orbit as the period tends to infinity.

As far as the general existence theory is concerned, we notice that periodic orbits
of (1.5) correspond to values (X, c, q, b) ∈ R5, where X, c, and q denote the period,
constant of integration, and wave speed, respectively, and b = (b1, b2) denotes the
initial values of (τ, τ ′) at x = 0 or, equivalently, at x = X. Furthermore, in the spirit
of [Se1, OZ3, OZ4, JZ2, JZ3], we make the following general assumptions:

(H1) τ̄ > 0, so that all terms in (1.4) are CK+1, K ≥ 4.

(H2) The map H : R5 → R2 taking (X, c, q, b) 7→ (τ, τ ′)(X, c, b;X)− b is full rank
at (X̄, c̄, b̄), where (τ, τ ′)(·; ·) is the solution operator of (1.5).

By the Implicit Function Theorem, then, conditions (H1)–(H2) imply that the set
of periodic solutions in the vicinity of Ū form a smooth 3-dimensional manifold
{Ūβ(x− α− c(β)t)}, with α ∈ R, β ∈ R2.

The goal of our analysis is to understand the modulational stability, i.e. the spec-
tral and nonlinear time evolutionary stability with respect to small localized initial
perturbations. We begin by considering the Whitham averaged system correspond-
ing to the dynamical version of (1.4), which yields a necessary condition for spectral
stability. These considerations lead to a natural set of spectral stability assump-
tions, and under these assumptions we outline the recent nonlinear stability theory
developed in [JZN]. With this theory in place, we numerically study the spectrum
of the linearized operator for various values of the turbulent parameters (r, s). In
particular, we are able to numerically find a spectrally stable periodic traveling wave

III–5



solution of (1.3). Recall that, up till now, the existence of such a stable solution was
not at all clear from the known examples, for example found in [OZ1].

2. Analytical Results
In this section, we review as briefly as possible the known analytical stability and
instability results concerning the periodic traveling wave solutions of (1.3). While
this theory is similar to that developed for the parabolic conservation laws (1.1)
developed in [OZ4, JZ2, JZ4], the extension to the current case involves a number
of subtle technical issues associated with lack of parabolicity and nonconservative
form. In particular, the presence of non-divergence source terms in (1.3) requires a
more detailed analysis of the associated Green function since there are no derivatives
to enhance decay. This is handled by an observation made from the structure of
this Whitham averaged equations that of all the modulations the wave can undergo
under low-frequency perturbation, modulations in translation dominate. This serves
as motivation for a decomposition of the linearized solution operator and allows us
to prove the time-asymptotic convergence of the underlying periodic profile to an
appropriate modulation of itself. The precise statement of this result is the main
focus of this section.

We begin our study by analyzing the spectral stability of a periodic traveling wave
solution of (1.3). To this end, notice that (1.3) can be written in the abstract form

Ut + f(U)x = (B(U)Ux)x + g(U) (2.1)
and linearizing (1.3) about Ū(·), we obtain

vt = Lv := (∂xB∂x − ∂xA+ C)v, (2.2)
where the coefficients

A := df(Ū)− (dB(Ū)(·))Ūx =
(

−c −1
−τ̄−3(F−1 − 2νūx) −c

)
,

B := B(Ū) =
(

0 0
0 ντ̄−2

)
, C := dg(Ū) =

(
0 0
−ū2 −2ūτ̄

) (2.3)

are periodic functions of x. As the underlying solution Ū depends on x only, equation
(2.2) is clearly autonomous in time. Seeking separated solutions of the form v(x, t) =
eλtv(x), it is clear that the stability of Ū requires a detailed analysis of the linearized
operator L. In particular, we say the underlying periodic traveling wave is spectrally
stable provided the linearized operator L has no spectrum in the unstable right half
plane <(λ) > 0. However, the analysis of the spectrum of L is made exceedingly
difficult by the following two facts: first, as the coefficients of L are X-periodic,
Floquet theory implies the spectrum is purely continuous and hence any spectral
instability of the underlying periodic wave must come from the essential spectrum;
secondly, by the translation invariance of (1.3) it is known that Ū ′ is an eigenfunction
of L corresponding to λ = 0 and hence the essential spectrum intersect the imaginary
axis in at least one point. The first issue is dealt with here by conducting a numerical
study of the spectrum as opposed to a analytical spectral stability study.

The second issue on the other hand actually gives us a starting point for our
spectral stability study. Since it is possible that the spectral curve through the
origin might pass through to the unstable half plane, a natural place to begin our
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study is to analyze the spectrum of the linearized operator in a neighborhood of the
origin λ = 0 in the spectral plane. Physically, instability/stability in a neighborhood
of the origin corresponds to the underlying wave being spectrally stable to long-
wavelength perturbations, i.e. to slow modulations of the traveling wave profile.
Thus, we can analyze the long-wavelength stability of a periodic traveling wave
by using a well-developed (formal) physical theory for dealing with such stability
problems known as Whitham theory. In the next section, we summarize recent
results concerning the application of Whitham theory to the current situation and
its rigorous verification through the use of Evans function techniques. This will lead
to an analytically necessary condition for spectral stability and hence to a natural
set of stability assumptions similar to those proposed by Schnieder in the context
of reaction-diffusion and related pattern-formation systems [S1, S2, S3].

2.1. Whitham averaging and spectral instability
Very recently a necessary condition for the spectral stability of periodic traveling
wave solutions of the generalized St. Venant equations in Eulerian coordinates (1.2)
has been derived by a novel relation between the Evans function and the corre-
sponding linearized Whitham averaged system proposed by Serre [Se1]; see [NR]
for complete details. In particular, the authors show that the linearized dispersion
relation obtained from the leading order asymptotics of the Evasn function near the
origin can be derived formally through a slow modulation (WKB) approximation
yielding the Whitham averaged system. It follows that the formal homogenization
procedures introduced by Whitham [W] and Serre [Se1] yields a necessary condition
for the spectral stability of the underlying periodic traveling wave. Here, we briefly
review this procedure and its implication for spectral instability of the periodic
waves of (1.2), and hence of (1.3).

