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Journées Équations aux dérivées partielles
Forges-les-Eaux, 6 juin–10 juin 2005
GDR 2434 (CNRS)

Scattering amplitude for the Schrödinger equation
with strong magnetic field

Laurent Michel

Abstract

In this note, we study the scattering amplitude for the Schrödinger equation
with constant magnetic field. We consider the case where the strengh of the
magnetic field goes to infinity and we discuss the competition between the
magnetic and the electrostatic effects.

1. Introduction

We consider the Schrödinger operator with constant magnetic field

H(b) = H0(b) + bγV

with γ ∈ [0, 1] and

H0(b) =

(
i
∂

∂x
+
b

2
y

)2

+

(
i
∂

∂y
− b

2
x

)2

−∆z.

Here x ∈ R, y ∈ R, z ∈ Rn−2, ∆z denotes the Laplacian on Rn−2
z with n ≥ 3 and

the potential V satisfies the following hypothesis

Assumption 1. There exists V ∞ ∈ C∞
0 (Rn−2) and W ∈ C∞

0 (Rn) such that

V (x, y, z) = V ∞(z) +W (x, y, z)

and V, V ∞ ≥ 0.

Under this assumption, it is well-known (see [2]) that the scattering operator S =
S(b) associated to the pair (H0,H) is well defined. The first aim of this note is to
show that the scattering matrix S(E, b) can be defined via the spectral represen-
tation of H0 and admits a convenient representation formula away from the point

MSC 2000: 35B40,35P25,35J10,35A35.
Keywords: Scattering theory, Schrödinger equation, Magnetic fields.
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spectrum and the Landau levels. The term “matrix” has to be understood differ-
ently according to the dimension n. In the case n = 3, S(E, b) will be a two by
two matrix with coefficient in L(L2(R2

x,y)), whereas for n ≥ 4 it will be a unitary
operator on L2(Sn−3 × R2

x,y). More precisely, let us denote

Ĥ0 =

(
i
∂

∂x
+
b

2
y

)2

+

(
i
∂

∂y
− b

2
x

)2

(1.1)

the Schrödinger operator with constant magnetic field on L2(R2). It is well-known
that the spectrum of Ĥ0 is pure point [2], [13] and given by the sequence of Landau
levels σ(Ĥ0) = σpp(Ĥ0) = {b(2q− 1), q ∈ N∗}. Let us denote Π̃q : L2(R2) → L2(R2)
the projector on the eigenspace associated to b(2q − 1) and define H by H = R2 if
n = 3 and H = L2(Sn−3) if n ≥ 4. For E > 0, we define

F̃0(E) : L2(Rn−2
z , (1 + |z|2)α/2dz) → H

by

F̃0(E)ϕ =
E−1/4

√
4π

∫
R
(e−i

√
E〈z,ξ〉ϕ(z), ei

√
E〈z,ξ〉ϕ(z))dz

if n = 3 and

F̃0(E)ϕ(ξ) =
E

n−4
4

√
2(2π)

n−2
2

∫
Rn−2

e−i
√

E〈z,ξ〉ϕ(z)dz,

if n ≥ 4. For E > b, we introduce

F0(E) : L2(Rn,(1 + |z|2)α/2dxdydz) → L2(R2
x,y,H)

ϕ 7→
∑

b(2q−1)≤E

Π̃q ⊗ F̃0(E − b(2q − 1))ϕ

and in all dimensions we define

F : L2(Rn) → L2(R∗
+, L

2(R2 × Sn−3), dE)

by Fϕ(E) = F0(E)ϕ. Remark that for ϕ ∈ L2(Rn), F0(E)ϕ makes sense only as an
L2 function with respect to E. The operator F is a unitary isomorphism and

• F H0F∗ is the multiplication by E on L2(R∗
+, L

2(R2 × Sn−3), dE)

• for all t > 0, FS(b)F∗ and eitF H0 F∗ commute.

Hence (cf. [14], Theorem XIII.84), there exists a function E 7→ S(E, b) in the space
L∞(R∗

+,L(L2(R2 × Sn−3))) such that

∀ϕ ∈ L2(Rn), (FS(b)ϕ)(E) = S(E, b)(Fϕ)(E).

For E > 0, S(E, b) is called the scattering matrix (it is a matrix with operator-valued
coefficients only in the case n = 3).
Our first result consists in a representation formula for the scattering matrix in
terms of generalized eigenfunctions. For B1, B2 two Banach spaces, we denote by
L(B1, B2) the space of linear bounded operators from B1 into B2. When B1 = B2

we simply denote L(B1). Under our assumptions on the potential V , the scattering
matrix can be represented in a convenient way.
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Theorem 1. Suppose that Assumption 1 is satisfied and denote by σpp(H) the point
spectrum of H. Then, for all E ∈]b,+∞[\((2N∗ − 1) ∪ σpp(H)), one has

S(E, b)− Id = −2iπbγF0(E)V (x)F0(E)∗

+ 2iπb2γF0(E)V (x)R(E + i0)V (x)F0(E)∗,
(1.2)

where

R(E + i0) = lim
µ→0+

(H−E − iµ)−1

exists in the space Bα = L(L2(Rn, (1+ |z|2)α/2dxdydz), L2(Rn, (1+ |z|2)−α/2dxdydz))
for α > 1/2.

This representation formula is analogous to the formula arising in absence of mag-
netic field (see for instance [1] for a proof in the short range case). Some general-
isations to less regular and non compactly supported potentials can be founded in
[10]. From this representation formula we deduce by a straightforward computation
the following

Corollary 1.1. For E ∈]b,+∞[\((2N∗ − 1) ∪ σpp(H)), T (E, b) := S(E, b)− Id has
a kernel

(ω, ω′) ∈ Sn−3 × Sn−3 → T (ω, ω′, E, b) ∈ L(L2(R2)

which is smooth on Sn−3 × Sn−3.

