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Journées Équations aux dérivées partielles
Forges-les-Eaux, 6 juin–10 juin 2005
GDR 2434 (CNRS)

An algorithm for quantum propagation through
electron level crossings.

Clotilde Fermanian Kammerer Caroline Lasser

1. Introduction : an example, a model for pyrazine.

The dynamics of the molecule pyrazine C4H4N2 is described in [13] by a two-level
Schrödinger equation

i∂tψ(q, t) = Hpyr ψ(q, t), ψ(·, 0) = ψ0 ∈ L2(R3,C2),

Hpyr =
3

Σ
j=1

ωj

2

(
−∂j

2 + qj
2
)

Id +

 E1+
2

Σ
j=1

κ
(1)
j qj λq3

λq3 E2+
2

Σ
j=1

κ
(2)
j qj

 .

ω1 = 0.126 ω2 = 0.074 ω3 = 0.118
E1 = 3.94 E2 = 4.84 λ = 0.2623

κ
(1)
1 = 0.037 κ

(1)
2 = −0.105 κ

(2)
1 = −0.254 κ

(2)
2 = 0.149

The wave function ψ(q, t) itself does not have any direct physical interpretation,
while the position density

n(q, t) = |ψ(q, t)|2 = tr
∫
R3
W ε (ψ(t)) (q, p)dp

is the probability of finding the molecule in the configuration q at time t. We are
interested in asymptotic descriptions and algorithms for the time evolution of qua-
dratic quantitites of the wave function like the position density n(q, t). We consider
a larger class of equations which contains the special case of the pyrazine model.

2. More general models

In the framework of time-dependent Born-Oppenheimer approximation, G. Hage-
dorn rigorously derived and classified N -level Schrödinger systems for molecular
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propagation through electron energy level crossings [9]. The wave function ψε(q, t)
satisfies a Schrödinger equation{

iε∂tψ
ε(q, t) =

(
− ε2

2
∆q + V (q)

)
ψε(q, t),

ψε(·, 0) = ψε
0 ∈ L2(Rd,CN).

(1)

Here ε is a small positive parameter,

0 < ε :=

√
electronic mass

average mass of the nuclei
� 1,

and N ∈ {2, 4}. Under certain genericity conditions, G. Hagedorn derives matrix
potentials V (q), which are either diagonal or have eigenvalues of non-constant mul-
tiplicity. In the first case, the study reduces to N decoupled scalar Schrödinger
equations, which is classic. We focus on the second type of potentials with eigen-
value crossings. They are of the form

V (q) = v(q)Id + V` (φ(q)) , ` ∈ {2, 3, 5},

with v ∈ C∞(Rd,R) and φ ∈ C∞(Rd,R`) satisfying

dφ of maximal rank on {φ = 0}.

The matrix V`(φ(q)) has two eigenvalues of non-constant multiplicity and is one of
the four different forms:

• Codimension two crossing: V2(φ) =

(
φ1 φ2

φ2 −φ1

)
,

• Codimension three crossing: V3(φ) =

(
φ1 φ2 + iφ3

φ2 − iφ3 −φ1

)
,

or V3′(φ) =


(

φ1 φ2 + iφ3

φ2 − iφ3 −φ1

)
0

0

(
φ1 φ2 − iφ3

φ2 + iφ3 −φ1

)
 ,

• Codimension five crossing:

V5(φ) =


φ0 1

(
φ1 + iφ2 φ3 + iφ4

−φ3 + iφ4 φ1 − iφ2

)
(
φ1 − iφ2 −φ3 − iφ4

φ3 − iφ4 φ1 + iφ2

)
−φ0 1

 .

One observes that the Hamiltonian of the pyrazine model can be rewritten as

Hε
pyr = − ε2

2
∆q + v(q)Id + V2 (φ(q))

with ε = 0.074, while v(q) and φ(q) are a quadratic and a linear function with
coefficients of order one. Hence, the model falls into the class of codimension 2
crossings.
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The analysis of scalar Schrödinger equation shows, that it is impossible to study
directly the time-evolution of the position density nε(q, t) = |ψε(q, t)|2. Indeed, the
oscillations of ψε(q, t) have to be taken into account, and one has to work in the
space of positions and momenta (q, p): the phase space Rd

q × Rd
p. Therefore, one

studies the Wigner transform of ψε(q, t) (see [16])

W ε(ψε(t))(q, p) = (2π)−d
∫
Rd
ψε
(
q − ε

2
v, t
)
⊗ ψ

ε
(
q +

ε

2
v, t
)

ei v·p dv.

