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Abstract. In this paper, we prove a new point-sphere incidence bound in vector spaces over finite fields. More
precisely, let P be a set of points and S be a set of spheres in Fd

q . Suppose that |P |, |S| ≤ N , we prove that the
number of incidences between P and S satisfies

I (P,S) ≤ N 2q−1 +q
d−1

2 N ,

under some conditions on d , q , and radii. This improves the known upper bound N 2q−1 + q
d
2 N in the

literature. As an application, we show that for A ⊂ Fq with q1/2 ¿|A|¿ q
d2+1
2d2 , one has

max
{
|A+ A|, |d A2|

}
À |A|d

q
d−1

2

.

This improves earlier results on this sum-product type problem over arbitrary finite fields.
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1. Introduction

Let Fq be a finite field of order q , where q is a prime power. A sphere centered at (c1, . . . ,cd ) ∈ Fd
q

of radius r is defined by the equation

(x1 − c1)2 +·· ·+ (xd − cd )2 = r.

Let P be a set of points in Fd
q and S be a set of spheres with arbitrary radii in Fd

q . Let I (P,S) be the
number of incidences between P and S, namely,

I (P,S) = #
{
(p, s) : p ∈ s, p ∈ P, s ∈ S

}
.

The following point-sphere incidence bound was obtained by Cilleruelo, Iosevich, Lund, Roche-
Newton, and Rudnev [2], and independently by Phuong, Pham, and Vinh [13].
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Theorem 1. Let P be a set of points in Fd
q and S be a set of spheres with arbitrary radii in Fd

q . We
have ∣∣∣∣I (P,S)− |P ||S|

q

∣∣∣∣≤ q
d
2 (|P ||S|)1/2. (1)

It follows from this theorem that if |P ||S| > qd+2, then the set of point-sphere incidences
between P and S is non-empty. Using this incidence bound, Cilleruelo et al. [2] proved a Beck
type theorem that for any set P ⊂ F2

q , if |P | > 5q , then the number of distinct circles determined

by points of P is at least 4q3

9 . We refer the reader to [2, 13] for other applications.
Throughout this paper, we use the following notations: X ¿ Y means that there exists some

absolute constant C1 > 0 such that X ≤C1Y , and X ∼ Y means Y ¿ X ¿ Y .
The main purpose of this paper is to improve the upper bound of Theorem 1. More precisely,

we study the following question:

Question 2. Let P be a set of points and S be a set of spheres in Fd
q . Under what conditions on d, q,

and the sets will we be able to improve the bound |P ||S|
q +q

d
2
p|P ||S|?

We first start with some observations.

Observation 1. If d ≡ 3 mod 4 and q ≡ 1 mod 4, or d ≡ 1 mod 4, then the term q
d
2 (|P ||S|)1/2

in (1) cannot be improved to q
d
2 −ε(|P ||S|)1/2 for any ε > 0 for arbitrary sets P and S. Otherwise,

one could follow the proof of [2, Corollary 1] to show that for any E ⊂ Fd
q with |E | À q

d+1
2 −ε′ , for

some ε′ > 0, we have the set of distances determined by pairs of points in E satisfies |∆(E)| À q .
This would contradict a construction in [3, Theorem 2.7] that states that the exponent d+1

2 for the
distance problem is sharp in those dimensions even one wishes to cover a positive proportion of
all distances. Note that in the proof of [2, Corollary 1], the size of S is much larger than the number
of points in P . We refer the reader to [2, 3] for more explanations.

Observation 2. If d ≡ 2 mod 4 and q ≡ 1 mod 4, or d ≡ 0 mod 4, then there exists a set E ⊂ Fd
q

with |E | = q
d
2 such that x · y = x · x = 0 for all x, y ∈ E , see [3, Lemma 5.1]. Hence, we can

set P = E and S being the set of spheres centered at points in E of radius 0. It is clear that
I (P,S) = |P ||S| = q

d
2
p|P ||S|. Thus, the upper bound of (1) is sharp for this case.