As a first step, we let ε > 0 be a small perturbation parameter and introduce a set
of slow-variables (x, t) = (εX, εT ). In these slow variables, we search for a solution
of (1.2) of the form

(h, u)(X,T ) = (h0, u0)
(
X,T ; φ(X,T )

ε

)
+ ε(h1, u1)

(
X,T ; φ(X,T )

ε

)
+O(ε2),

where R 3 y → (hj, uj)(X,T ; y) is are unknown 1-periodic functions. It follows then
that the local period of oscillation is ε/∂Xφ, where we assume the unknown phase
a priori satisfies ∂Xφ 6= 0. Plugging this expansion into rescaled version of (1.2)
and collecting like powers of ε results in a heiarchy of consistency conditions which
must hold. At the lowest order O(ε−1), we find that the functions (h0, u0) satisfy
the corresponding rescaled profile ODE with wavespeed s in the variable ωy, where

s = −φT
φX

, and ω = φT .

Furthermore, notice then that ω denotes the local frequency and k = φX the local
wave number of the modulated wave. It follows then that (h0, u0) can be chosen to
agree with a given periodic traveling wave solution of (1.2) in the variable y.

Continuing, collecting the O(1) terms yields the mass conservation law

∂y
(
ω(k, q̄)h1 − ku1

)
= −

(
∂Th

0 + ∂Xu
0
)
,
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which has a solution if and only if the the right hand side has zero spatial average
over a period, i.e. if and only if

∂T (M(X,T )) + ∂X (cM(X,T )− q) = 0, (2.4)
where M(X,T ) :=

∫ 1
0 h

0(X,T, y)dy denotes the corresponding mass functional, c
the wave speed, and q = ch0 − u0 the corresponding integration constant. Together
with the consistency condition

∂Xk(X,T ) + ∂X(k(X,T )c(X,T )) = 0 (2.5)
these equations form a closed first order linear system of partial differential equations
known as the Whitham averaged equations4.

The linear system (2.4)-(2.5) is seen to be of evolutionary type provided that the
non-degeneracy condition

∂qM(X,T ) 6= 0, (2.6)
holds, which has been shown to hold in both the small-amplitude and small-viscosity
regimes; see [NR]. Furthermore, the local well-posedness of this linear system is
equivalent with its local hyperbolicity, i.e. the fact that the dispersion relation
∆(λ, ν)

∆(λ, ν) := det
(
λ
∂(k,M)
∂(c, q) − ν

∂(kc, cM − q)
∂(c, q)

)
= 0,

with (λ, ν) ∈ C × iR and where all arguments are evaluated at the underlying
periodic wave (h0, u0), corresponding to the linearization about the underlying wave
(h0, u0), has all real roots. Notice, in particular, that ∆(λ, ν) is a homogeneous
quadratic polynomial in λ and ν.

While hyperbolicity of the Whitham averaged system can heuristically be related
to its stability to long-wavelength perturbations, a rigorous proof of this fact has
only been recently given in [NR] through the use of the Evans function, which
we briefly recall here. Writing the linearization of (1.2) about a given X-periodic
traveling wave solution as the first order system

Y ′ = A(λ)Y,
the Evans function D(λ, σ) is defined for (λ, σ) ∈ C× S1 via

D(λ, eν) = det (Ψ(X;λ)− σI3) ,
where Ψ(·;λ) denotes the fundamental solution matrix, normalized so that Ψ(0;λ) =
I3, evaluated at the period point X. In particular, notice that λ belongs to the spec-
trum of the linearized operator if and only if D(λ, σ) = 0 for some σ ∈ S1, and hence
spectral stability of the underlying wave is equivalent to the condition that D(λ, σ)
does not vanish for any <(λ) > 0 and σ ∈ S1. Notice, however, that D(0, 1) = 0
by translation invariance, and hence the spectrum must touch the imaginary axis.
Whether or not the periodic wave is spectrally stable in a neighrobhood of the ori-
gin is connected to the hyperbolicity of the Whitham averaged system through the
following theorem.

4Notice these are not the true Whitham equations for (1.2). Indeed, the Whitham equations
are the inherently nonlinear equations arising at order O(1) from substituting the above expan-
sion in the rescaled version of (1.2). Upon averaging these nonlinear equations over one spatial
period, however, one arrives at the given linear system; hence its naming as the Whitham averaged
equations.
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Theorem 1 (Noble & Rodrigues [NR]). Let Ū be a periodic traveling wave solu-
tion of (1.2) such that the non-degeneracy condition (2.6) holds. Then in the limit
(λ, ν)→ (0, 0) the following asymptotic relation holds:

D(λ, eν) = Γ∆(λ, ν) +O((|λ|+ |ν|)3)
for some non-zero constant Γ.

That is, the dispersion relation ∆(λ, ν) agrees to leading order with the Evans
function in a neighborhood of the origin. Recalling that ∆ is a homogeneous in
the variables λ and ν, introduction of the projective coordinate z = λ

ν
reduces the

dispersion relation to the quadratic polynomial
∆(z, 1) = 0, (2.7)

whose roots z1, z2 are distinct so long as the corresponding discriminate is non-zero.
Under this assumption, the implicit function theorem applies in a neighborhood of
z = zj, κ = 0 and hence, in terms of the original spectral variable λ there are two
spectral branches

λj = zjν +O(ν2). (2.8)
Thus, if the Whitham system is hyperbolic, corresponding to zj ∈ R, then the
two spectral branches emerge from the origin tangent to the imaginary axis. This
is clearly a necessary condition for spectral stability. On the other hand, failure
of hyperbolicity of the Whitham system implies the zj have non-zero imaginary
part and hence the corresponding spectral branches must emerge from the origin
and enter the unstable half plane, immediately yielding spectral instability of the
underlying wave.