This quantity plays the role of a generalized probability density in phase space. One
recovers the position density nε(q, t) by

nε(q, t) = tr
∫
Rd
W ε (ψε(t)) (q, p) dp.

3. Description of the Wigner transform

We first introduce some notation. We denote by λ± the eigenvalues of the matrix
V (q)

λ±(q) = v(q)± |φ(q)|

and by Π±(q) the associated eigenprojectors. Any point (q, p) ∈ R2d in phase space
with φ(q) = 0 is called a crossing point. At such points, λ+(q) = λ−(q): the eigenval-
ues λ± cross, and the eigenprojectors present a conical singularity. Then, we consider
the classical flow

Φt
± : R2d → R2d , Φt

±(q0, p0) =
(
q±(t), p±(t)

)
associated to the Hamiltonian curves of λ±(q) + |p|2

2
.

Outside the crossing, the dynamics of the Wigner transform shows two different
features. The off-diagonal blocks of W ε(ψε(t)) are highly-oscillatory both in phase
space and time and have a time average of order ε:∫ T

0

∫
R2d

W ε(ψε(t))(q, p) a(q, p) dq dp = O(ε)

for all T > 0 and observables a ∈ C∞0 (R2d,CN,N) such that

a = Π+aΠ− + Π−aΠ+, supp(a) ⊂ R2d \ {φ = 0}.

The diagonal blocks are well approximated in terms of classical transport:∫
R2d

(
W ε(ψε(t))−W ε(ψε

0) ◦ Φ−t
±

)
(q, p) a(q, p) dq dp = O(ε) (2)

for all times t ∈ [0, T ] such that the classical trajectories do not pass the crossing
set {φ = 0} and all observables a ∈ C∞0 (R2d,CN,N) such that

a = a±Π±, a± ∈ C∞0 (R2d \ {φ = 0},C).
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Introducing the Born-Oppenheimer function

W ε
BO(t) := Π+W ε (ψε

0) Π+ ◦ Φ−t
+ + Π−W ε (ψε

0) Π− ◦ Φ−t
− ,

one may rewrite (2) as∫
R2d

(W ε(ψε(t))−W ε
BO(t))(q, p) a(q, p) dq dp = O(ε)

for all t ∈ [0, T ] such that the trajectories do not pass the crossing and a ∈
C∞0 (R2d,CN,N) such that

a = a+Π+ + a−Π−, a± ∈ C∞0 (R2d \ {φ = 0},C).

Such a description for the dynamics outside the crossing is well-established (see [8]
or [14], for example).

The problems arise when classical trajectories reach a crossing point. Then, the
approximation of the Wigner transform by W ε

BO is no longer valid and there are non-
adiabatic transitions between the levels. The energy propagated until the crossing on
one level may pass (partially or utterly) on the other level. This phenomenon is well-
known since the works of Landau and Zener in the 30’s ([10] and [17]) and has been
precisely studied in the case of Gaussian wave packet propagation by G. Hagedorn
[9]. For initial data, which are less specific than Gaussian wave packets, the evolution
of weak limits of the Wigner transform (which are called Wigner measures) has been
studied in [4] and [5] for general 2×2 systems and in [3] for all of Hagedorn’s models.
The algorithm we present here makes extensive use of ideas and methods introduced
in these articles.

In addition to

dφ of maximal rank on {φ = 0}, (3)

we suppose

dφ(q)p 6= 0 on {φ = 0} (4)

in the zone we study. These assumptions guarantee that the crossing points are
generic in the sense of [5] (see also [1], [2] and [3]). The latter assumption (4) espe-
cially implies existence of a unique classical trajectory passing through the crossing
point for each level. Then, the transition depends on how the wave function ψε(q, t)
concentrates on these ingoing trajectories with respect to the scale

√
ε: our algo-

rithm relies on the understanding of this mechanism as stated in [3]. We begin by
describing previous results.

4. Previous results

Theoretical chemists have designed innumerous algorithms for propagation through
electron level crossings. J. Tully’s surface hopping algorithm of the fewest switches
[15] seems to be among the most popular approaches. The first algorithm of this type
with a rigorous mathematical derivation has been proposed in [11] for a codimension
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two crossing with φ(q) = q, q ∈ R2. This model has very specific features (see [6]).
In particular, all the classical trajectories are included in the set

I = {q ∧ p = 0}.

