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Soliton scattering by delta impurities

Justin Holmer Jeremy Marzuola Maciej Zworski

We present the results of [8] and [9] concerning the Gross-Pitaevskii equation with
a repulsive delta function potential. We show that a high velocity incoming soliton is
split into a transmitted component and a reflected component. The transmitted mass
(L2 norm squared) is shown to be in good agreement with the quantum transmission
rate of the delta function potential. We further show that the transmitted and
reflected components resolve into solitons plus dispersive radiation, and quantify
the mass and phase of these solitons.

More precisely we consider{
i∂tu + 1

2
∂2

xu− qδ0(x)u + u|u|2 = 0

u(x, 0) = u0(x) ,
(1)

with q > 0. As initial data we take a fast soliton approaching the impurity from the
left:

u0(x) = eivxsech(x− x0) , v � 1 , x0 � 0. (2)
Because of the homogeneity of the problem this covers the case of the general soliton
profile Asech(Ax). The quantum transmission rate at velocity v is given by the
square of the absolute value of the transmission coefficient, see (10) below,

Tq(v) = |tq(v)|2 =
v2

v2 + q2
. (3)

For the soliton scattering the natural definition of the transmission rate is given by

T s
q (v) = lim

t→∞

‖u(t)�x>0 ‖2
L2

‖u(t)‖2
L2

=
1

2
lim
t→∞

‖u(t)�x>0 ‖2
L2 , (4)

provided that the limit exists. We expect that it does and that for fixed q/v, there
is a σ > 0 such that

T s
q (v) = Tq(v) +O(v−σ), as v → +∞ . (5)

Based on the comparison with the linear case and the numerical evidence [9] we
expect (5) with σ = 2. Towards this heuristic claim we have

Theorem 1. Let δ satisfy 2
3

< δ < 1. If u(x, t) is the solution of (1) with initial
condition (2) and x0 ≤ −v1−δ, then for fixed q/v,

1

2

∫
x>0
|u(x, t)|2 dx =

v2

v2 + q2
+O(v1− 3

2
δ), as v → +∞ , (6)
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Figure 1: Numerical simulation of the case q = v = 3, x0 = −10, at
times t = 0.0, 2.7, 3.3, 4.0. Each frame is a plot of amplitude |u| versus
x.

uniformly for
|x0|
v

+ v−δ ≤ t ≤ (1− δ) log v

We see that by taking δ very close to 1, we obtain an asymptotic rate just shy of
v−1/2. More precisely, we show that there exists

v0 = v0(q/v, δ) ,

diverging to +∞ as δ ↑ 1 and q/v → +∞, such that for fixed q/v, if v ≥ v0, then∣∣∣∣∣12
∫

x>0
|u(x, t)|2dx− v2

v2 + q2

∣∣∣∣∣ ≤ cv1− 3
2
δ.

The constant c appearing here is independent of all parameters (q, v, and δ).
We have conducted a numerical verification of Theorem 1 – see Fig. 2. It shows

that the approximation given by (6) is very good even for velocities as low as ∼ 3,
at least for

0.6 ≤ α
def
= q/v ≤ 1.4 .

A more elaborate numerical analysis will appear in our forthcoming paper [9].
Our second result shows that the scattered solution is given, on the same time

scale, by a sum of a reflected and a transmitted soliton, and of a time decaying
(radiating) term – see the fourth frame of Fig. 1. This is further supported by a
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forthcoming numerical study [9]. In previous works in the physics literature (see for
instance [2]) the resulting waves were only described as “soliton-like”.

Theorem 2. Under the hypothesis of Theorem 1 and for
|x0|
v

+ 1 ≤ t ≤ (1− δ) log v,

we have, as v → +∞,

u(x, t) = uT (x, t) + uR(x, t) +OL∞x

(
(t− |x0|/v)−1/2

)
+OL2

x
(v1− 3

2
δ) ,

uT (x, t) = eiϕT eixv+i(A2
T−v2)t/2AT sech(AT (x− x0 − tv)) ,

uR(x, t) = eiϕRe−ixv+i(A2
R−v2)t/2AR sech(AR(x + x0 + tv)) ,

(7)

where AT = (2|tq(v)| − 1)+, AR = (2|rq(v)| − 1)+, and

ϕT = arg tq(v) + ϕ0(|tq(v)|) + (1− A2
T )|x0|/2v ,

ϕR = arg rq(v) + ϕ0(|rq(v)|) + (1− A2
R)|x0|/2v ,

(8)

ϕ0(ω) =
∫ ∞
0

log

(
1 +

sin2 πω

cosh2 πζ

)
ζ

ζ2 + (2ω − 1)2
dζ .