Remark 1.2. Thanks to the form of the potential V , we can find χ1, χ2 ∈ C∞
0 (Rn−2

z )
such that χ2V = V and χ1 = 1 on suppχ2. Then, it was shown in [10] that for all
E ∈]b,+∞[\(L ∪ σpp(H))

T (E, b) = −2iπF0(E)[∆z, χ1]R(E + i0)[∆z, χ2]F0(E)∗. (1.3)

An important difference between the Schrödinger operator without magnetic field
and the case we study in this article is the following. In the case A = 0, the scattering
amplitude T (., ., E, b) is a complex-valued function whereas in our case it takes its
values in the space of bounded operators on L2(R2). The aim of this paper is to study
this kernel for energies far from the Landau levels in the following sense. We take
λ ∈ [1,+∞[\(2N + 1) and we study the behavior of T (ω, ω′, λb, b) when b → +∞.
It is important to remark that the distance between the energy λb and the set of
Landau levels is proportional to b and so goes to infinity.
Throughout this paper, we will use the semi-classical pseudo-differential calculus in
a standard way (see [4]). Let us recall briefly the notations. For m : Rd → [0,+∞[
an order function (see Definition 7.5 in [4]) and δ ∈ [0, 1], we say that a(x, h) ∈
C∞(Rd×]0, 1]) belongs to the class Sδ(Rd,m, h) if

∀α ∈ Nd,∃Cα > 0, |∂α
xa(x, h)| ≤ Cαh

−δ|α|m(x).

In the special case where m = 1, we write Sδ(Rd, h) instead of Sδ(Rd, 1, h) and if
the semi-classical parameter h is unambiguous we write Sδ(Rd). When the symbol a
is an operator in L(F,G) (F,G being subspaces of a Hilbert space), the notation |.|
above has to be understood as a norm in L(F,G) and the associated class of symbols
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will be denoted by Sδ(Rd,m,L(F,G), h). We refer to the appendix of [3] for a a nice
review of elementary properties of pseudo-differential operators with operator valued
symbols. As in [3], for p in a suitable class of symbol, we will denote by pw(x, hDx)
the standard Weyl-quantization of p.
First we state our results in the case γ ∈]0, 1/2[. In all the paper, we denote λq =
λ− (2q − 1).

Theorem 2. Suppose that Assumption 1 is satisfied. Let γ ∈ [0, 1/2[ and λ ∈
]2q0 − 1, 2q0 + 1[ for some q0 ∈ N∗. When b tends to infinity, λb /∈ σpp(H(b)) and

T (ω, ω′, λb, b) =
ibγ+n−4

2

2(2π)n−1

q0∑
q=1

λ
n−4

2
q V̂ z(x, y, b1/2λ1/2

q (ω − ω′))Πq +O(b
n−5

2
+2γ)

in L(L2(R2).

Remark 1.3. This result is similar to the high-energy asymptotic for the Schrödinger
equation without magnetic field. In particular, it permits to obtain easily some in-
verse scattering results. We refer to [10] for details.

The proofs of Theorems 1 and 2 can be found in [10]. The remainder of the paper
is devoted to the case γ = 1.
Before setting our theorems, we may discuss the elementary but instructive example
where the potential V depends only on z. Then V (z) and the projectors Π̃q commute,
so that

R(λb+ i0) =
∑
q∈N

(−∆z + bV (z)− b(λ− (2q − 1))− i0)−1 ⊗ Π̃q.

Setting h = b−1/2, it follows from (1.3) and the definition of F0(E) that

T (ω, ω′, λb, b) =
∑

2q−1≤λ

TL(ω, ω′, λ− (2q − 1), h)Π̃q

where TL(ω, ω′, E , h) denotes the scattering amplitude for the pair (−h2∆z,−h2∆z +
V (z)) at the energy E . This shows why our problem becomes semi-classical. More-
over, it is well-known since the works of Vainberg [16] and Robert-Tamura [15] that
the asymptotic behavior of the scattering amplitude when h goes to zero at the
energy E depends on the nature of the classical trajectories on this energy surface.
From now, we assume that γ = 1 and λ ∈]2q0− 1, 2q0 + 1[, q0 ∈ N∗. For (x, y) ∈ R2,
we introduce the symbol px,y(z, ξ) = ξ2 + V (x, y, z), ∀(z, ξ) ∈ T ∗Rn−2. We denote
by Hpx,y = ∂ξpx,y∂z − ∂zpx,y∂ξ the associated vector field and t 7→ exp(tHpx,y)(z, ξ)
the solution of the Hamiltonian system

Ż = 2Z∗, Ż∗ = −∇zV (x, y, Z) (1.4)

with initial condition (z, ξ) at t = 0. We make the following non-trapping assumption

VIII–4



Assumption 2. For all q = 1, . . . , q0 and all (x, y) ∈ R2,

lim
|t|→∞

| exp(tHpx,y)(z, ξ)| = +∞

for all (z, ξ) ∈ T ∗Rn−2 such that ξ2 + V (x, y, z) = λq.

Remark that if the λq, q = 1, . . . , q0, are non-trapping for the symbol ξ2 + V ∞(z)
in the sense of [15] and W,∇zW are small enough in C0 norm, then Assumption 2
is satisfied.
In dimension n = 3, the structure of the classical scattered trajectories is quiet
simple and the preceding assumption is sufficient to state a theorem. Let us denote

S(E, b) =

(
S11(E, b) S12(E, b)
S21(E, b) S22(E, b)

)

the scattering matrix in dimension 3, with Sij(E, b) ∈ L(L2(R)). It is well known
that S11(E, b) = S22(E, b) so that we only have to study S11, S12 and S21. From
Assumption 2, we deduce easily that there exists q1 ∈ {1, . . . , q0 + 1} such that:
• for all q ∈ {1, . . . , q1 − 1} and all (x, y) ∈ R2, λq > supz∈R V (x, y, z)
• for all q ∈ {q1, . . . , q0} and all (x, y) ∈ R2, the equation V (x, y, z) = λq has exactly
two solutions αq(x, y) < βq(x, y) and these solutions are non-critical points.
Remark that αq and βq are smooth functions of the variable (x, y) and are indepen-
dent on (x, y) when |(x, y)| >> 1.