Similar results concerning the spectral verification of the Whitham averaged equa-
tions have also been derived in the viscous conservation law setting [OZ3, Se1]. No-
tice however, that while hyperbolicity of the Whitham system is necessary for the
spectral stability of a given periodic traveling wave solution of (1.2), it may not be
sufficient. Indeed, hyperbolicity of the Whitham system is a first order condition,
implying agreement of the spectrum near the origin along lines. Thus, the Whitham
system will be hyperbolic so long as the spectral curve is tangent to the imaginary
axis at the origin, whether or not the spectral curve then proceeds to the stable or
unstable half planes. Nevertheless these considerations lead us to a natural set of
spectral stability assumptions, which in the next section we show implies nonlinear
stability of the underlying wave.

2.2. Bloch decomposition and spectral stability conditions
A particularly useful way to analyze the continuous spectrum of the linearized oper-
ator L is to decompose the problem into a continuous family of eigenvalue problems
through the use of a Bloch decomposition. To this end, a straight forward appli-
cation of Floquet theory implies that the L2 spectrum of the linearized operator
L is purely continuous and corresponds to the union of the L∞ eigenvalues of the
operator L taken with boundary conditions v(x+X) = eiκv(x) for all x ∈ R, where
κ ∈ [−π, π) is referred to as the Floquet exponent. In particular, it follows that
λ ∈ σ(L) if and only if the spatially periodic spectral problem

Lv = λv (2.9)
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admits a uniformly bounded eigenfunction of the form v(x) = eiξxw(x), where w is
X-periodic. Substitution of this Ansatz into (2.9) motivates the use of the Fourier-
Bloch decomposition of the spectral problem.

Following [G] then, we define a one-parameter family of linear operators, referred
to as the Bloch operators, via

Lξ := e−iξxLeiξx, ξ ∈ [−π, π)
operating on L2

per([0, X]), the space of X-periodic square integrable functions. The
spectrum of L is then seen to be given by the union of the spectra of the Bloch-
operators. Furthermore, since the domain [0, X] is compact the operators Lξ, for
each fixed ξ, have discrete spectrum in L2

per([0, X]) and hence, by continuity of
the spectrum, the spectra of L may be described by the union of countable many
continuous surfaces.

Continuing, we recall that any localized function v ∈ L2(R) can admits an inverse
Bloch-Fourier representation

v(x) =
( 1

2π

) ∫ π
−π
eiξxv̂(ξ, x)dξ

where the functions v̂(ξ, ·) = ∑
j∈Z e

2πijxv̂(ξ+2πj) belongs to L2
per([0, X]) for each ξ,

where here v̂(·) denotes with a slight abuse of notation the usual Fourier transform
of the function v in the spatial variable x. By Parseval’s identity it is seen that the
Bloch-Fourier transformation v(x)→ v̂(ξ, x) is an isometry of L2(R), i.e.

‖v‖L2(R) =
∫ π
−π

∫ X
0
|v̂(ξ, x)|2dx dξ =: ‖ĝ‖L2(ξ;L2(x)).

Furthermore, this transformation is readily seen to diagonalize the periodic-coefficient
linearized operator L, yielding the inverse Bloch-Fourier transform representation

eLtv(x) = 1
2π

∫ π
−π
eiξxeLξtĝ(ξ, x)dξ

effectively relating the behavior of the linearized system to that of the diagonal
operator Lξ.

Together with the long-wavelength stability analysis in the previous section, we
now state our main spectral stability assumptions in terms of the diagonal Bloch
operators Lξ.

(D1) σ(Lξ) ⊂ {λ ∈ C : <λ < 0} for all ξ 6= 0.

(D2) There exists a constant θ > 0 such that <σ(Lξ) ≤ −θ|ξ|2 for all |ξ| � 1.

(D3’) λ = 0 is an eigenvalue of L0 of multiplicity exactly two.5

Notice that assumption (D1) implies weak hyperbolicity of the Whitham averaged
system, while (D2) corresponds to “diffusivity" of the large-time (∼ small frequency)
behavior of the linearized operator L. Moreover, (D3′) holds generically and can be
directly verified through the use of the Evans function arguments as in [N1]. Finally,
we point out that (D1)−(D3′) are balance law analogues of the spectral assumptions
introduced by Schneider for reaction-diffusion equations [S1, S2, S3].

5Note that the zero eigenspace of L0, corresponding to variations along the three-dimensional
manifold of periodic solutions in directions for which the period does not change [Se1, JZ2], is at
least two-dimensional by the linearized existence theory and assumption (H2).
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Furthermore, we make the following non-degeneracy hypothesis:

(H3) The roots zj of (2.7) are distinct.

(H4) The eigenvalue 0 of L0 is non-semisimple, i.e. dim ker(L0) = 1.

Conditions (H1) − (H4) generically imply that (D2) hold6. Moreover, (H3) corre-
sponds to strict hyperbolicity of the Whitham averaged system, and implies the
analyticity of the spectrum in a neighborhood of the origin. Specifically, since
∆(0, 1) 6= 0, as is readily seen in [NR], it follows that the roots zj of (2.7) are
non-zero and distinct by (H3) and hence relation (2.8) and standard spectral per-
turbation theory [K] implies the spectral curves λj = λj(ν) = λj(iξ) are analytic
functions of ξ in a neighborhood of ξ = 0. Finally, notice that assumptions (D3′)
and (H4) imply the existence of a Jordan block at (λ, ξ) = (0, 0). In particular, we
have the following spectral preparation result.
Lemma 2.1 ([JZN]). Assuming (H1)–(H4), (D1), and (D3’), the eigenvalues λj(ξ)
of Lξ are analytic functions and the Jordan structure of the zero eigenspace of L0
consists of a 1-dimensional kernel and a single Jordan chain of height 2, where
the left kernel of L0 is spanned by the constant function f̃ ≡ (1, 0)T , and ū′ spans
the right eigendirection lying at the base of the Jordan chain. Moreover, for |ξ|
sufficiently small, there exist right and left eigenfunctions qj(ξ, ·) and q̃j(ξ, ·) of
Lξ associated with λj(ξ) which are analytic in ξ for in a neighborhood of ξ = 0.
Furthermore, 〈q̃j, qk〉 = δkj

Remark 2.2. Notice that the results of Lemma 2.1 are somewhat unexpected since,
in general, eigenvalues bifurcating from a non-trivial Jordan block typically do so
in a nonanalytic fashion, rather being expressed in a Puiseux series in fractional
powers of ξ. The fact that analyticity prevails in our situation is a consequence of the
very special structure of the left and right generalized null-spaces of the unperturbed
operator L0, and the special forms of the equations considered.