The proof given in [11] relies on the analysis of Wigner measures of ψε(q, t). The
underlying idea is, that if one is able to calculate the Wigner measure at time t,
one has an approximate value of the Wigner transform according to the following
diagram

ψε
0, W

ε(ψε
0)

Schrödinger, Heisenberg eq.−→ ψε(t), W ε(ψε(t))

↓ε→0 ↓ε→0

µ0
?−→ µ(t)

However, the sole knowledge of µ0 is not enough to calculate Wigner measures µ(t)
at later times t. As said before, one needs to know how the data concentrates at the
scale

√
ε on all the classical trajectories which enter the crossing set. In the special

setting φ(q) = q, q ∈ R2, knowledge about
√
ε-concentration on I is enough, since I

contains all these trajectories. One uses the two-scale Wigner measure ν0 associated
with the concentration of ψε

0 on I for the scale
√
ε.

Two-scale Wigner measures are weak limit points of two-scale Wigner transforms

W ε
(2) (ψε(t)) (q, p, η) = W ε (ψε(t)) (q, p)⊗ δ

(
η − q ∧ p√

ε

)
,

which act on smooth functions a = a(q, p, η), which are compactly supported in the
variables (q, p) uniformly with respect to η and satisfy symbol type estimates in
the variable η. They have been first introduced by L. Miller in [12]. Observe that
one can recover the Wigner transform by projecting the two-scale Wigner transform
on (q, p)-space. As for Wigner measures, the diagonal blocks of two-scale Wigner
measures ν(t) propagate along classical trajectories:

Π±ν(t)Π± = Π±ν0Π
± ◦ Φ−t

±

for times t such that the trajectories do not pass the crossing. Setting ν± := Π±νΠ±,
the measures ν± have traces on both sides of the crossing set and the outgoing traces
ν±out are related with the ingoing ones ν±in through a Landau-Zener formula [4]:(

ν+
out

ν−out

)
=

(
1− T (p, η) T (p, η)
T (p, η) 1− T (p, η)

)(
ν+

in

ν−in

)
; with T (p, η) = exp

(
−π |η|

2

|p|3

)
.

The idea is now to propagate the diagonal parts of the Wigner transform along
classical trajectories and to apply the ε-dependent transition coefficient

T ε(q, p) = T

(
p,
q ∧ p√
ε

)
= exp

(
−π
ε

|q ∧ p|2

|p|3

)
,

as soon as the trajectories reach their minimal distance from the crossing set, which
is easy to check since q · p = 0 at such a point. This ε-dependent propagation of the
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initial Wigner transform is correct in the limit ε→ 0, assuming that the initial data
has only one two-scale Wigner measure [11].

Two questions arise: How does such an asymptotic description carry over to more
general crossings ? What is the convergence rate with respect to ε ?

The extension of the algorithm to more general crossings is not straightforward.
Indeed, for general geometries the classical trajectories touching the crossing set
are not contained in a submanifold of phase space Rd

q ×Rd
p. Previous normal forms

results ([1], [2], [5]) only yield local existence of such a submanifold in the whole
space-time phase space Rd+1

(q,t)×Rd+1
(p,τ), and there are no explicit equations. To obtain

a convergence rate, another proof has to be deviced without actually passing to the
limit ε→ 0.

Here, we now propose a generalization of the algorithm which allows to overcome
these two difficulties. The proof of the convergence rate is sketched below and is
presented in detail in [7].

5. The asymptotic description

We follow the formalism of [11]. The general idea is the same: propagation along
classical trajectories and transitions near the crossing set. But we introduce two
modifications:

- a more general criterium for applying the transitions. We check, whether
we are close enough to the crossing set, that is at a distance R

√
ε where

R > 0 is a fixed positive number. Then, inside the set {|φ(q)| ≤ R
√
ε} the

transitions occur as before, when trajectories reach their minimal distance
from the crossing set {φ = 0}, i.e. when

dφ(q)p · φ(q) = 0.