Theorem 3. Suppose that n = 3 and that Assumption 2 is fulfilled, then the diagonal
coefficients are given by

S11(λb, b) =
q1−1∑
q=1

sw
d,q(λ, y/2− b−1Dx, x/2− b−1Dy)Π̃q +

+∞∑
q=q0+1

Π̃q +O(b−∞)

in L(L2(R2)), with

sd,q(λ, y, η) = exp(ib1/2
∫ +∞

−∞

√
λq − V (η, y, z)−

√
λqdz) + b−1/2rd,q(λ, y, η),

where rd,q ∈ S1/2(R2, b−1).
The off-diagonal coefficients satisfy

S21(λb, b) =
q0∑

q=q1

sw
a,q(λ, y/2− b−1Dx, x/2− b−1Dy)Π̃q +O(b−∞)

in L(L2(R2)), with

sa,q(λ, y, η) = i exp(2ib1/2(
√
λqαq(η, y) +

∫ αq(η,y)

−∞

√
λq − V (η, y, z)−

√
λqdz))

+ b−1/2ra,q(λ, y, η),

where ra,q ∈ S1/2(R2, b−1).
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There is a similar formula for S12(λb, b) that can be found in [11]. On the other
hand, notice that thanks to the assumption on the support of V and the properties
of αq, βq, the symbols sd,q and sa,q belong to the class S1/2(R2, b−1).
When n ≥ 4, we need an additional assumption on the classical flow. Now, let us fix
ω and ω′ in Sn−3 such that ω 6= ω′. We denote by Υω the hyper-plane orthogonal
to ω, by z̃ = (z1, . . . , zn−3) the variable in Υω and we set ẑ = (z̃, 0) ∈ Rn−2. As V is
compactly supported in the variable z, out of a compact set the solutions of (1.4)
are straight lines and it is easy to see that for all q = 1, . . . , q0 and z̃ ∈ Υω, there
exists a unique solution (Zq,∞(t, x, y, z̃, ω), Z∗q,∞(t, x, y, z̃, ω)) of (1.4) such that for
−t > 0 large enough

Zq,∞(t, x, y, z̃, ω) = 2
√
λqωt+ ẑ

Under Assumption 2, we can precise the behavior of these particles when t goes to
+∞. Indeed, V being compactly supported with respect to z, there exists θq,∞(x, y, z̃, ω) ∈
Sn−3 and rq,∞(x, y, z̃, ω) ∈ Rn−2 such that for t > 0 large enough

Zq,∞(t, x, y, z̃, ω) = 2
√
λqθq,∞(x, y, z̃, ω)t+ rq,∞(x, y, z̃, ω) (1.5)

Z∗q,∞(t, x, y, z̃, ω) =
√
λqθq,∞(x, y, z̃, ω). (1.6)

For z̃ ∈ Υω, let us define the angular densities by

σ̂q(x, y, z̃) = | det(θq,∞, ∂z1θq,∞, . . . , ∂zn−3θq,∞)| (1.7)

Assumption 3. We suppose that for all q ∈ {1, . . . , q0}, (x, y) ∈ R2 and all z̃ ∈ Υω

with θq,∞(x, y, z̃) = ω′, we have σ̂q(x, y, z̃) 6= 0.

If Assumption 3 is satisfied, we say that the final direction ω′ is regular with respect
to the initial direction ω. Once again, let us remark that if we suppose that W
and ∇zW are small enough, Assumption 3 will be satisfied as soon as for all q ∈
{1, . . . , q0}, ω′ is regular with respect to ω at the energy level λq for the symbol ξ2 +
V ∞(z) in the sense of [15]. This permits in particular to build potentials satisfying
Assumptions 2 and 3.
Assume that the direction ω′ is regular with respect to ω. For q ∈ {1, . . . , q0} and
(x, y) ∈ R2 fixed, we deduce from the implicit function theorem that there exist
lq = lq(x, y) ∈ N and z̃q,1(x, y), . . . , z̃q,lq(x, y) ∈ Υω such that

θq,∞(x, y, z) = ω′ ⇐⇒ z ∈ {z̃q,1, . . . , z̃q,lq}.

Moreover, we can deduce from the local inverse theorem that the function (x, y) 7→
lq(x,y) is constant on R2. We show also that the functions (x, y) 7→ z̃q,j(x, y) are C∞

with respect to (x, y). On the other hand, W being compactly supported they are
constant at infinity and therefore belongs to the class S0(R2).

Theorem 4. Suppose that n ≥ 4 and that (ω, ω′) ∈ Sn−3 × Sn−3 with ω 6= ω′

satisfies Assumptions 2 and 3. Then λb /∈ σpp(H(b)) and there exists a sequence
Tq,j(ω, ω

′, λ, b, . , .), q = 1, . . . , q0, j ∈ N of symbols in S1/2(R2, b−1) such that for all
N ∈ N,

T (ω, ω′, λb, b) = b
n−3

4

q0∑
q=1

λ
n−3

4
q Tq(ω, ω

′, λb, b)Π̃q +O(b
n−3

4
−N)
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in L(L2(R2)), with

Tq(ω, ω
′, λb, b) =

N∑
j=0

b−j/2Tw
q,j(ω, ω

′, λ, b, y/2− b−1Dx, x/2 + b−1Dy).