Here tq(v) and rq(v) are the transmission and reflection coefficients of the delta-
potential (see (10)). When 2|tq(v)| = 1 or 2|rq(v)| = 1 the first error term in (7) is
modified to OL∞x ((log(t− |x0|/v))/(t− |x0|/v))

1
2 ).

Here and later we use the standard notation

ak
+ =

{
ak a ≥ 0 ,
0 a < 0 .

(9)

This asymptotic description holds for v greater than some threshold depending on
q/v and δ, as in Theorem 1. The implicit constant in the OL2

x
error term is entirely

independent of all parameters (q, v, and δ), although the implicit constant in the
OL∞x error term depends upon q/v, or more precisely, the proximity of |tq(v)| and
|rq(v)| to 1

2
.

A comparison of the transmission and reflection coefficients (3) of the δ potential,
and of the soliton transmission and reflections coefficients, AT and AR, appearing
in (7), is shown in Figure 3.

To present the definitions of the transmission and reflection coefficients, tq and rq

respectively, we recall the definition of the scattering matrix for the Hamiltonian

Hq = −1

2

d2

dx2
+ q δ0(x) .

For that we consider solutions of (Hq − λ2)u = 0 and their coefficients:

u(x) = A±e−iλx + B±eiλx , ±x > 0 .

The matrix defined by

S(λ) :

[
A+

B−

]
7−→

[
A−
B+

]
,

is called the scattering matrix. In our simple case it is easily computed:

S(λ) =

[
tq(λ) rq(λ)
rq(λ) tq(λ)

]
, tq(λ) =

iλ

iλ− q
, rq(λ) =

q

iλ− q
. (10)
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Figure 2: A plot of the numerically obtained transmission T s
q (v) ver-

sus velocity v for five values of α = q/v = 0.6, 0.8, 1.0, 1.2, 1.4. The
dashed lines are the corresponding theoretical v → +∞ asymptotic
values given by 1/(1 + α2).

The scattering coefficients satisfy two equations, one standard (unitarity) and one
due to the special structure of the potential:

|tq(λ)|2 + |rq(λ)|2 = 1 , tq(λ) = 1 + rq(λ) .

Scattering of solitons by delta impurities is a natural model explored extensively
in the physics literature – see for instance [2],[7], and references given there. The
heuristic insight that at high velocities “linear scattering” by the external potential
should dominate the partition of mass is certainly present there. In the mathemat-
ical literature the dynamics of solitons in the presence of external potentials has
been studied in high velocity or semiclassical limits following the work of Floer and
Weinstein [5], and Bronski and Jerrard [1] – see [6] for recent results and a review of
the subject. Roughly speaking, the soliton evolves according to the classical motion
of a particle in the external potential. That is similar to the phenomena in other
settings, such as the motion of the Landau-Ginzburg vortices.

The possible novelty in (6) and (7) lies in seeing quantum effects of the external
potential strongly affecting soliton dynamics. As shown in Fig. 2, Theorem 1 gives
a very good approximation to the transmission rate already at low velocities. Fig. 1
shows time snapshots of the evolution of the soliton, and the last frame suggests the
soliton resolution (7). We should stress that the asymptotic solitons are resolved at
a much larger time – see [9].

The proof of the two theorems proceeds by approximating the solution during
the “interaction phase” (the interval of time during which the solution significantly
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Figure 3: Comparison of linear and nonlinear scattering coefficients
as functions of α

def
= q/v.

interacts with the delta potential at the origin) by the corresponding linear flow.
This approximation is achieved, uniformly in q, by means of Strichartz estimates.
The crucial observation is that for q ≥ 0 the constants in the Strichartz estimates do
not depend on q. The use of the Strichartz estimates as an approximation device, as
opposed to say energy estimates, is critical since the estimates obtained depend only
upon the L2 norm of the solution, which is conserved and independent of v. Thus,
v functions as an asymptotic parameter; larger v means a shorter interaction phase
and a better approximation of the solution by the linear flow. Theorem 2 combines
this analysis with the inverse scattering method [11],[4],[3],[10]. The delta potential
splits the incoming soliton into two waves which become single solitons.
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