>From the standpoint of obtatining a nonlinear stability result, the existence of
the non-trivial Jordan block over the translation mode suggests that one can not
expect traditional orbital asymptotic stability of the original periodic traveling wave
in any standard Lp or Hs norm; see [OZ2]. Nevertheless, following the ideas of [JZ2]
we are able to prove nonlinear asymptotic stability to an appropriate modulation
of the original wave, and hence an L∞ stability result for the underlying wave. The
technical details driving this nonlinear stability argument are beyond the scope of
what we wish to discuss here; the interested reader can see [JZ2, JZN]. However,
for a sense of completeness we recall here the general outline of the argument in the
next section.

2.3. Nonlinear stability: a guided tour
Here, we wish to recall the basic ideas behind the nonlinear stability of periodic
traveling wave solutions of the St. Venant equations (1.2). For technical reasons, we
find it essential to utilize the Lagrangian formulation (1.3) throughout this analysis.

6This amounts to nonvanishing bj in the Taylor series expansion λj(ξ) = −izjξ − bjξ2 + o(|ξ|2)
guaranteed by Lemma 2.1 given (H1)− (H4), (D1), and (D3′).
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To begin, let Ū(x) denote a periodic traveling wave solution of (1.4) and let Ũ(x, t)
denote any other solution of (1.3). Our goal is to prove that if Ũ(x, 0) is sufficiently
close to Ū(x) in a suitable norm, then it remains close for all future times t > 0. To
this end, define the nonlinear perturbation variable

v(x) := Ũ(x+ ψ(x, t))− Ū(x), (2.10)

where ψ : R2 → R is a modulation function to be chosen later. Our starting point
is the following observation: by a direct computation and Taylor expansion, the
nonlinear residual (2.10) is seen to satisfy

(∂t − L) v = (∂t − L) Ū ′(x)ψ −Qx + T + P +Rx + ∂tS,

where

P = (0, 1)TO(|v|(|ψxt|+ |ψxx|+ |ψxxx|),
Q := f(Ũ(x+ ψ(x, t), t))− f(Ū(x))− df(Ū(x))v = O(|v|2),

T := (0, 1)T
(

(Ũ(x+ ψ(x, t), t))2 − (Ū(x))2 − Ū(x))v
)

= (0, 1)TO(|v|2),

R := vψt + vψxx + (Ūx + vx)
ψ2
x

1 + ψx
, and

S = O(|v|(|ψx|).

LettingG(x, t; y) denote the Green function of (2.9) then, an application of Duhamel’s
formula implies the nonlinear residual must satisfy the integral equation

v(x, t) = ψ(x, t)Ū ′(x) +
∫ ∞
−∞

G(x, t; y)v0(y) dy

+
∫ t

0

∫ ∞
−∞

G(x, t− s; y)(−Qy + T +Rx + St)(y, s) dy ds.
(2.11)

In order to obtain control over v in a givenHs norm then, we seek to obtain pointwise
bounds on the Green function G and an appropriate expression for ψ for which (2.11)
becomes susceptible to an iteration argument. Since, as expected, the low-frequency
behavior of the solution operator near the neutral eigenvalue λ = 0 is the most
difficult to control, we decompose the solution operator S(t) = eLt corresponding to
the linearized operator L into high and low-frequency components.

To this end, standard spectral perturbation theory (KATO) implies that the total
eigenprojection P (ξ) onto the eigenspace of Lξ associated with the eigenvalues λj(ξ)
described in (2.8) is well-defined and analytic in ξ for |ξ| sufficiently small, since these
(by discreteness of the spectra of Lξ) are separated at ξ = 0 from the rest of the
spectrum of L0. Choosing an appropriate cut-off function φ(ξ) supported in a small
neighborhood of the origin and identically one in a slightly smaller neighborhood,
we split S(t) into a low-frequency part

SI(t)u0 := 1
2π

∫ π
−π
eiξxφ(ξ)P (ξ)eLξtû0(ξ, x)dξ

and the associated high-frequency part

SII(t)u0 := 1
2π

∫ π
−π
eiξx(1− φ(ξ))P (ξ)eLξtû0(ξ, x)dξ.
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We begin by analyzing SII . Fairly routine semigroup estimates [He, Pa] imply the
bounds ∥∥∥eLξtg∥∥∥

L2([0,X])
. e−θt‖g‖L2([0,X])∥∥∥∂xeLξtg∥∥∥

L2([0,X])
. e−θtt−1/2‖g‖L2([0,X])∥∥∥eLξt∂xg∥∥∥

L2([0,X])
. e−θtt−1/2‖g‖L2([0,X])

for all times t > 0 and some constant θ > 0. Since the Bloch-Fourier transform is
an isometry of L2, it follows by standard Lp interpolation and Sobolev’s inequality
that there exists a constant θ > 0 such that

‖SII(t)∂lxg‖Lp(R) . e−θtt−l/t‖g‖L2(R).

for all 0 ≤ l ≤ 2 and, similarly, one obtains an estimate on terms of the form
‖SII(t)∂mt g‖L2(R).

