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Abstract. This note adresses the following segmentation problem in medical imaging: minimize expert
intervention for semi-automatic segmentation process. Using a reduced basis, we have an a priori knowledge
of the objet we want to identify on the images, like a muscle on a CT-Scan. We just have to identify the
coefficients associated to the object of interest in the reduced basis, by solving a linear system taking as input
the coordinates of some selected points in the image. An example implemented in 2D is shown. This method
is independent of the grayscale of the image, and can therefore be applied to all objects and images.

Résumé. Nous présentons ici une méthode de segmentation d’imagerie médicale semi-automatique mini-
misant l’intervention d’un expert. A l’aide d’une base réduite, nous connaissons a priori la forme de l’objet à
identifier sur les images, comme un muscle sur un scanner. Il suffit d’identifier les coefficients associés à l’ob-
jet d’intérêt dans la base réduite, via la résolution d’un système linéaire prenant en entrée les coordonnées
de quelques points sélectionnés sur l’image. Un exemple implémenté en 2D est proposé. Cette méthode est
indépendante des niveaux de gris de l’image, et peut donc être appliquée sur tous objets et toutes imageries.
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1. Introduction

One of the recurring and time consuming challenges in medical imaging is the segmentation of
parts of interest. Segmentation is the process of dividing a medical image into distinct anatomical
regions [9]. This has been for years the effort of specialists and it is quite time consuming.
Beyond the specifics takes of each particular application, the general issue is to find a way to
identify automatically an anatomical region of interest in order to speed up the process. When the
contrast is high enough (e.g. for bones, or between bones and tissues) automatic segmentation is
quite efficient and various methods have been proposed and implemented [6,11,16]. Likewise for
anatomical major organs like the brain or the heart [1,3,14]. On the contrary, when the contrast is
not high enough (e.g. segmentation between different soft tissues on CT scans) the most common
imaging modalities fail and there are very few approaches available.

Understandably enough, most of the current segmentation methods are based on the gray
scale which can let experts easily differentiate 2 objects [10]. Several classifications of those
methods exit, we can cite [15] for an overview. We limit ourselves to mentioning here a few
approaches, for some more detail surveys we can look at [4, 7] for example.

Thresholding and edge detection are two very common approach used for image segmenta-
tion [8, 12]. They are simple and effective approaches to segment anatomical details featured by
high contrast, as, for instance, the bones (that appear as light objects on dark background). How-
ever, it is more challenging for the detection of objects that do not have a marked gray scale sig-
nature, as muscles. We can also cite the region based method [8]. Three other types of process
can be mentionned here: deformable models [4], atlas guided [5] and all the approaches dealing
with artificial intelligence, which has recently been blooming up in the field of medical image
segmentation [13, 15].

We propose here to develop a model based semi-automated method to help segmentation,
which have most in common with the three last types of methods cited above. In particular,
the shape of the object of interest is represented by an elastic deformation field of a reference
configuration. A reduced basis representation of the object of interest is introduced, that exploits
an a posteriori knowledge of a database of available segmentations. Given an image to be
segmented, the elastic deformation field can be approximated as a linear combination of a small
number of modes. This provides, in turn, a powerful regularisation method and a significant
speed-up of the procedure since only few apropriate points need to be selected by the user
in order to define the field. We can find a similar idea in [2], but with a probabilistic point of
view, and where all the modes of the PCA are used as a regularisation and not as a dimentional
reduction.

The proposed method is complementary to the ones exposed before, first because it requires
some preliminary segmentations to “build” the reduced basis, and second because it can be used
indifferently on CT and MR image for any type of object, even the ones difficult to identify like
soft tissues on a CT.

The paper is structured as follows: in Section 2, the problem and the notations are presented.
Then, in Section 3 some numerical experiments are detailed.

2. Notation and problem setting.

Most medical imaging modalities produce a gray-scale image, i.e. a function defined over a subset
of R2 (or R3 for 3D imaging), f : R2 → [0,1] associating a scalar value to each point of the space
(denoted later on by x = (x1, x2) (or by x = (x1, x2, x3) in 3D)). After a manual segmentation of a
region of interest is performed, it is possible to model this region by using an elastic morphing
that maps a reference object: e.g. an ellipse in R2 (or an ellipsoid in R3) onto the boundary of the
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two-dimensional (or three-dimensional) segmented region. In the present work, for the sake of
simplicity, we will restrict to two-dimensional configurations. Having a collection of segmented
objects (belonging to a coherent family) is equivalent to having a set of 2D elastic displacement
fields mapping a same (reference) ellipse into the different segmented objects.