Moreover,

Tq,0(ω, ω
′, λ, b, y, η) = c(n)

lq∑
l=1

σ̂q(η, y, z̃q,l(η, y))
−1/2eib1/2Sq,l(y,η)−iµq,lπ/2

where c(n) = 1
2
ei(n−3)π/4(2π)−(n−3)/2,

Sq,l(y, η) =
∫ +∞

−∞
(|Z∗q,∞(t, η, y, z̃q,l(η, y), ω)|2

− V (η, y, Zq,∞(t, η, y, z̃q,l(η, y), ω))− λ+ 2q − 1)dt

− rq,∞(η, y, z̃q,l(η, y), ω)

and µq,l is the Maslov index of the trajectory (Zq,∞, Z
∗
q,∞)(t, η, y, z̃q,l(η, y), ω) on the

Lagrangian manifold

{(z, ξ) ∈ T ∗Rn−2 | z = Zq,∞(t, η, y, z̃, ω), ξ = Z∗q,∞(t, η, y, z̃, ω)), z̃ ∈ Υq, t ∈ R}

and µq,l is independent on (y, η).

This result should be compared with the results obtained by Vainberg [16], Robert-
Tamura [15] for the Schrödinger equation without magnetic field in the semi-classical
setting. In their case, the only variable is z and the scattering amplitude is a function
whose principal term is described by the underlying Hamiltonian system. Here we
show that the scattering amplitude is a pseudo-differential operator in the variable
(x, y) and roughly speaking, the dominating term of its symbol is given by the
quantization (with respect to (x, y)) of the term of Vainberg, Robert-Tamura for
the potential z 7→ V (x, y, z) where (x, y) is considered as a parameter.

2. Reduction by mean of an effective Hamiltonian

The aim of this section is to introduce the effective Hamiltonian associate to the
operator H(b) and the parameter λ. As usual, this is done by considering a suitable
Grushin problem. We refer to [5] and [17] for connected problems involving similar
techniques. First we introduce a well-known unitary operator that transforms Ĥ0

into the harmonic oscillator. For f ∈ L2(Rn), let us set

U f(x, y, z) =
b3/4

2π

∫
R2
eiϕb(x,y,x′,y′)f(x′, y′, z)dx′dy′,

with ϕb(x, y, x
′, y′) = b

2
xy + b1/2(y′ − y)x′ − bxy′. Then U is unitary from L2(Rn)

onto itself and it is well-known that

U H(b) U∗ = −∆z + bNx + bV w(b−1Dy + b−1/2Dx, y − b−1/2x, z), (2.1)
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where Nx = − d2

dx2 +x2 is the harmonic oscillator and we use the notation Dx = 1
i

∂
∂x

.
Moreover the right-hand side of (2.1) is self-adjoint with domain D = D(Nx) ⊗
L2(Ry)⊗H2(Rn−2

z ), where D(Nx) is the domain of the harmonic oscillator. We refer
to [3] and [13] for more details. Now, we introduce the semi-classical parameter
h = b−1/2 > 0, which will tend to 0 as b goes to infinity. Hence, (2.1) takes the form

U H(b) U∗ = b(−h2∆z +Nx + V w(h2Dy + hDx, y − hx, z)). (2.2)

Let us introduce the eigenfunctions of the harmonic oscillator. For j ∈ N∗, we denote
by φj ∈ L2(Rx) the function such that Nxφj = (2j − 1)φj and ‖φj‖L2(R) = 1. We
define R− from L2(Rn−1

y,z )q0 into L2(Rn) by

R−(ϕ1, . . . , ϕq0)(x, y, z) =
q0∑

q=1

ϕq(y, z)φq(x),

and R+ from L2(Rn) onto L2(Rn−1
y,z )q0 by

R+φ = (〈φ, φ1〉L2(Rx), . . . , 〈φ, φq0〉L2(Rx)).

Let us denote by Πq = U∗ Π̃q ⊗ Idz U the projection onto Span(φq) ⊗ L2(Rn−1
y,z ),

Π =
∑q0

q=1 Πq and Π̂ = Id−Π. Then we have

R+R− = Id and R−R+ = Π (2.3)

Let us introduce Fq0 = {s ∈ C, Im s ≥ 0 and Re s = λ}. For s ∈ Fq0 and (v, v−) ∈
L2(Rn)×D̃q0 we can find (u, u−) ∈ D×L2(Rn−1

y,z )q0 which solves the Grushin problem{
(P̃ (h)− s)u+R−u− = v

R+u = v−.
(2.4)

This permits to obtain the following

Proposition 2.1. Assume that s ∈ Fq0 ∩ {Im s > 0}, then we have

R+(P̃ (h)− s)−1R− = E±(s)−1. (2.5)

with
E±(s) = R+(P̃ (h)− s)R− −R+P̃ (h)Π̂(P̂ (h)− s)−1Π̂P̃ (h)R−. (2.6)

Proof. See [11]. �

The following proposition precises on the structure of the effective Hamiltonian
E±(s).

Proposition 2.2. Suppose that s ∈ Fq0. Then, there exists a sequence of matrix
valued symbols (Ej(y, η, z, ξ, s))j∈N such that E0 ∈ S0(R2n−2, 〈ξ〉2,L(Rq0)), Ej ∈
S0(R2n−2, 1,L(Rq0)),∀j ≥ 1 and for all N ∈ N∗,

E±(s) =
N∑

j=0

hjEw
j (y, h2Dy, z, hDz, s) +RN(h, s),
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with ‖RN(h, s)‖L2(Rn−1
y,z ),L2(Rn−1

y,z ) = O(hN) uniformly with respect to s ∈ Fq0. More-
over, we have

E0(y, η, z, ξ, s) = diag((ξ2 + V (η, y, z) + 2q − 1− s)q=1,...,q0),

E1is off-diagonal and for all j ≥ 1 the semi-norms of Ej are bounded uniformly with
respect to s ∈ Fq0.