- a transition coefficient T ε(q, p) = T (f(q, p)/
√
ε) with

f(q, p) = |dφ(q)p|−1/2 π`(q, p)φ(q),

where π`(q, p) is the orthogonal projection from R` on the hyperplane normal
to the non-zero vector dφ(q)p (for the Euclidian structure of R`). For the
case of codimension two crossings, π2(q, p)φ(q) = dφ(q)p∧φ(q)/|dφ(q)p|. The
hypersurface {f(q, p) = 0} is tangent to the set of all the incoming and
outgoing trajectories at the crossing set up to order 1.

It is our aim now to generalize the Born-Oppenheimer function W ε
BO(t) by encor-

porating the ε-dependent non-adiabatic transition rates T ε.

First, one defines a Markov process. One considers the random trajectories

T (q,p,j)
ε,R : [0,+∞) → R2d × {−1,+1}

III–6



such that T (q,p,j)
ε,R =

(
Φt

j(q, p), j
)

as long as∣∣∣φ(Φt
j(q, p))

∣∣∣ > R
√
ε or dφ

(
qj(t)

)
pj(t) · φ

(
qj(t)

)
6= 0.

A jump from j to −j occurs with probability T ε(qj(t), pj(t)),

T ε(q, p) = exp

−π
ε

∣∣∣π`(q, p)φ(q)
∣∣∣2∣∣∣dφ(q)p

∣∣∣
 ,

whenever Φt
j(q, p) hits the jump manifold

S =
{
dφ(q)p · φ(q) = 0, |φ(q)| ≤ R

√
ε
}
.

Then, one defines the associated backwards semi-group Lt
ε,R by its action on a

class of continuous scalar-valued functions a = a(q, p, j) satisfying suitable boundary
conditions at the jump manifold S,

(Lt
ε,R)a(q, p, j) := E(q,p,j)a

(
T (q,p,j)

ε,R (t)
)
.

This definition naturally extends to matrix-valued functions of the form a = a+Π++
a−Π−, a± ∈ C∞0 (R2d \ S,C) and then by duality also to Wigner transforms,

Lt
ε,RW

ε(ψ) : a 7→ tr
∫
R2d

(
W ε(ψ)(q, p)(Lt

ε,Ra)(q, p)
)

dq dp.

In analogy to the Born-Oppenheimer function W ε
BO(t), we define the Landau-Zener

function

W ε,R
LZ (t) := Lt

ε,RW
ε(ψε

0)

and have the following theorem.

Theorem 1. Let ψε(t) be the solution of the Schrödinger equation (1).
Suppose that assumptions (3) and (4) are satisfied, that dφ(q)∇v(q) · φ(q) ≤ 0, and
that the map q 7→ |φ(q)|2 is convex.
Suppose moreover that (ψε

0)ε>0 is uniformly bounded in L2(Rd,CN) such that

(a)
∣∣∣∣∣∣Π−ψε

0

∣∣∣∣∣∣
L2(Rd,CN )

= ηε → 0 as ε→ 0,

(b) ∃δ > 0, µ0 ({|φ(q)| < δ}) = 0.

Then, for all T > 0

sup
t∈[0,T ]

∫
R2d

(
W ε (ψε(t))−W ε,R

LZ (t)
)
(q, p)a(q, p)dq dp

= O(ηε) +O
(

1

R

)
+O

(
R3
√
ε
)

+O
(√

ε |ln ε|
)
.

for all a = a+Π+ + a−Π− with a± ∈ C∞0 (R2d \ S,C).
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The assumptions made on the potential V (q) = v(q)Id + V`(φ(q)) in particular
imply that the minus trajectories issued from crossing points never meet the crossing
again. Hence, they cannot interfer with trajectories on the plus level. The non-
degenericity assumption (3) is easily checked a priori globally, while assumption (4)
can be numerically verified at each transition as a test of validity of the algorithm.

The assumption (b) on the initial data ψε
0 ensures that we do not deal with the

crossing set at t = 0 but only after a finite time. Then, assumption (a) together with
the properties of the minus trajectories yields that the Wigner transform propagated
until a crossing point on the minus level is of lower order. This could be weakened
by simply assuming that the incoming two-scale Wigner measures are singular at
any crossing point (as assumed in [5] for example), but such a condition does not
fit with our aim of giving an ε-dependent dynamical description.

6. Scheme of the proof

The proof consists in two steps: proving the propagation in the zone {|φ(q)| > R
√
ε},

then studying the transitions in the zone {|φ(q)| ≤ R
√
ε}.