Next, we seek analogous bounds bounds on the low-frequency portion of the
solution operator. This however is complicated by the presence of spectral curves
which touch the imaginary axis at the origin, and hence a more delicate analysis is
necessary. We begin by denoting by

GI(x, t; y) := SI(t)δy(x)
the Green kernel associated with SI . Furthermore, recalling Lemma 2.1, for |ξ| suf-
ficiently small we denote by qj(x, ξ) and q̃j(x, ξ) the right and left eigenfunctions of
the Bloch operator Lξ, respectively, associated with the spectral curves λj(ξ) bifur-
cating from the (ξ, λj(ξ)) = (0, 0) state and we enforce the normalization condition
〈q̃j(·, ξ), qk(·, ξ)〉L2([0,X]) = δkj . It follows then that we can express the low-frequency
Green function as

GI(x, t; y) =
( 1

2π

) ∫
R
eiξ(x−y)φ(ξ)

2∑
j=1

eλj(ξ)tqj(ξ, x)q̃j(ξ, y)∗dξ,

where ∗ denotes the complex conjugate transpose. Notice that this Bloch expansion
for the Green kernel is analogous to using a Fourier representation in the constant
coefficient case. Similary as in the constant–coefficient case, we may read off decay
from the spectral representation using the following generalization of the Hausdorff–
Young inequality.

Lemma 2.3 (Generalized Hausdorff–Young inequality [JZ2]).

‖u‖Lp(x) ≤ ‖û‖Lq(ξ;Lp(0,X)), for q ≤ 2 ≤ p and 1
p

+ 1
q

= 1 (2.12)

Proof. Relation (2.12) holds in the extremal cases p = 2 and p = ∞ by Parseval’s
identity and the triangle inequality, respectively. This generalized version of the
Hausdorff–Young inequality then holds for all stated pairs (p, q) by a generalized
version of Riesz-Thorin interpolation theorem; see Appendix A of [JZ2] for more
details. �

In order to analyze the decay properties of the kernel GI in t, we notice that while
assumption (D2) implies eλj(ξ)t . e−θ|ξ|

2t for all t > 0, this does not immediately
yield decay since the presence of the Jordan block (guaranteed by assumptions
(D3’) and (H4)) implies q1(ξ)q̃1(ξ) ∼ ξ−1, where q1(0)(x) = Ū ′(x) corresponds to
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the translation mode. Following this intuition, we find that the terms in the Bloch
expansion of the Green kernel GI not associated with the Jordan block near ξ = 0
decay in Lp(x) as ‖e−θξ2t‖Lq(ξ) . t−

1
2 (1−1/p), i.e. at the rate of a heat kernel, while

the portion of the kernel associated with the Jordan block decays in L∞(x) as
‖ξ−1e−θξ

2t‖L1(ξ) . 1. These bounds, derived from the Bloch-norm Hausdorff–Young
inequality discussed above should be compared with those found by weighted-energy
estimate methods of Schneider [S1].

Using the above Lpx → LqξL
p
z bounds then it follows that the low-frequency Green

kernel GI can be decomposed as

GI(x, y; t) = Ū ′(x)e(x, t; y) + G̃I(x, t; y)

where the residual G̃I and amplitude e satisfy the bounds

sup
y∈R
‖G̃I(·, t; y)‖Lp(x) . (1 + t)− 1

2 (1−1/p)

sup
y∈R
‖e(·, t; y)‖Lp(x) . (1 + t)− 1

2 (1−1/p)

for all 2 ≤ p ≤ ∞. Furthermore, it can be shown the derivatives of these functions
decay in time even faster according to the variable and order of differentiation. These
estimate can be used to control the “free-evolution" type terms appearing in the
integral equation (2.11). To control the integrals associated with the (implicit) source
terms, arguments like those outlined above can be used to obtain the estimates∥∥∥∥∫

R
∂̃ryG(·, t; y)f(y)dy

∥∥∥∥
Lp(x)

. (1 + t)− 1
2 (1/q−1/p)−r/2‖f‖Lq∩H1∥∥∥∥∫

R
∂x,y,te(·, t; y)f(y)dy

∥∥∥∥
Lp(x)

. (1 + t)− 1
2 (1/q−1/p)‖f‖Lq

where 1 ≤ q ≤ 2 ≤ p ≤ ∞ and r = 0, 1.
With these preparations, we return to (2.11) and define

ψ(x, t) := −
∫ t

0

∫
R
e(x, t− s; y)

(
−Qy +Ry +

(
∂t + ∂2

y

)
S
)
dy ds

and note this choice cancels the “bad" term Ū ′(x)e in the decomposition GI =
Ū ′e + G̃I . Furthermore, using (2.11) this choice results in a closed system in the
variables (v, ψx, ψt), where now v satisfies

v(x, t) =
∫ t

0

∫
R
G̃I(x, t− s; y)

(
−Qy +Ry +

(
∂t + ∂2

y

)
S
)
dy ds,

and
ψx,t(x, t) =

∫ t
0

∫
R
ex,t(x, t− s; y)

(
−Qy +Ry +

(
∂t + ∂2

y

)
S
)
dy ds.

Recalling then that (Q,R, S) = O(|v, ψx,t|2) and G̃I and ex,t decay at Gaussian
rates in Lp(x), nonlinear stability follows by a direct iteration (contraction mapping)
argument as in the more well familiar viscous shock case (where the profile decays to
constant solutions). As with the linearized bounds derived above, these cancelation
computations, carried out in the physical variables, should be compared to the
cancelation computations carried out in the frequency domain by Schneider for the
reaction diffusion case. In particular, we arrive at the main theorem of [JZN].
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Theorem 2. Assuming (H1)–(H4) and (D1)–(D3’), let Ū = (τ̄ , ū) be a traveling-
wave solution of (1.3) satisfying the derivative condition

νūx < F−1. (2.13)

Then, for some C > 0 and ψ ∈ WK,∞(x, t), K as in (H1),

‖Ũ − Ū(· − ψ − ct)‖Lp(t) ≤ C(1 + t)− 1
2 (1−1/p)‖Ũ − Ū‖L1∩HK |t=0,

‖Ũ − Ū(· − ψ − ct)‖HK (t) ≤ C(1 + t)− 1
4‖Ũ − Ū‖L1∩HK |t=0,

‖(ψt, ψx)‖WK+1,p ≤ C(1 + t)− 1
2 (1−1/p)‖Ũ − Ū‖L1∩HK |t=0,

(2.14)

and

‖Ũ − Ū(· − ct)‖L∞(t), ‖ψ(t)‖L∞ ≤ C‖Ũ − Ū‖L1∩HK |t=0 (2.15)

for all t ≥ 0, p ≥ 2, for solutions Ũ of (1.3) with ‖Ũ − Ū‖L1∩HK |t=0 sufficiently
small. In particular, Ū is nonlinearly bounded L1 ∩HK → L∞ stable.

