INSTITUT DE FRANCE

Académie des sciences

Comptes Rendus

Mathématique

Carlos Matheus

The beginning of the Lagrange spectrum of certain origamis of genus
two

Volume 358, issue 4 (2020), p. 475-479
Published online: 28 July 2020

https://doi.org/10.5802/crmath.65

[ This article is licensed under the
CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE.
http://creativecommons.org/licenses/by/4.0/

"I.<1
>
MERSENNE

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour I’édition scientifique ouverte
www.centre-mersenne.org
e-ISSN : 1778-3569


https://doi.org/10.5802/crmath.65
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org

Comptes Rendus
Mathématique

2020, 358, n° 4, p. 475-479
https://doi.org/10.5802/crmath.65

Dynamical Systems / Systemes dynamiques

The beginning of the Lagrange spectrum of

certain origamis of genus two

Carlos Matheus?

@ CMLS, CNRS, Ecole polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau
Cedex, France.

E-mail: carlos.matheus@math.cnrs.fr.

Abstract. The initial portion of the Lagrange spectrum Lp7 of certain square-tiled surfaces of genus two was
described in details in the work of Hubert-Leliévre-Marchese-Ulcigrai. In particular, they proved that the
smallest element of Lg7 is an isolated point ¢1, but the second smallest value ¢, of Lp7 is an accumulation
point. Also, they conjectured that the portion Lg7 N [¢2,11) is a Cantor set for a specific value 17 and they
asked about the continuity properties of the Hausdorff dimension of Lg7 N (oo, £) as a function of t <77.In
this note, we solve affirmatively these problems.

Manuscript received 22nd April 2020, revised and accepted 27th April 2020.

1. Introduction

The classical Lagrange spectrum L was originally introduced in relation to the study of Diophan-
tine approximations of irrational numbers and, alternatively, it can also be seen as the set of real
numbers encoding cusp excursions of geodesics on the modular surface, i.e.,

L:{limsup <oo:X€SL(2,[R)/SL(2,Z)},

t—oo  SYS(g:(X))?
where g; := diag(e,e”") and sys(Y) := min{|h(v)|g2 : v € Z2\ {(0,0)}} for Y = h-SL(2,2) €
SL(2,R)/SL(2,Z).

This point of view led Hubert-Marchese—Ulcigrai [5] to naturally extend the notion of Lagrange
spectrum to the context of Teichmiiller dynamics (see, e.g., Zorich’s survey [8] for the basic aspects
of this theory).

More concretely, they defined the Lagrange spectrum L s associated to the closure .# of a
SL(2,R)-orbit on the moduli space of unit area translation surfaces as

Ly:{limsup;«)o:XeJ},

t—oo  SYs(g+(X))?
where the action of g; is the so-called Teichmdiller geodesic flow and sys(Y) is the minimal length
of a saddle-connection of Y. Also, they showed that L s shares some common features with the
classical Lagrange spectrum, e.g.,
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 if .# consists of some translation surfaces with genus g and o conical singularities, then
L 4 is a subset of [w ,00) given by the closure of the maximal values of the function
Y — sys(LY)z along g;-periodic orbits included in .#;

» if .# contains a square-tiled surface, then Ly contains a Hall’s ray, i.e., [r,00) € Ly for

some r > 0.

On the other hand, it was discovered by Hubert-Lelievre-Marchese—Ulcigrai [4] that the begin-
ning of the Lagrange spectra of SL(2,R)-orbits of square-tiled surfaces might behave differently
from the classical Lagrange spectrum. More precisely, let X be the square-tiled surface of genus
two with unit area obtained from seven squares sq(k), 1 < k < 7, in R? with areas 1/7 by gluing the
right vertical side of sg(k) to the left vertical side of sg(h(k)) and the top horizontal side of sq (k)
to the bottom horizontal side of sg(v(k)), where h and v are the permutations with cycles

h=(1,2,3)4)(5)(6)(7) and v=(1,4,56,7)(2)@3).
By following the terminology of Hubert-Lelievre [3], the SL(2,R)-orbit of X is called B7. It was

shown by Hubert-Lelievre-Marchese-Ulcigrai that the Lagrange spectrum Lp7 associated to B7
starts with an isolated point and an accumulation point!, namely:

[0,p2) NLp7 ={¢p1} and ¢ € L;W,
where? ¢y := 7+14-[0;3,1] = 10.692676... and ¢, := 14-[0;1,4,1,3] = 11.582575.... Furthermore,
they conjectured that
K:= LB7 N [gbg,'r]ﬂ
is a Cantor set and they asked whether the Hausdorff dimension of Lg7 N (-oo0, ) varies continu-
ously with ¢; < t <n =7 BLA2LIHOLILLSN = 1 655309....
In this note, we show that:

Theorem 1. The Hausdor{f dimension d(t) of Lg; N (—oo0, t) varies continuously with t <.
Theorem 2. The portion K = L7 N [¢p2,11) of L7 is a Cantor set.

Remark 3. We will also show that 0.30944 < d(n1) < 0.30976, any ¢ € KK is accumulated by Cantor
sets with positive Hausdorff dimensions contained in IK, and d(¢) is not Hélder continuous.

For the sake of exposition, we divide the rest of this note into five sections: first, we review some
results from [4] about the description of the initial portion of Lp7; next, we employ the results of
Cerqueira, Moreira and the author [2] to deduce the continuity of the Hausdorff dimension of
Lp7 N (—o0, ) as a function of € (—oo,n;); afterwards, we show that K is a Cantor set; then, we
modify an argument of Moreira [7] in order to prove that any ¢ € K is accumulated by Cantor
sets with positive Hausdorff dimensions contained in K; finally, we show that d(¢) is not Holder
continuous near ¢;.

2. Preliminaries

Consider the left shift dynamics o : {a, b}* — {a, b}? on the symbolic space X := {a, b}’ where
a:=1,4,2,4and b:=1,3. It was shown in [4, §4.5] that

n—oo

Lg7n(—o0,m1) = {1} UK = {L”(&) :=limsup h(c"({)):¢ € Z}

IThis contrasts with the classical Lagrange spectrum because LN (—00,3) = {k] < kp <--- < kp <...} where kj, is an
explicit increasing sequence converging to 3.
2We are using the notations [agp; a1,...] = ag +

7 and €1,...,Ck = Cl,+-.,Cf» Cly-+-Ckro--
ay+—
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where h: Z — R is the height function given by

7- ([0;1;4r£1rf2)--'] + [0;1)475—1!6—2)"'])7 lffo =a,
7- (1 + [0;3’€l’§2y---] + [0;3’6—1»6—2)---])’ leO =b.

Also, it is essentially proved in [4, §5] that K is a perfect set. Indeed, if ¢ € K\ {¢h2, P} With
¢ :=14-10,1,4,1,4,2,4] = h(a), then Lemmas 5.1, 5.2 and 5.4 of their article give one of the
following two scenarios:

(i) there exists k = 2 such that
_ [14-10;1,4,a9,b], if k=2i+1is odd,
“7-10;1,4, 2%V, ] + [0;1,4,a9, b)), if k=2i+2iseven,

h((n)nez) = {

where ¢V :=¢...c, or
N——~
Jj times
(ii) there are k,n = 1 such that ¢ = L?({) where ¢ € X contains infinitely many copies of
a® b™ g but no copies of a**1 and no copies of a® b~V g,
By applying again Lemmas 5.1, 5.2 and 5.4 of their article, we have that ¢» € K’ because

« in the first case, ¢ = lim,;, .o, L7 (a®) h™)), and
« in the second case, ¢ = lim—.co L7 (BPUIEG 11 .. ERGmy—1 D)), where &g and
&r(my correspond to the last letter a in appropriately chosen occurrences of the block
a®b™ g in &, and P(m) and S(m) are suitably large in comparison P(m —1), Q(m — 1),
R(m—1) and S(m—1).
Since Theorem 1.1 of their article ensures that ¢, Poo € X/, we have that X is a closed set without
no isolated points.