6.1. Propagation outside the transition zone

Here, the Landau Zener function reduces to the Born-Oppenheimer one, and the
usual strategy applies. One works separately with each level and, for studying the
level +, one defines

I(t) := tr
∫
R2d

W ε(ψε(t)(q, p)) Π+(q) a+(q, p)dqdp

for a+ with supp(a+) ⊂ {|φ(q)| > R
√
ε}. One writes I(t) in terms of pseudo-

differential operators

I(t) =
(
(a+Π+)W (q,−iε∇q)ψ

ε(t) , ψε(t)
)

L2
,

where we denote by cW (q,−iε∇q) the semi-classical pseudo-differential operator of
a symbol c = c(q, p) with Weyl quantification. Then, we observe that

d I

dt
(t) =

1

iε

([
(a+Π+)W (q,−iε∇q) , − ε2

2
∆q + V (q)

]
ψε(t) , ψε(t)

)
L2
.

Hence, one analyses the commutator

K =
1

iε

[
(a+Π+)W (q,−iε∇q) , − ε2

2
∆q + V (q)

]
.

In particular, even if Π+ is smooth in the zone {|φ(q)| > R
√
ε}, one has to consider

its behavior when |φ(q)| becomes small. More precisely, using that for all multi-
indices α there are constants C,C ′ > 0 such that

∂α
q Π+(q) ≤ C

|φ(q)||α|
≤ C ′

(R
√
ε)|α|

,

III–8



one obtains

d

dt
I(t) =

1

iε

(({
a+ , |p|2

2
+ λ+

}
Π+

)W
(q,−iε∇q)ψ

ε(t) , ψε(t)
)

L2
+O(

√
ε)+O

(
1

R

)
.

Hence the contribution to the error term is of order

O(
√
ε) +O

(
1

R

)
.

6.2. Transitions in the crossing zone

The first step consists in a microlocalization in space-time variables: we work near
some time t0 in a small interval such that the random trajectories involved have
only one jump. Moreover, we work near the characteristic set

Σ =
{(
τ + |p|2

2
+ v(q)

)2
= |φ(q)|2

}
.

In this zone, we use Colin de Verdière’s normal forms. Thanks to a change of
symplectic coordinates (a change of variables in the phase space Rd+1

(q,t)×Rd+1
(p,τ) com-

patible with the geometry) and a corresponding change of the wave function given
by a Fourier integral operator, one reduces to a simpler system, for which the tran-
sition rates can be calculated explicity. However, the theorems as stated in [1] and
[2] were not enough for our purpose: we had to perform a generalization to codi-
mension 5 crossings and compute some quantities precisely in order to come back
to our initial system of coordinates.

We give below the generalized version of the normal form theorem. We consider
classical trajectories in space-time variables(

q±(t), t, p±(t), τ = −v(q±(t))− |p±(t)|2
2

± |φ(q±(t))|
)
.

We denote by J±,in (resp. J±,out) the set of all the trajectories for the level ± which
enter the crossing (resp. come out of the crossing). Then one can prove (see [5] and
[3]), that

J = J+,in ∪ J−,out and J ′ = J−,in ∪ J+,out

are smooth submanifolds of the space-time phase space.

Theorem 2. (Y. Colin de Verdière, 2003 – Extended version).
Consider ρ0 = (q0, t0, p0, τ0 = −v(q0)− |p0|2

2
) such that φ(q0) = 0 and that (3) and (4)

hold near ρ0. Then, there exists a local canonical transform κ from a neighborhood
of ρ0 into some neighborhood Ω of 0,

κ : (q, t, p, τ) 7→ (s, z, σ, ζ), κ(ρ0) = 0.

There exists a Fourier integral operator K associated with κ and a matrix-valued
symbol Aε = A0 + εA1 + ε2A2 + ... such that

vε = Kopε(Aε)ψ
ε
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satisfies microlocally in Ω

ε

i
∂sv

ε = V`

(
s, z̃ + γW

ε (z,−iε∇z)
)
vε +O(ε∞) (5)

with z = (z̃, z′), where z̃ ∈ R`−1 are the coordinates of |dφ(q)p|−1/2π`(q, p)φ(q) in
an orthonormal basis of the hyperplane normal to dφ(q)p ∈ R` up to O(|φ(q)|2).

The symbol γε with γε(z, ζ) ∈ R`−1 satisifies (γε)|z̃=0 = 0.