Theorem 2 asserts not only bounded L1∩HK → L∞ stability, a very weak notion
of stability, but also asymptotic convergence of Ũ to the space-time modulated wave
Ū(x − ψ(x, t)). The fact that we don’t get decay to Ū is the fundamental reason
why we had to factor out the translation mode from the low-frequency Green kernel
GI : indeed, the nonlinear (source) terms in (2.11) can not be considered as asymp-
totically negligible without asymptotic decay of the modulation ψ to zero. After
factoring out the translation mode, however, it is found that the perturbation v de-
cays to zero as ψx, which, thanks to the diffusive nature of the linearized operator,
decays at a rate t1/2 (in L2) faster than ψ. Finally, we also note that the derivative
condition (2.13) is effectively an upper bound on the amplitude of the underlying
periodic wave and is a technical condition needed to control the HK norm of the
perturbation v in terms of the L2 norm; this technical detail is beyond the scope
of our current presentation, and interested readers are referred to [JZN]. It should
be noted, however, that (2.13) is satisfied when either the wave amplitude or vis-
cosity coefficient ν is sufficiently small, and is seen to be satisfied for all roll-waves
computed numerically in [N2] and here in Section 3.2.

Our next goal is to verify, at least numerically, the spectral stability conditions
necessary in Theorem 2 to conclude nonlinear (bounded) stability of the underlying
periodic wave Ū .

3. Spectral Stability

Now that we have established that the spectral stability of a given periodic traveling
wave solution of (1.3) implies nonlinear stability in the sense of Theorem 2, we now
continue our investigation analyzing the spectral stability question. To begin, we
restrict to the commonly studied case (r, s) = (2, 0) and depict in Figure 3.1 a
typical phase portrait for the corresponding profile ODE (1.5) in the τ, τ ′ variables.
The periodic orbits arise through a Hopf bifurcation as c is decreased through the
critical wavespeed cs.
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Figure 3.1: (a) A typical phase portrait depicting a family of periodic
orbits parameterized by the wave speed c generated through a Hopf
bifurcation at the enclosed equilibrium solution. (b) A plot of the
period versus the wavespeed c of the corresponding periodic traveling
wave. Notice that the minimum period, corresponding to the Hopf
limit, is approximately 3.9.

The goal of this section is to attempt to find a spectrally stable solution of the
St. Venant equation

τt − ux = 0,
ut + ((2F )−1τ−2)x = 1− τu2 + ν(τ−2ux)x,

(3.1)

There are two natural limits in which the spectrum of the corresponding linearized
operator L seems amenable to direct analysis. The first is a small-amplitude, i.e.
Hopf, limit as one approaches the enclosed equilibrium solution, while the other
corresponds to the large-period limit as the periodic wave approaches the bounding
homoclinic in phase space. In the next section, we recall recent results of [BJRZ]
concerning stability in these distinguished limits.

3.1. Hopf and homoclinic limits
We begin our search for stable periodic traveling wave solutions of (3.1) by consid-
ering the small amplitude limit in which one approaches the enclosed equilibrium
solution. More generally, we consider the stability of the equilibrium solutions, which
satisfy the relation τ0u

2
0 = 1. To this end, we recall from [BJRZ] that the lineariza-

tion of (3.1) about an equilibrium solution (τ0, u0) satisfying τ0u
2
0 = 1 has as an

associated dispersion relation between the eigenvalue λ of the linearized operator L
and the Fourier frequency k given by

λ2 +
[
r

u0
− 2ick + νk2

τ 2
0

]
λ+ ik

[
s+ 1
τ0
− cr

u0
+ ik(c2 − c2

s)−
cνk2

τ 2
0

]
= 0.

Notice that the eigenvalues corresponding to frequency k = 0 are λ = −u−1
0 , which

remains negative for |k| � 1, and λ = 0. To determine the behavior of the λ = 0
for small nonzero k, we Taylor expand the dispersion relation about (λ, k) = (0, 0)
with λ = λ(k) and find that the spectral curve λ(k) must satisfy

λ′(0) = −i
[
u0

2τ0
− c

]
,
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indicating stability, while
1
2λ
′′(0) = u0

2
[
(iλ′(0) + c)2 − c2

s

]
= u0

2

[(
u0

2τ0

)2
− c2
s

]
.

Recalling the Hopf bifurcation conditions (1.7), it follows that if the equilibrium
solution τ0 corresponds to a Hopf bifurcation point of the profile ODE (1.5) then we
must have λ′′(0) > 0 yielding instability of the equilibrium (Hopf) point. In particu-
lar, we see that in the regime of existence of periodic waves, i.e. F > 4, all constant
solutions are spectrally unstable. Therefore, since the spectrum of the linearized
operator L changes continuously as we nearby periodic orbits we conclude that all
periodic traveling wave solutions of (3.1) solutions must be spectrally unstable in
the small amplitude limit. This is verified numerically in Figure 3.2(a).

Next, we turn to the large-period limit as the periodic orbits approach the bound-
ing homoclinic profile in phase space. In this case, we can use the same arguments as
in the Hopf limit in order to determine the stability of the limiting end state of the
homoclinic orbit, which recall determines the essential spectrum of the homoclinic
[He]. It follows that the limiting endstate is spectrally unstable in a neighborhood of
the origin whenever the Hopf bifurcation condition F > 4 hold, and this is numeri-
cally verified in Figure 3.2(b). Therefore, we should not expect to find any spectrally
stable periodic waves in the homoclinic limit.