Proof. It is based on a Taylor expansion of 〈Ww(h2Dy +hDx, y−hx, z)φp, φq〉L2(Rx)

and the construction of a parametrix for (P̂ (h)− s)−1.We refer to [11] for details. �

3. Resolvent estimates

In this section, we prove that under the non-trapping condition on λ, λb is not an
eigenvalue of H(b) and we establish a resolvent estimate. The main ingredient is the
existence of a global escape function.

Proposition 3.1. Suppose that λ satisfies Assumption 2 and let q ∈ {1, . . . , q0}.
Let K be a compact subset of ∪(x,y)∈R2p−1

x,y([λq − ε, λq + ε]). Then, one can find a
function Gq(x, y, z, ξ) ∈ C∞

b (R2
x,y × T ∗Rn−2

z ) such that Hpx,yGq ≥ 0 and

∀(x, y) ∈ R2,∀(z, ξ) ∈ K, Hpx,yGq ≥ 1

Proof. This is a consequence of the existence of an escape function for the symbol
px,y at non-trapping energies [6]. As V depends only on z at infinity, the parameters
(x, y) no not pose any problem. �

Corollary 3.2. Suppose that λ satisfies Assumption 2, then for b large enough,
λb /∈ σpp(H(b)).

From the preceding corollary, we know that λb is not an eigenvalue of H(b). There-
fore, the scattering matrix at the energy λb is well defined and satisfies

S(λb, b)− Id = −2iπF0(λb)[∆z, χ1]R(λb+ i0)[∆z, χ2]F0(λb)
∗, (3.1)

where for all α > 1/2, R(λb + i0) = limµ→0+(H(b) − λb − iµ)−1 exists in the space
Bα defined in Theorem 1 (cf. Proposition 2.1 of [10]). Hence, it follows from (2.2)
that

R(λb+ i0) = h2 U∗(P̃ (h)− λ− i0)−1 U

where (P̃ (h)−λ−i0)−1 = limµ→0+(P̃ (h)−λ−iµ)−1 exists in the space Bα. Plugging
this expression into (3.1) and using the fact that U acts only on the variables (x, y),
we obtain

T (λb, b) = −2iπh2 U∗Fh(λ)[∆z, χ1]E±(λ)−1[∆z, χ2]Fh(λ)∗ U, (3.2)

where E±(λ) = limµ→0+ E±(λ + iµ) exists in L((L2
α)q0 , (L2

−α)q0) for α > 1/2 and
Fh(λ) : L2

α(Rn−1
y,z )q0 → L2(R2

x,y) is defined by Fh(λ) = F0(h
−2λ)R−.
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Proposition 3.3. Suppose that Assumption 1 is satisfied, then

‖E±(λ)−1‖L2
α(Rn−1

y,z )q0 ,L2
−α(Rn−1

y,z )q0 = O(h−1)

for all α > 1/2.

Sketch of proof. We apply Mourre’s method (see [12] and [7] for a semi-classical
version) and search a conjugate operator for PN0(λ) that is an operator G such that

i[PN0 ,G] ≥ Ch

when it is localized in energy. It suffices to build a conjugate operator for each
pw

q,0(y, z, h
2Dy, hDz) at the energy λq.

Let G be the escape function built in Proposition 3.1. For χ ∈ C∞
0 (R) localizing

near {λq} and all (y, ξ), we have

iχ(pw
η,y(z, hDz))[p

w
η,y(z, hDz), G

w(y, η, z, hDz)]χ(pw
η,y(z, hDz))

≥ hχ2(pη,y(z, hDz))

From the symbolic calculus (in the variable y) with operator-valued symbols, it
follows

i[pw
q,0(y, z,h

2Dy, hDz), G
w(y, h2Dy, z, hDz)]

= i[pw
η,y(z, hDz), G

w(y, η, z, hDz)](y, h
2Dy) +O(h2)

Combining the two last equations, we obtain the Mourre estimate. �

4. Diagonalization of E±(λ)

From Proposition 2.2, we know that E±(λ) is equal to a matrix-diagonal Schrödinger
operator plus terms of lower order. The following proposition says that it can be
diagonalized at all order.

Proposition 4.1. For all N0 ∈ N∗ there exists a unitary transformation UN0 on
L2(Rn−1

y,z ) such that

T (λb, b) = −2iπh−2U∗U∗
N0
Fh(λ)[h2∆z, χ1]PN0(λ)−1[h2∆z, χ2]Fh(λ)∗UN0U +O(hN0)

(4.1)

with

PN0(λ) = diag((pw
q (y, z, h2Dy, hDz, N0)− λq)q=1,...,q0)

and pq(., N0) ∈ S0(T ∗Rn−1, 〈ξ〉2). Moreover, pq(y, z, η, ξ,N0) =
N0∑

m=0

hmpq,m(y, z, η, ξ)

with pq,0 = ξ2+V (η, y, z), pq,1 = 0, pq,m ∈ S0(T ∗Rn−1) for m ≥ 1 and pq,m compactly
supported with respect to z.
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Sketch of proof. We just give the main ideas and forget technical points. We
restrict also ourselves to prove that we can eliminate the off-diagonal terms of order
h. We start from formula (3.2) and we search U2 such that

U2E±(λ)U∗
2 = P2(λ) + h2R2(h).