Observation 3. If all spheres in S have the same radius, then a stronger result follows directly
from a theorem of Iosevich and Rudnev in [6]:∣∣∣∣I (P,S)− |P ||S|

q

∣∣∣∣< 2q
d−1

2 (|P ||S|)1/2. (2)

In a recent paper [7], Koh, Pham, and Lee introduced an approach of using results from the
restriction problem for cones to study this incidence topic. As a consequence, they obtained the
following improvement.

Theorem 3. Let P be a set of points in Fd
q and S be a set of spheres in Fd

q .

(1) If d ≡ 2 mod 4, q ≡ 3 mod 4, and |S| ≤ q
d
2 , then we have∣∣I (P,S)−q−1|P ||S|∣∣¿ q

d−1
2 |P | 1

2 |S| 1
2 .

(2) If d is even and q ≡ 1 mod 4, or d ≡ 0 mod 4, then the same conclusion holds under the
condition |S| ≤ q

d−2
2 .

(3) If d ≥ 3 is odd, then the same conclusion holds under the condition |S| ≤ q
d−1

2 .

In comparison, in its ranges, Theorem 3 improves Theorem 1 in both lower and upper bounds.
Theorem 3 is sharp in the sense that one can construct sets P and S with |S| arbitrary small and
|P ||S| ≤ qd+1 such that I (P,S) = 0.

In the first result we provide an improvement in odd dimensions when |P | ∼ |S|.
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Theorem 4. Let P be a set of points and S be a set of spheres of square radii in Fd
q . Suppose that

d ≡ 3 mod 4 and q ≡ 3 mod 4. If |P |, |S| ≤ N , then we have

I (P,S) ¿ q−1N 2 +q
d−1

2 N .

It is worth noting that one cannot expect to prove the same upper bound in even dimen-
sions (d ≡ 2 mod 4 and q ≡ 1 mod 4, or d ≡ 0 mod 4). This follows from the second observation
above, but it is not known whether or not the same upper bound can be achieved if we assume
that the spheres have non-zero radii.

The proof of Theorem 4 is based on a careful analysis of spectrum of graphs defined by cone
equations. In particular, let Ck be the cone in Fk

q defined by

Ck :=
{

x ∈ Fk
q : Q(x) =−x2

1 +x2
2 +·· ·+x2

k = 0
}

. (3)

Let GQ,k be the Cayley graph with the vertex set Fk
q , there is an edge between two vertices x and

y if and only if x − y ∈ Ck . It is clear that GQ,k is a regular graph of order |Ck |. In the following
theorem, we show that when k ≡ 0 mod 4 and q ≡ 3 mod 4, the unique positive and non-trivial
eigenvalue of this graph is much smaller than the absolute value of others. This observation plays
the main role in the proof of Theorem 4.

Theorem 5. Let {λm}m∈Fk
q

be the eigenvalues of GQ,k . If k ≡ 0 mod 4 and q ≡ 3 mod 4, then we

have

λm = qk ·
{

q−1δ0(m)−q− k
2 +q− (k+2)

2 if m ∈Ck

q− (k+2)
2 if m ∉Ck .

Here, and throughout the paper, we define δ0(m) = 1 if m = (0, . . . ,0), and δ0(m) = 0 otherwise.

Our next improvement is for spheres of non-square radii in dimensions d ≡ 1 mod 4.

Theorem 6. Let P be a set of points and S be a set of spheres of non-square radii in Fd
q . Suppose

that d ≡ 1 mod 4 and q ≡ 3 mod 4. If |P |, |S| ≤ N , then we have

I (P,S) ¿ q−1N 2 +q
d−1

2 N .

Unlike Theorem 4, we do not have any construction to show that the upper bound q−1N 2 +
q

d−1
2 N is impossible for even dimensions.
Theorem 6 is proved by the same approach as for Theorem 4. The main difference is that we

use the Cayley graph defined by the zero-norm equation. In particular, let Sk−1
0 be the sphere

centered at the origin of radius zero in Fk
q defined by

Sk−1
0 :=

{
x ∈ Fk

q : ‖x‖ := x2
1 +x2

2 +·· ·+x2
k = 0

}
. (4)

Let G‖·‖,k be the Cayley graph with the vertex set Fk
q , there is an edge between two vertices x

and y if and only if x − y ∈ Sk−1
0 . It is clear that G‖·‖,k is a regular graph of order |Sk−1

0 |. As in
the graph GQ,k , in the following theorem, we show that when k ≡ 2 mod 4 and q ≡ 3 mod 4, the
unique positive and non-trivial eigenvalue of this graph is much smaller than the absolute value
of others.