3. Proof of Theorem 1

It is well-known [1] that the left-shift dynamics on {1,2,3,4}£ can be smoothly realized via the
natural extension ¢(x,y) = ({1/x},1/([1/x] + y)) of the Gauss map g([0; a;, ap,...1) := [0; ay,...].
Since ¢ is a smooth area-preserving diffeomorphism whose local stable and unstable manifolds
are parallel to the axes and the gradient of the smooth realization of the height function £ is
transverse to the axes, the key results from [2] can be employed to derive that:
o the Hausdorff dimension d(#) of {L? ({) : £ € £} N (—oo, 1) depends continuously on t € R,
e d(n1) = 2-D(n), where D(n;) is the Hausdorff dimension of Cantor set C(a, b) of real
numbers with continued fraction expansions in =+ = {a, b}"™.
At this point, the desired theorem follows from the fact that Lg; N (oo, 1) = {L?({) : £ € Z} N
(—oo, t) forall £ <n;.

4. Proof of Theorem 2

We saw in Section 2 that K is a perfect set. Therefore, our task of showing that K is a Cantor set
can be reduced to prove that d(n;) =2-D(n;) < 1.
In the sequel, we will show that D(n;) = 0.154.... For this sake, we observe that
Clab)= Ny "Ipuly)
neN
where I;, = [[0;b],[0;ball, I, = [[0;ab],[0;al], and v : I, U I, — [[0;D],[0;@ll, wlp, (x) = g2(x),
Y, (x) = g4(x). Hence, we can use the method described in [6, §4] to obtain that, for all n € N,
one has
ap,<D(m) =< ,Bn
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where

k k 2ap
> (min{]_[[O;xl',...,xk,l,_3],H[O;Xi,...,Xk,1,4,1,2]}) =1
i=1

(x1,...,Xx)E{a,b}" i=1
and

k k 2pBn
> (max{H[O;xi,...,xk,l,3],H[O;xi,...,xk,1,4,1,2]}) =1
i=1

(X1,...,X)E{a,b}" i=1

A quick computer search for the values of a4 and 4 shows that

0.15472 < a4 < D(1),) < 4 < 0.15488.

5. Local structure of K

Recall that K is a Cantor set. In particular, any x € K is accumulated by a sequence x, € K with
X, # x. In what follows, we adapt the proof of Theorem 3 in [7] to show that x is accumulated by
Cantor sets of positive Hausdorff dimensions included in K.

In this direction, let us take ¢ = 53")) ic7 € = such that x,, = L7 (™). We have x, = 7-

limsup o (10;1,4,¢77, 617y, 1+ 1031,4,807, 617,

Given 6 > 0, we can fix nj € N large such that, for each n = ng, one has |L? &My - x| < § and
17(10;1,4, 5;’}31,55’1)2, 1+10;1,4, 65"]1,65")2, 1) — x| < 6 for infinitely many j € N.

Let N = [671] and, for each j and n as above, consider the finite sequence with 2N + 1
terms (&7 NS (.”),...,55.’1) ) =: 8(j, n). By the pigeonhole principle, there exists a finite string S
such that, for infinitely many values of n, the string S appears infinitely many times as S(j, n),
i.e., there is an infinite set A N so that for each n € A we can find j;(n) < j2(n) < ... with
lim; oo (ji+1 (M) — ji(n)) =coand S(j;(n),n) = Sforall i = 1.

Consider the sequences (i, n) for i = 1, n € A given by

Bl n) = ;’7()n)+N+1’§( ((M+N+2""" 6;721(n)+N)'
Since the sequence (x;);ea is not constant, there are (i1, n;) and (iz, n2) so that B(i;, n;) and
B(i2, n2) can not be expressed as concatenations of copies of some finite string y. This implies
that B = {B(i1, n1) B(i2, n2), B(iz2, n2) B(i1, n)} is a Bernoulli subshift of £ such that {L° (B): B e B}
is a portion of K included in the (28)-neighborhood of x. By Proposition 2.16 of [2], {L? (B: f € B)}
contains a Cantor set of positive Hausdorff dimension, so that the argument is complete.

6. Local dimension of K near ¢,

The Hausdorff dimension d(#) of L7 N (—oo0, £) is not a-Hoélder continuous near ¢,: otherwise,
the restriction of d to Lp7 N [¢h2, ¢ + €] would be a a-Hodlder continuous function from a set
of Hausdorff dimension d(¢, + €) to the interval [0, d(¢p, + €)]; since this interval is non-trivial
when ¢ > 0 (thanks to the result from the previous section), its Hausdorff dimension is 1 and, a
fortiori, d(¢, + €) = a for all € > 0, a contradiction with the continuity of d at the point ¢, (where

d(¢2) =0)
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