We look U2 for under the form

U2 = exp(huw(y, z, h2Dy, hDz))

with u = (ui,j)i,j=1,...,q0 such that ui,j ∈ S0(T ∗Rn−1) is real valued and ui,j = −uj,i

for all i, j. Hence, U2 is clearly unitary, U∗
2 = exp(−huw(y, z, h2Dy, hDz)) and we

get

U2E±(λ)U∗
2 = Ew

0 (. . .) + +h (Ew
1 (. . .) + uw(. . .)Ew

0 (. . .)− Ew
0 (. . .)uw(. . .)) +O(h2),

where (. . .) = (y, z, h2Dy, hDz). Hence, we have to find u such that

Ew
1 (. . .) = Ew

0 (. . .)uw(. . .)− uw(. . .)Ew
0 (. . .) +O(h2).

A simple matrix calculus combined with symbolic calculus shows that we must solve

E0,i,iui,j − ui,jE0,j,j = E1,i,j

for all i < j = 1, . . . , q0, where (Ek,i,j)i,j denote the coefficients of the matrix Ek.
We take

ui,j(y, z, η, ξ) =
1

2(i− j)
E1,i,j(y, z, η, ξ)

for i 6= j and ui,i = 0 for i = 1, . . . , q0. Then u solves our problem. We refer to [11]
for a rigorous proof. �

5. Spatial and finite-time localization

The starting point of this section is the following formula

PN0(λ)−1 = ih−1
∫ T

0
e−ih−1tPN0

(λ)dt+ PN0(λ)−1e−ih−1TPN0
(λ), (5.1)

where we would like to neglect the second term of the right hand side. For this
purpose, we need a sort of Egorov Lemma for our problem, but we can not apply
standard results as our operators are h-pseudo in the variable z and h2-pseudo in
the variable y. Nevertheless, working with operator valued symbol we can establish
the results we need. For t > 0, let φt : T ∗Rn−1 → T ∗Rn−1 be defined by

φt(y, z, η, ξ) = exp(tHpη,y)(z, ξ).

Lemma 5.1. Let ω1, ω2 ∈ S0(T ∗Rn−1) such that suppω2∩φt(supp(ω1)) = ∅ and ω1

is compactly supported, then

‖ωw
2 (y, z, h2Dy, hDz)e

−ih−1tPN0
(λ)ωw

1 (y, z, h2Dy, hDz)‖−α,α = O(h∞),

for all α > 1/2.

VIII–11



Proof. As e−ih−1tPN0
(λ) = diag(e−ih−1t(Pq(h)−λ), q = 1, . . . , q0), it suffices to prove

that
ωw

2 (y, z, h2Dy, hDz)e
−ih−1tPq(h)ωw

1 (y, z, h2Dy, hDz) = O(h∞).

For this purpose we build a parametrix for e−ih−1tPq(h)ωw
1 (y, z, h2Dy, hDz). As in [4],

it suffices to find F (t) = fw(t, y, z, h2Dy, hDz) such that

ih∂tF (t) = [Pq(h), F (t)] and f|t=0 = ω1. (5.2)

We look for f under the form f =
∑

j≥0 h
jfj. From Proposition 4.1, we have Pq(h) =

pw
q (y, z, h2Dy, hDz) with pq =

∑
j≥0 h

jpq,j(y, z, η, ξ). Using the h-pseudo-differential
symbolic calculus with respect to z and h2-pseudo-differential symbolic calculus with
respect to y, equation (5.2) combined with the asymptotic expansions of pq and f
yields

i∂tfn =
∑

j+m+k+2l=n+1

(pq,k]j�lfm − fm]j�lpq,k), ∀n ∈ N, (5.3)

where

p]j�lf =
∑

α+β=j

∑
γ+δ=l

(−1)α+γ

(2i)j+lα!β!γ!δ!
(∂γ

y∂
δ
η∂

α
z ∂

β
ξ p)(∂

γ
η∂

δ
y∂

α
ξ ∂

β
z f).

We solve these transport equations by induction and we show that supp fn ⊂
φ−t(suppω1). For instance, in the case n = 0, we have to solve

i∂tf0 = pq,0]1�0f0 − f0]1�0pq,0 = iHpη,yf0.

Combined with the initial condition f0|t=0 = ω1, this yields f0 = ω1 ◦ φt. �

From the preceding lemma, we can deduce a convenient approximated formula for
the scattering amplitude. First we introduce the analogous operators to R± on the
sphere. Let us denote Rs

− : L2(Ry×Sn−3
ω )q0 → L2(R2

x,y×Sn−3
ω ) the operator defined

by Rs
−(ϕ1, . . . , ϕq0) =

∑q0
q=1 ϕqΦq and let Rs

+ = (Rs
−)∗.

As in [8], [15] we can prove micro-local resolvent estimates for our problem (see
[11] Lemma 4.1 for a precise statement). Working as in [15], it follows from these
estimates, Lemma 5.1 and formulas (4.1) and (5.1) that for T1, T0 > 0 large enough
the scattering amplitude is given by

T (ω, ω′, λb, b) = c0(h) U∗
∫ T0

T1

∫
Rn−2

Rs
+G(z, t, ω, ω′, λ, h)Rs

−dzdtU +O(hN0−2),

with G(z, t, ω, ω′, λ, h) = (gpq(z, t, ω, ω
′, λ, h))p,q=1,...,q0 and

gpq(z, t, ω, ω
′, λ, h) =

q0∑
k=1

ep−(z, λ, ω′, h)aw
pk(. . .)

e−ih−1t(pw
k (...)−λk)bwkq(. . .)eq+(z, λ, ω, h).

(5.4)

Here, we have used the following notations

eq,±(z, λ, ω, h) = (λq)
n−4

4 e±ih−1
√

λq〈z,ω〉, c0(h) = (1/2)h−(n−1)(2π)−(n−3) (5.5)
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and (ap,q)p,q, (bp,q)p,q denote some symbols in the class S0. Moreover, as z 7→
ep±(z, λ, ω, h) is micro-localized near ξ2 = λq, Lemma 5.1 shows that for p 6= q,
‖gpq(ω, ω

′, λ, h)‖L2,L2 = O(h∞) uniformly with respect to t ∈ [0, T ] and z ∈ Rn−2,
and it follows that

T (ω, ω′, λb, b) = c0(h)
q0∑

q=1

U∗ fq(ω, ω
′, λ, h)⊗ Πq U +O(hN0−2), (5.6)

with fq(ω, ω
′, λ, h) =

∫ T0
0

∫
Rn−2 gqq(z, t, ω, ω

′, λ, h)dzdt.