Let us assume that the reference configuration is an ellipse E ⊂ R2; a point ξ ∈ ∂E is mapped
through a displacement field into a point x ∈ ∂F ⊂R2, where F is the boundary of the segmented
object. It holds: {

I d +u : E → F

ξ 7→ x = ξ+u(ξ),
(1)

and u ∈ H 1(E).
From an acquired database1 consisting of N ∈ N∗ such elastic displacements : D ={

u(1), . . . , uN
}
, let us assume that a set of n ∈N∗, with n ≤ N , Proper Orthogonal Decomposition

(POD) modes is extracted:

ϕi : E → F, i = 1, . . . , n. (2)

When a new image to be segmented is available, the unknown elastic displacement mapping the
reference configuration onto the image can be approximated by using the POD basis as follows:

u ≈ un =
n∑

i=1
αiϕi . (3)

The goal is to find the coefficients αi in such a way that the reference ellipse, mapped by the
displacement field I d +un is as close as possible to the actual image, hence providing an already
good guess for the segmentation. In order to identify the coefficients αi a semi-automated
procedure is devised. The image does not correspond, in general, to the reference configuration
(this would be the case in which αi = 0, ∀ i ). A number of m ∈ N∗ points x( j ) ∈ ∂F is selected in
which there is a discrepancy between the actual image and the reference configuration. Each
of these points correspond to an equation for the displacement field: there exists a ξ

( j )
∗ ∈ ∂E

such that:

x( j ) = ξ( j )
∗ +

n∑
i=1

αiϕi

(
ξ

( j )
∗

)
, j = 1, . . . , m. (4)

This is a non-linear system of equations in the variables αi ,ξ( j )
∗ ; however, if the points ξ( j )

∗ are
known, this system is a linear system of equations for the coefficients αi . In the present work, the
points ξ( j )

∗ are chosen as the ones minimising the distance to the point x( j )2:

ξ
( j )
∗ = argmin

ξ∈E

∥∥∥x( j ) −ξ
∥∥∥2

`2
, j = 1, . . . , m. (5)

This corresponds to a regularisation for the solution of the non-linear system Equation (4). The
linear system to be solved reads:

Φα= d , (6)

Φ j i k =ϕi ,k

(
ξ

( j )
∗

)
, (7)

d j ,k = x( j )
k −ξ( j )

∗k , (8)

where Φ is a tensor, assumed to be of maximal rank (remember that it is constructed from POD
vectorial modes). Of course, as soon as m ≥ n, the system is solved in a least-square sense, and
admits a unique solution. When discretising and solving this system, the following choices are

1This database is assumed to be large enough to represent well the full coherent family we are interested in.
2Remark that this point might not be unique.
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(a) (b)

Figure 1. Test case presented in Section 3: (a) Reference configuration (b) an image and its
reconstruction.

made. The minimisation step described by Equation (5) is solved by using a nearest neighbor al-
gorithm that, among the points of the discretised ∂E selects the one which is closest to a given x( j ).
Then, the vector system in Equation (6) is unfolded and solved by using a rank revealing QR de-
composition.

3. Numerical Experiments

In this section, some numerical experiments are shown on a simple 2D test case to assess the
performances of the proposed semi-automated segmentation approach. The reference configu-
ration, depicted in Figure 1.a), is a unit circle, divided into two semicircles. The images are defined
by deforming this configuration by a parameter dependent field, generated as follows: The dis-
placement of each point on the reference circle is normal to the circle and constructed by sum-
ming the set of Nh ∈ N∗ harmonics (eigenfunctions of the Laplace–Beltrami operator), scaled
with a parameter dependant coefficient : let the undeformed configuration points be denoted
by ξ ∈ R2, r = ‖ξ‖2 ≤ 1, ϑ ∈ [0,2π] (i.e. ξ1 = r cos(ϑ), ξ2 = r sin(ϑ), the unit vector in the radial
direction be denoted by êr and the displacement providing the deformed image configuration be
x ∈R2:

x = X (ξ) = ξ+ r

(
Nh∑
j=1

α j ( j +1)−β
)

êr , (9)

whereα j =α j (µ), have an amplitude which decreases as a power law of the harmonics numbers:
( j +1)−β with β= 1.5, and µ is a parameter that identifies each image.