Moreover,
J ∪ J ′ = Σ ∩ {z̃ = 0} = {σ2 = s2, z̃ = 0},

J±,in = {σ ∓ s = 0, z̃ = 0, s ≤ 0}, J±,out = {σ ± s = 0, z̃ = 0, s ≥ 0}.

The end of the proof relies on a scattering result for the model problem (5),
which is proved in [5] (Proposition 7). This result describes the solutions of the
model problem (5) for s > 0 (after the crossing) in terms of their form for s < 0
(before the crossing). The precise information contained in Theorem 2 allows us
to come back to the initial coordinates and to prove the convergence rate of the
algorithm.

At this stage of the proof we crucially use, that the assumptions made on v(q) and
φ(q) ensure, that the minus trajectories arising from a crossing point never come
back to the crossing set. Therefore, when some energy is carried out of the crossing,
the incoming energy for the level minus only comes from the propagation of the
initial energy for the same level and thus is of order O(ηε). This not only explains
the O(ηε) in the error term but is also crucial for the approach in terms of Wigner
transforms. Indeed, if the energy carried into the crossing by the minus trajectories
is not negligible, there might be interferences between both levels, which cannot be
described by a linear function of the Wigner transform for each level.

Finally, the last error term is
√
ε ln ε. It comes from commutation relations with

operators of the form∣∣∣∣∣ s√ε
∣∣∣∣∣
iΓεΓ∗ε

, Γε =
1√
ε

(
z̃ + γW

ε (z,−iε∇z)
)
,

which appear in the scattering result for the model problem (5).

7. The algorithm

An algorithmic realization of W ε,R
LZ (t) can be achieved along the following lines:

1. One projects the initial data ψε
0 on the two levels, ψε

0,± := Π±ψε
0, and computes

the ε-scaled Fourier transform of ψε
0,±, that is (F εψε

0,±)(p) = ψ̂ε
0,±(p/ε).

2. One samples position and momentum densities on both levels, that is |ψε
0,±(q)|2

and |(F εψε
0,±)(p)|2, and obtains pairs of sampling points (q±, p±) ∈ R2d in

phase space.

For these points one computes the Wigner transforms W ε(ψε
0,±)(q±, p±).
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3. One propagates the points (q±, p±) according to the classical flows Φt
±.

When |Φt
±(q±, p±)| ≤ R

√
ε and dφ(q±(t))p±(t) · φ(q±(t)) = 0, one multiplies

by one minus the transition rate,

W ε(ψε
0,±)(q±, p±) y

(
1− T ε(q±(t), p±(t))

)
W ε(ψε

0,±)(q±, p±).

Moreover, one opens up a trajectory on the other level with starting point
Φt
±(q±, p±) and associated weight T ε(q±(t), p±(t))W ε(ψε

0,±)(q±, p±).

This procedure is continued until some final time T > 0.

4. One ends with a lot of particles (q±(T ), p±(T )) on both levels with associ-
ated weights w(q±(T ), p±(T )). From these, one computes approximations to
quadratic quantities of the projected wave function like∣∣∣Π±(q±(T ))ψε(q±(T ), T )

∣∣∣2 ≈
∑

p±(t)

w(q±(T ), p±(T )) volp±(T ),

where volp±(T ) denotes the volume element associated with the point p±(T ).

Below we give pictures obtained for a linear codimension two crossing with v(q) = 0,
φ(q) = q and semi-classical parameter ε = 0.01. The initial data are microlocalized
on the upper level on a point (q0, p0). The three rows of plots show the propagated
level densities |Π±(q)ψε(q, t)|2 for times t = 0, t = 2

√
ε and t = 4

√
ε.

8. Conclusion

We finish by one word about the limitation of our asymptotic description and
the resulting algorithm. One observes for the pyrazine model, that the assump-
tion dφ(q)∇v(q) · φ(q) ≤ 0 made in Theorem 1 is not satisfied. Hence, one has to
expect that trajectories issued onto the minus level come back to the crossing set
and possibly interfer with trajectories on the plus level. If those interferences are too
strong, the proposed algorithm fails. This defect motivates the analysis of situations,
where the approach of just propagating the diagonal blocks of the Wigner function
is not enough for a correct approximation of the dynamics, which is a challenging
question for further work.
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plus-level minus-level

Figure 1: Propagation through a linear codimension two crossing for
ε = 0.01.
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