6. Approximation of the evolution

Let us denote Pk(h) = pw
k (y, z, h2Dy, hDz), which is self-adjoint on L2(Rn−1

y,z ) with
domain L2(Ry, H

2(Rn−2
z )). Let ϕ ∈ C∞

0 (Ry) and ψ(t) ∈ L2(Rn−1
y,z ) be defined by

ψ(t) = e−ih−1tPk(h)(bwkq(y, z, h
2Dy, hDz)eq+(z, λ, ω, h)ϕ(y)).

We look for ψ(t) under the form τw
q,k,l(t, y, z, h

2Dy, h)ϕ with τq,k,l(t, .) ∈ S1/2(Rn
y,η, h

2).
Forgetting the index q, k, l, it comes{

ih∂tτ
w(t, y, z, h2Dy, h)− Pk(h)τ

w(t, y, z, h2Dy, h) = 0
τ(0, y, z, η, h) = bwkq(y, z, η, hDz)eq+(z, λ, ω, h).

(6.1)

From the symbolic calculus in S0(R2
y,η,L(L2(Rz)), h

2)×S1/2(R2
y,η,L(R, L2(Rz)), h

2)
it follows that

pw
k (y, z, h2Dy, hDz)τ

w(t, y, z, h2Dy, h) = ηw
k (t, y, z, h2Dy, h)

with ηk(t, .) ∈ S1(Rn
y,z,η) and

ηk(t, y, z, η, h) =
∑

α,β∈N

h2(α+β)(−1)α

(2i)α+βα!β!
∂α

y ∂
β
η pk(y, z, η, hDz, h)∂

α
η ∂

β
y τ(t, y, z, η, h).

Formally, we obtain ηk(t, y, z, η, h) = L(y, z, η, hDy, hDz, hDη, h)τ(t, y, z, η, h) with

L(y, z, η, y∗, z∗, η∗) =
∑

α,β,m∈N

hα+β+m(−1)α

2α+βα!β!
∂α

y ∂
β
η pk,m(y, z, η, z∗)(η∗)α(y∗)β.

On the other hand, we have also an expansion (in powers of h) for the initial data
bwkq(y, z, η, hDz)eq+(z, λ, ω, h). Thus (6.1) gives

(ih∂t − Lw(y, z, η, hDy, hDz, hDη, h))τ(t, y, z, η, h) = 0

τ(0, y, z, η, h) =
∑
γ∈N

hγcq,k,l,γ(y, z, η)e
ih−1

√
λq〈z,ω〉 (6.2)

for some explicit symbols cq,k,l,γ. Hence, our problem is reduced to apply Maslov
theory (see [9]) to the preceding system. As in [15], we can suppose that supp cq,k,l,γ ⊂
Σq,l,− with

Σq,l,− = {(y, η, Zq,∞(s, η, y, z̃, ω)), (y, η, z̃) ∈ Zq,l, −S1 < s < −S0}
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and
Zq,l = {(y, η, z) ∈ R2 ×Υω | |z − z̃q,l(η, y)| < ε}

for some large S1, S0 > 0 and small ε > 0. For N ∈ N to be chosen large enough, let
LN ∈ S0(T ∗Rn, 〈y∗〉N〈η∗〉N) be defined by

LN(y, z, η, y∗, z∗, η∗) =
∑

|α+β+m|≤N

hα+β+m(−1)α

2α+βα!β!
∂α

y ∂
β
η pk,m(y, z, η, z∗)(η∗)α(y∗)β

and LN(h) = Lw
N(y, z, η, hDy, hDz, hDη, h). Its principal symbol l0 is given by

l0(y, z, η, y
∗, z∗, η∗) = |z∗|2 + V (η, y, z)

so that the corresponding Hamiltonian system is
Ż = 2Z∗, Ż∗ = −∇zV (Θ, Y, Z)

Ẏ = 0, Ẏ ∗ = −∇yV (Θ, Y, Z)

Θ̇ = 0, Θ̇∗ = −∇xV (Θ, Y, Z)

(6.3)

Remark that (Y, Z,Θ, Z∗) is independent of the initial value of Y ∗ and Θ∗. We de-
note by (Z,Z∗)(t, η̃, ỹ, z̃, z̃∗) the solution of the two first equations of (6.3) such that
(Z,Z∗, Y,Θ)|t=0 = (z̃, z̃∗, ỹ, η̃). Remark that (Z,Z∗)(t, η̃, ỹ, z̃, z̃∗) = exp(tHpη̃,ỹ

)(z̃, z̃∗).

Lemma 6.1. For (ỹ, z̃, η̃) ∈ Σq,l,− and T1 < t < T0, the point (Y, Z,Θ)(t, ỹ, z̃, η̃,
√
λqω)

is non-focal in the Maslov sense;

Dq(t, ỹ, z̃, η̃) := det
∂(Y, Z,Θ)

∂(ỹ, z̃, η̃)
(ỹ, z̃, η̃,

√
λqω) 6= 0.

Proof. This is a direct consequence of Assumption 3. �

Proposition 6.2. Let cl ∈ C∞(Rn
y,z,η) be supported in Σq,l,− for some l ∈ {1, . . . , lq}.