Theorem 7. Let {λm}m∈Fk
q

be the eigenvalues of G‖·‖,k . If k ≡ 2 mod 4 and q ≡ 3 mod 4, then we

have

λm = qk ·
{

q−1δ0(m)−q− k
2 +q− k+2

2 if ‖m‖ = 0

q− (k+2)
2 if ‖m‖ 6= 0.

In graph theoretic point of view, we believe that Theorems 5 and 7 have a potential for
applications to other topics.

C. R. Mathématique — 2022, 360, 687-698



690 Doowon Koh and Thang Pham

Sharpness of Theorems 4 and 6. Both Theorems 4 and 6 cannot be improved when N > q
d+1

2 .
The simplest example is to take S being a set of spheres with the same radius, then Observation
3 would tell us that I (P,S) ∼ N 2/q . When N > q

d+2
2 , Theorem 1 also tells us that the number of

incidences is at least (1−o(1))N 2/q .
We now provide some applications.

Erdős–Falconer distance problem. For any two points x and y in Fd
q , we define its distance

function by ‖x − y‖ = (x1 − y1)2 + ·· · + (xd − yd )2. For E ⊂ Fd
q and t 6= 0, let U (t ) be the number

of pairs of points in E of distance t . Iosevich and Rudnev [6], using the Kloosterman sum, proved
that

|E |2
q

−2q
d−1

2 |E | ≤U (t ) ≤ |E |2
q

+2q
d−1

2 |E | (5)

As a consequence of Theorem 4, we can see that the upper bound of (5) can be recovered when
t is a square. The same holds when t is a non-square by Theorem 6. The most interesting aspect
of this observation is that we are able to use Gauss sums instead of Kloosterman sum in the
proof. It is still an open question whether or not one can prove the lower bound of (5) without
the Kloosterman sum.

A sum-product type estimate. For A ⊂ Fq , we define

A+ A := {a +b : a,b ∈ A}, A2 := {a2 : a ∈ A}, n A2 = {
a1 +·· ·+an : ai ∈ A2} .

As a consequence of Theorem 4, we obtain the following sum-product type estimate.

Theorem 8. Let A be a set in Fq with q ≡ 3 mod 4 and |A| À q1/2. For d ≥ 3 odd, we have at least
one of two following statements:

(1) |A+ A| ≥ min
{

q
d+1
2d , |A| d+1

d

}
.

(2) |d A2|À |A|d
q

d−1
2

.

Corollary 9. Let A be a set in Fq with q ≡ 3 mod 4 and q1/2 ¿|A|¿ q
d2+1
2d2 . For d ≥ 3 odd, we have

max
{|A+ A|, ∣∣d A2∣∣}À |A|d

q
d−1

2

.

In particular, for d = 3, one has

max
{|A+ A|, ∣∣A2 + A2 + A2∣∣}À |A|3

q
.

The lower bound |A|d q− d−1
2 improves earlier results in the literature, for instance, |A| 3d−5

d−1 q
2−d
d−1

in [12]. We refer the reader to [12] for discussions on this sum-product type problem, and
to [11, 14] and references therein for results on other types.

The rest of this paper is organized as follows. In the next section, we recall some notations
from discrete Fourier analysis, and proofs of Theorems 5 and 7 are given in Sections 3 and 4,
respectively. In Section 5, we provide proofs of Theorems 4 and 6. In Section 6, a proof of
Theorem 8 is presented. In the last section, we address some open questions.