(a) −0.01 −0.005 0 0.005 0.01

−0.1

−0.05

0

0.05

0.1

(b)

Figure 3.2: (a) Constant solution (∼ Hopf, unstable), =λ. (b) Homo-
clinic limit (unstable), =λ vs. <λ. Both of these spectral plots, as well
as the rest presented throughout this paper, were generated using the
SpectrUW package developed at the University of Washington [DK],
which is designed to find the essential spectrum of linear operators
with periodic coefficients by using Fourier-Bloch decompositions and
Galerkin truncation; see [CuD, CDKK, DK] for further information
and details concerning convergence.

It follows that any spectrally stable periodic traveling wave of (3.1), if one exists,
must be of intermediate amplitude. In particular, due to the complicated nature of
the linearized operator and the fact that we can not rely on perturbation techniques
from a particular limit, our analysis now turns over to a numerical study. Before
continuing, however, we wish to give a heuristic argument, reconciling physically ob-
served stability with this analytically-demonstrated instability, why one still might
expect the existence of stable periodic waves of intermediate amplitude. If one con-
siders the stability of the limiting homoclinic profiles more carefully, it can be found
by rigorous Evans function calculations that there exist homoclinic orbits having
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unstable essential spectrum, as predicted from the preceding discussion, and stable
point spectrum. As a result, we find that the associated homoclinic orbit is stabilizes
perturbations across dynamic parts of the wave, i.e. where the gradient varies non-
trivially, reflecting the stable point spectrum of the wave, while the portion of the
wave near the limiting constant endstate amplifies the perturbation, reflecting the
unstable essential spectrum; see Figure 3.3. Accordingly, one encounters an interest-
ing “metastability" mechanism where the stable point spectrum induces a stabilizing
effect on a closely spaced array of solitary waves, since the unstable constant end-
states would have little effect due to the “closeness" of the array. This leads one to
a notion of the “dynamic stability" of a solitary wave, which is essentially the spec-
trum of an appropriately periodically extended version of the original homoclinic;
this issue is discussed in more detail in [BJRZ]. Heuristically, then, considering a
closely spaced array of solitary solutions as a periodic orbit we are led to the possi-
bility of finding spectrally stable periodic waves away from either the homoclinic or
Hopf limits. In the next section, we numerically verify this heuristic by presenting
numerical computations indicating the existence of a stable periodic solution to the
St. Venant equations (1.3). These numerical stability results are formal in the sense
that we do not present any error bounds or rigorous high-frequency asymptotics
precluding the existence of unstable spectrum sufficiently far from the origin; in a
future paper [BJNRZ] we hope to present such bounds and hence make the formal
numerical arguments here rigorous. For the purposes of this article, however, our
formal numerical investigation will suffice.
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Figure 3.3: Time evolution of square wave perturbation of a homo-
clinic orbit possessing stable point spectrum and unstable essential
spectrum. Here u− = 0.96, q = u− + c/u2

−, ν = 0.1, r = 2, s = 0,
and F = 6. Notice that the perturbation decays across the region of
the profile where the gradient varies non-trivially and grows near the
unstable limiting constant states and is eventually convected to minus
infinity.
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3.2. Numerical study
In this section, we use the SpectrUW package, which relies on Fourier-Bloch decom-
positions and Galerkin truncation to numerically evaluate the spectrum of linear
operators with periodic coefficients, to numerically compute the spectrum of the
periodic orbits depicted in Figure 3.1. As described in the previous section, we ex-
pect the solutions near the Hopf and homoclinic cycles to have unstable essential
spectrum. Nevertheless, the metastability of the limiting homoclinic profile suggests
that waves of intermediate period may be spectrally stable, and hence be nonlin-
early stable by Theorem 2. In this investigation then, we animate the spectrum as
the period X is increased, or equivalently the wave speed c is decreased, from the
Hopf period X ≈ 3.9 to X = 29.9, which corresponds to a periodic orbit seemingly
very close to the homoclinic in phase space. The results of this study is shown in
Figure 3.4 and indeed seem to indicate a region of stable periodic orbits. Indeed,
it seems that the unstable small-amplitude periodic waves eventually stabilize in a
neighborhood of the origin as the period is increased and then are later destabi-
lized by the essential spectrum crossing the imaginary axis at non-trivial complex
conjugate points as the period is increased further.
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Figure 3.4: Evolution of spectra as period, here denoted as X = T ,
and wave speed, c, vary. Here u− = 0.96, q = u− + c/u2

−, ν = 0.1,
r = 2, s = 0, and F = 6. Starting in the top left picture and running
from left to right and from top to bottom, we see the evolution of
the spectra from the Hopf bifurcation at T ≈ 3.9 to a wave seemingly
near the the homoclinic in phase space with period T ≈ 29.9.

We see then that there seems to be a regime of stability in which periodic orbits
with particular intermediate periods are spectrally stable solutions of (3.1). A spatial
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Figure 3.5: A numerically stable periodic wave of the St. Venant equa-
tion 3.1, plotted in the original physical coordinates (h = τ−1 vs. x).
This particular wave has period X ≈ 6.2, and corresponds to the
green orbit in Figure 3.1.

plot in the original physical coordinates (h = τ−1 vs. x) of a periodic roll-wave in
this stable regime is depicted in Figure 3.5. In [BJNRZ], high frequency asymptotics
have been obtained which make this numerical evidence rigorous by proving that
any spectral instability must occur within a specified compact region of the complex
plane. Furthermore, for the seemingly stable spectra depicted in Figure 3.4 it is
verified in [BJNRZ] that the corresponding waves are indeed spectrally stable as
solutions of (3.1).