Suppose additionally that suppz cl is compact and (y, η) 7→ cl(y, z, η) is constant at
infinity. Then there exists some functions τq,k,l,j ∈ C∞(Rt×Rn

y,z,η), j ∈ N such that
suppz τq,k,l,j is compact, (y, η) 7→ τq,k,l,j(y, z, η) is constant at infinity and

(e−ih−1tLN (h)cle
ih−1

√
λq〈z,ω〉)(t, y, z, η) =

eih−1Sq,l(t,y,z̃,η)−iµq,lπ/2|Dq(t, y, z̃, η)|−1/2
N∑

j=1

hjτq,k,l,j(t, y, z̃, η)

+ hN+1rN(t, y, z, η, h)

(6.4)

with rN ∈ S1/2(Rn, h2), z = Z(t, η, y, z̃,
√
λqω), Sq,l is the action along the trajectory

joining z̃ and z

Sq,l(t, y, z̃, η) =
∫ t

0
(|Z∗(s, η, y, z̃,

√
λqω)|2 − V (η, y, Z(s, η, y, z̃,

√
λqω))ds

+
√
λq〈z̃, ω〉

(6.5)

and µq,l is the path index of this trajectory. Moreover, τq,k,l,0(t, y, z̃, η) = cl(y, z̃, η)
and µq,l is independent on (y, η).

VIII–14



Proof. We apply Maslov strategy (see [9]) to the preceding system. Using again
Lemma 6.1, it is clear that (y, z) = (y, Z(t, η, y, z̃,

√
λqω), η) is non-focal in the

Maslov sense for T1 < t < T0 and (y, z̃, η) ∈ Σq,l,− so that we can build an approxi-
mate solution τap under the form

τap(t, y, z, η, h) = eih−1Sq,l(t,y,z̃,η)−iµq,lπ/2|Dl(t, y, z̃, η)|−1/2
N∑

j=0

hjτq,k,l,j(t, y, z̃, η)

where Sq,l defined by (6.5), µq,l is the path index of the trajectory joining z̃ and z,
τq,k,l,j are smooth with respect to (t, y, z, η) and independent of large (y, η). More-
over, denoting l1(y, z, η, y∗, z∗, η∗) the sub-principal symbol of LN(h), it follows from
Theorem 10.5 in [9] that

τq,k,l,0(t, y, z, η) = exp
(∫ t

0
M(s)ds

)
χ(y, η)cl(y, z̃, η),

with

M(s) =
1

2

(
∂2l0
∂z∂z∗

+
∂2l0
∂y∂y∗

+
∂2l0
∂η∂η∗

− 2l1

)
((Y, Z,Θ, Y ∗, Z∗,Θ∗)(s, y, z̃, η,

√
λqω))

Using the fact that the sub-principal symbol pq,1 of Pq(h) is null, an easy calculation
shows that l1 vanishes along the Hamiltonian flow so that M(s) is identically zero,
and then

τq,k,l,0(t, y, z, η) = cl(y, z̃, η).

Thanks to Assumption 3 and using Definition 7.4 in [9] of the path index, it is clear
that µq,l is locally constant with respect to (y, η).
Moreover, τq,k,l,j being compactly supported with respect to (y, η), it follows from
Theorem 3.15 in [9] that (ih∂t − LN(h))τap = hN+1rN+1(t, y, z, η) with rN+1 in
S1/2(Rt × Rn

y,z,η, h
2) and the proof is complete. �

Let us fix N ∈ N to be chosen large enough at the end of the paper. From the
preceding proposition it follows that one can find some functions τq,k,l,j ∈ C∞(Rt ×
Rn

y,z,η), l = 1, . . . , lq, j = 1, . . . , N such that

τq,k,l(t, y, z, η, h) = eih−1Sq,l(t,y,z̃,η)−iµq,lπ/2|Dl(t, y, z̃, η)|−1/2
N∑

j=1

hjτq,k,l,j(t, y, z̃, η)

with z = Z(t, η, y, z̃,
√
λqω), satisfies

(ih∂t − Pk(h))τq,k,l(t, y, z, h
2Dy, h) = hN+1rw

N(t, y, z, h2Dy, h)

with rN(t, .) ∈ S1/2(Rn
y,z,η, h

2) and τq,k,l,0(t, y, z̃, η) = cq,k,l,0(y, z̃, η). Remark that for
large (y, η), Sq,l and τq,k,l,j depend only on z. Hence, the symbols τq,k,l belongs to
S1/2(Rn

y,z,η, h
2). Using this approximate solution, we obtain

fq(ω, ω
′, λ, h) =

N∑
j=0

hj
q0∑

k=1

lq∑
l=1

∫ T0

T1

eih−1tλk

∫
Rn−2

z

Gw
q,k,l,j(t, z, λ, y, h

2Dy, h)dtdz +O(hN)

(6.6)
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with
Gq,k,l,j(t, z, y, η, h) =eq−(z, λ, ω′, h)aw

qk(y, z, η, hDz)σ
w
q,l,+(y, η, z)

eih−1Sq,l(t,y,z̃,η)−iµq,lπ/2|Dl(t, y, z̃, η)|−1/2τq,k,l,j(t, y, z̃, η).

and z = Z(t, η, y, z̃,
√
λqω). Using the fact that V is compactly supported with

respect to z, we can intertwine the integrals in (6.6) so that

fq(ω, ω
′, λ, h) = F̃w

q (ω, ω′, y, h2Dy, λ, h) +O(hN)

with

F̃q(ω, ω
′, y,η, λ, h) =

N∑
j=0

hj
q0∑

k=1

lq∑
l=1

∫ T0

T1

eih−1tλk

∫
Rn−2

z

Gq,k,l,j(t, z, y, η, h)dzdt. (6.7)

The end of the proof consists to apply the stationary phase method to obtain the
main term of the right-hand side of (6.7) and to conjugate this quantity by the
unitary transformations we performed. This can be found in [11].
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