2. Preliminaries

We first recall some notations and lemmas from discrete Fourier analysis. Let f be a complex
valued function on Fk

q . The Fourier transform f̂ of f is defined by

f̂ (m) := q−k
∑

x∈Fk
q

χ(−m · x) f (x),

C. R. Mathématique — 2022, 360, 687-698
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where χ denotes the principal additive character of Fq . The Fourier inversion theorem states that

f (x) = ∑
m∈Fk

q

χ(m · x) f̂ (m).

The orthogonality of the additive character χ says that

∑
α∈Fk

q

χ(β ·α) =
{

0 if β 6= (0, . . . ,0),

qk if β= (0, . . . ,0).

As a direct application of the orthogonality of χ, we obtain∑
m∈Fk

q

∣∣ f̂ (m)
∣∣2 = q−k

∑
x∈Fk

q

| f (x)|2,

which is known as the Plancherel theorem.
For example, it follows from the Plancherel theorem that for any set E in Fk

q ,∑
m∈Fk

q

|Ê(m)|2 = q−k |E |.

Here, and throughout this note, we identify a set E with the indicator function 1E on E .
Throughout this paper, let η be the quadratic character of Fq , namely, for s 6= 0, η(s) = 1 if s is a

square, and η(s) =−1 if s is a non-square. We also use the convention that η(0) = 0.
For a ∈ F∗q , the Gauss sum Ga is defined by

Ga := ∑
s∈F∗q

η(s)χ(as), (6)

which can be written as

Ga = ∑
s∈Fq

χ(as2) = η(a)G1.

The absolute value of the Gauss sum Ga is exactly q1/2. Moreover, the explicit form of the Gauss
sum G1 is provided in the next lemma.

Lemma 10 ([10, Theorem 5.15]). Let Fq be a finite field with q = p`, where p is an odd prime and
` ∈N. Then we have

G1 =
{

(−1)`−1q
1
2 if p ≡ 1 mod 4

(−1)`−1i`q
1
2 if p ≡ 3 mod 4.

Notice that q = p l ≡ 3 mod 4 if and only if p ≡ 3 mod 4 and l is an odd positive integer.
The following formula will be used in our proof of Theorem 5. For a ∈ F∗q and b ∈ Fq ,

∑
s∈Fq

χ(as2 +bs) = η(a)G1χ

(
b2

−4a

)
. (7)

This can be proved easily by completing the square and using a change of variables.
Let X be a multi-set in F`q×Fq ,`≥ 1. We denote by X the set of distinct elements in the multi-set

X . The cardinality of X , denoted by |X |, is
∑

x∈X̄ mX (x), where mX (x) is the multiplicity of x in X .
For multi-sets A ,B ⊂ F`+1

q , let N (A ,B) be the number of pairs
(
(α, a), (β,b)

) ∈A ×B ⊂ (
F`q×Fq

)2

such that α ·β= a +b. We have the following lemma on an upper bound of N (A ,B).

C. R. Mathématique — 2022, 360, 687-698
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Lemma 11. 1 Let A ,B be multi-sets in F`q ×Fq ,`≥ 1. We have∣∣∣∣N (A ,B)− |A ||B|
q

∣∣∣∣≤ q
`
2

 ∑
(α,a)∈Ā

mA ((α, a))2
∑

(β,b)∈B̄

mB((β,b))2

1/2

.

Proof. We first have

N (A ,B) = ∑
(α,a)∈Ā ,(β,b)∈B̄

q−1mA ((α, a))mB((β,b))
∑

s∈Fq

χ(s(α ·β−a −b)),

where χ is a non-trivial additive character on Fq . This implies that

N (A ,B) = |A ||B|
q

+R,

where
R = ∑

(α,a)∈Ā ,(β,b)∈B̄

mA ((α, a))mB((β,b))q−1
∑
s 6=0

χ(s(α ·β−a −b)).