Finally, we make some remarks concerning the various instabilities present in
Figure 3.4 and their relation to the hyperbolicity of the associated Whitham av-
eraged system. To begin, we recall that by the recent work [NR] hyperbolicity of
this Whitham system is necessary for spectral stability; see Theorem 1. The lack
of sufficiency in this theorem is associated with the fact that it is only a first order
verification. Hence, Theorem 1 essentially states that hyperbolicity of the Whitham
averaged system is equivalent with the spectrum of the associated linearized spec-
tral problem being tangent to the imaginary axis at the origin, which is clearly a
necessary condition for stability but not sufficient7. As an example, notice that the
first three spectral plots, ordered from left to right and top to bottom, in Figure 3.4
are spectrally unstable in a neighborhood of the origin due to lack of hyperbolicity
of the associated Whitham averaged system. The remaining six spectral plots are
seemingly associated with hyperbolic Whitham averaged systems, but we see insta-
bility arising for sufficiently large period due to an essential instability occurring
away from the origin. Thus, as expected, hyperbolicity of this Whitham equation is
only a local condition for spectral stability, in the sense it only detects instabilities
in a neighborhood of the origin. In particular, the lower stability boundary, occur-
ring somewhere between period X = 4.9 and X = 5.6, is marked by the hyperbolic
Whitham criterion, while the upper stability boundary is not.

7This is in contrast to the dispersive Hamiltonian case, such as the generalized Korteweg-de Vries
or nonlinear Schrodinger equations, where the Hamiltonian structure of the linearized operator
implies the stability spectrum is invariant with respect to reflections across the imaginary axis. In
that case, generically it can be shown that hyperbolicity of the Whitham equation is equivalent
with spectral stability of the underlying wave in a neighborhood of the origin. See, for example,
[JZ1].
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Notice, however, that in the final spectral plot the wave seems to stabilize in
a neighborhood of the origin. While this seems to be a general phenonamon for
periodic waves where the period is not “too" large, tentative numerical experiments
indicate that for periodic waves with with very large periods the spectrum seems
destabilize in a neighborhood of the origin; in particular, the spectrum eventually
seems to resemble that of Figure 3.2(b) for the limiting homoclinic. This seems
to suggest that, although the Whitham averaged system is hyperbolic, the wave
is spectrally unstable in a neighborhood of the origin. Readers should be warned,
however, that a stabilization effect near the origin may still occur, but we may
not be able to see it due to a low-resolution of the spectral plot. Furthermore, it
seems to be quite difficult to numerically generate periodic orbits with very large
period and hence we had to resort to periodically extending a homoclinic orbit for
these numerics. Nevertheless, these experiments seem to suggest that it may be
possible for a periodic traveling wave solution of the St. Venant equations (3.1)
with sufficiently large period to have a hyperbolic Whitham averaged system but
be spectrally unstable to long-wavelength perturbations.

Continuing, we should note that using a Bloch-wave expansion, two of the au-
thors of the present paper have recently been able to rigorously validate the second
order Whitham expansion [NR], showing that this second order Whitham system
determines the convexity of the spectrum near the origin: a clearly more refined
feature than the first order verification provided by hyperbolicity. Thus, it may be
possible to numerically verify the existence of periodic waves where the spectrum
leaves the origin at second order and moves into the unstable half plane by analyzing
the associated second order Whitham system. This system is however considerably
more complicated than its first order counterpart discussed in Section 2.1 and it is
not immediately clear how to “compute" the necessary information from this system
for a given numerically generated solution.

4. Conclusions & Discussion

In this note, we have considered both analytical and numerical aspects of the sta-
bility of periodic roll-wave solutions of the generalized St. Venant equations. In
particular, we reviewed known results concerning the nonlinear stability of such
solutions and then proceeded to numerically investigate the necessary spectral sta-
bility assumptions in the nonlinear stability theorem. To this end, we utilized the
SpectrUW package developed at the University of Washington and, formally, we
made the case for the existence of a spectrally, and hence nonlinearly, stable peri-
odic traveling wave solution of the governing St. Venant equation. This stands in
contrast to the fact that periodic solutions near either the Hopf equilibrium solution
or the bounding homoclinic solutions are unstable. By briefly outlining the heuristic
of the “dynamic stability" of the bounding homoclinic wave, however, we were able
to give a (possibly general) explanation of how an equation with unstable solitary
waves can admit stable periodic waves solutions.

This concept of “metastability" of solitary waves has been considered also by Pego,
Schneider, and Uecker [PSU] in the context of the related fourth-order diffusive
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Kuramoto–Sivashinsky model

ut + ∂4
xu+ ∂2

xu+ ∂xu
2

2 = 0,

which has been proposed as an alternative model for thin film flow down an inclined
ramp. Therein, the authors analyze the time-asymptotic behavior of solutions of
this equation, and conclude that they are dominated by trains of solitary pulses.
As such, the mechanism of stable “dynamic spectrum" seems to provide a partial
answer for how a train of solitary pulses can stabilize the convective instabilities
shed from their neighbors.

In general, however, it seems that the mechanism by which an equation with an
unstable solitary wave can admit stable periodic waves is not completely clear, al-
though we suspect that it is closely tied with the notion of the “dynamic stability" of
the limiting homoclinic profile. To prove a general theorem, however, seems outside
the realm of current methods and remains an interesting open problem.

Finally, we wish to emphasize again that the numerical evidence for stability
presented in Section 3.2 are formal in the sense that they are lacking the error
estimates and high-frequency asymptotics/energy estimates necessary to preclude
the existence of unstable spectrum outside the window of our computation. In a
future paper [BJNRZ], we will carry out these details and provide rigorous numerics
which indicate the existence of a spectrally stable periodic traveling wave solution
of the St. Venant equation (3.1).

Acknowledgement: Thanks to Bernard Deconink for his generous help in guid-
ing us in the use of the SpectrUW package developed by him and collaborators.
The numerical Evans function computations performed in this paper were carried
out using the STABLAB package developed by Jeffrey Humpherys with help of the
first and last authors.
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