Consider the following radial displacement, depending upon the parameter µ ∈ [0,1]2. The
harmonics coefficients are chosen according to the following expression:

α j = A

j 2

[
sin

(
2π j

p
µ1

)+cos
(
2π j

p
µ2

)]
,

In the present work K = 100 harmonics are used to generate the displacement fields. A set of
N = 100 uniformly distributed in [0,1]2 samples of the parameter µ are taken, and, for each, the
radial displacement is constructed. The POD basis was computed. The singular value decay is
shown in Figure 2.a, exhibiting a faster decay when compared to the one typical of the spherical
harmonics for a given regularity.
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(a) (b)

Figure 2. Test case presented in Section 3: (a) Decrease of singular values with POD
parametrisation (b) Error mean and standard deviation.

Remark that the displacement is purely radial and that the center of the reference circle r = 0
does not move. This corresponds to the case where the various anatomic regions that have been
segmented are “aligned” and properly scaled. Furthermore, given this way of building a database
of elastic displacements, the POD modes reduce to a set of vector displacements in the radial
direction whose intensity is given by the value of the harmonics. The discretised shape is built by
discretising uniformly the interval ϑ using Nϑ = 512 points.

The image (the deformation of the reference shape) is cut by Np ∈ N∗ horizontal planes,
uniformly distributed on the image, to mimic a medical exam like CT or MRI which are sliced.
Each plane intersects the outer boundary of the object in two points (m = 2Np ), each of which
corresponding to one of the halves of the deformed circle. These points provide an equation for
the displacement field to be approximated by using the POD modes.

Several numerical experiments are made to assess the performances of the proposed recon-
struction method, by varying the number of modes and the number of cutting planes used. In
particular, the number of modes used varied from n = 6 to n = 20 and, for each choice the num-
ber of planes was varied from the minimal number of planes needed to have a square system
n ≤ m to m = 2n. In Figure 1.b) an example of reconstruction is proposed, when the image was
produced by using Nh = 100 harmonics, n = 20, m = 80. The result is quite precise, all the details
of the image are well represented, whether it is the outer edge where points are selected or the
edge of the inner hemicycles where no points are selected.

The reconstruction errors are shown in Figure 2.b for a population of 100 target displacements
(that do not belong to the database used to construct the POD modes). The errors are measured
in `2 norm with respect to the discretised images. The average error and standard deviation
are shown when the minimal number of planes and the maximum number of planes are used.
In general, the errors are compatible with the ones considered as compatible with realistic
applications. When the minimum number of planes is used a stability issue can be seen when
a large number of modes is used and the standard deviation is quite large. On the contrary, when
Np = 2n (orange), the lack of stability is delayed, the errors decrease and the standard deviation
is much smaller, reaching a minimum for n = 17.
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4. Conclusions and Perspectives.

In the present work a semi-automated reconstruction method is proposed to help the segmenta-
tion of anatomical details in the cases in which the contrast is not enough to use fully automated
techniques. The method is based on the use of a reduced basis to approximate an elastic dis-
placement mapping a reference configuration into the actual shapes of the anatomical details of
interest. The method uses a nearest neighbors optimisation procedure coupled to a least square
approach to solve the problem. A 2D test case is proposed to mimic realistic applications and as-
sess the performances of the method. A set of synthetic generated images was used and the error
of the numerical experiments showed that the proposed approach can lead to a viable tool. In
this respect, further investigations are mandatory both from the theoretical and applied point of
view. In particular a systematic error analysis will be carried out and more realistic tests will be
performed, in 3D configuration and by taking the noise and the other experimental error sources
into account.

Especially in 3D, several challenges are added to those described above, especially in the case
of a real application. The first one is the constitution of the manual segmentation database: it
takes time and requires the intervention of an anatomist expert at first. However, the idea is that
we can, very quickly in this acquisition process, by the very approach of reduction, propose a
first phantom that requires only a few corrections and saves a lot of time while continuing to
feed the database. In addition, the mapping of the points would remain assured by the same idea
as in 2D from a deformed reference configuration. However, instead of using a nearest neighbor
algorithm, we will opt to define a probability density for each point in the point cloud of the
corresponding dataset. In a second step, it is planned to replace the POD by a greedy algorithm,
to increase the robustness.
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