If we view R as a sum in (α, a) ∈A , apply the Cauchy–Schwarz inequality, and dominate the sum
in (α, a) ∈A by the sum in (α, a) ∈ F`+1

q , we have

R2 ≤ ∑
(α,a)∈Ā

mA ((α, a))2
∑

(α,a)∈F`+1
q

q−2
∑

s,s′ 6=0

∑
(β,b),(β′,b′)∈B̄

mB((β,b))mB((β′,b′))

·χ(s(α ·β−a −b))χ(s′(−α ·β′+a +b′))

= ∑
(α,a)∈Ā

mA ((α, a))2q−2
∑

(α,a)∈F`+1
q

(β,b)∈B̄

(β′,b′)∈B̄

s,s′ 6=0

mB((β,b))mB((β′,b′))χ(α · (sβ− s′β′))χ(a(s′− s))χ(s′b′− sb)

= q`−1
∑

(α,a)∈Ā

mA ((α, a))2
∑
s 6=0

(β,b)∈B̄

(β′,b′)∈B̄

β=β′

mB((β,b))mB((β′,b′))χ(s(b′−b)) = I + I I ,

where I is the sum over all pairs (β,b), (β′,b′) with b = b′, and I I is the sum over all pairs
(β,b), (β′,b′) with b 6= b′.

It is clear that if b 6= b′, then we have∑
s 6=0

χ(s(b −b′)) =−1,

which implies that I I < 0.
On the other hand, it is easy to see that if b = b′, then∑

s 6=0
χ(s(b −b′)) = (q −1).

This give us
I ¿ q`

∑
(α,a)∈Ā

mA ((α, a))2
∑

(β,b)∈B̄

mB((β,b))2

In other words, we have proved that

R ¿ q
`
2

 ∑
(α,a)∈Ā

mA ((α, a))2
∑

(β,b)∈B̄

mB((β,b))2

1/2

.

1This lemma was referred to as Lemma 8.1 in the early version of [8] but it was removed in the final version of [8].
Lemma 2.1 in [1] is a specific case of Lemma 11 when ` is even.
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This completes the proof of the lemma. �

3. Proof of Theorem 5

In this section, we provide a proof of Theorem 5 and also for other dimensions.

Theorem 12. Let {λm}m∈Fk
q

be the eigenvalues of GQ,k .

(1) If k = 4n for some n ∈N, and q ≡ 3 mod 4, then we have

λm = qk ·
{

q−1δ0(m)−q− k
2 +q− (k+2)

2 if m ∈Ck

q− (k+2)
2 if m ∉Ck .

(2) If k = 4n for some n ∈N and q ≡ 1 mod 4, or k = 4n +2 for some n ∈N, then we have

λm = qk ·
{

q−1δ0(m)+q− k
2 −q− (k+2)

2 if m ∈Ck

−q− (k+2)
2 if m ∉Ck .

(3) If k ≥ 3 is odd, then we have

λm = qk−1δ0(m)+q−1η(Q(m))G k+1
1 ,

where G1 is the Gauss sum defined in (6), η is the quadratic character of F∗q , and we use the
convention that η(0) = 0.

As we observed in the introduction, when k = 4n and q ≡ 3 mod 4, the unique positive and
non-trivial eigenvalue of this graph is much smaller than the absolute value of others. This does
not hold for other dimensions or q ≡ 1 mod 4.

Since GQ,k is a Cayley graph, it is well-known in the literature that its eigenvalues can be
expressed in the form qk · Ĉk (m). It is sufficient to prove the following lemma.

Lemma 13. For any m ∈ Fk
q , we have

Ĉk (m) = q−1δ0(m)+q−k−1η(−1)G k
1

∑
s 6=0

ηk (s)χ

(
Q(m)

−4s

)
, (8)

where δ0(m) = 1 if and only if m = (0, . . . ,0). In particular, we have the followings:

(1) If k = 4n for some n ∈N, and q ≡ 3 mod 4, then we have

Ĉk (m) =
{

q−1δ0(m)−q− k
2 +q− (k+2)

2 if m ∈Ck

q− (k+2)
2 if m ∉Ck .

(2) If k = 4n for some n ∈N and q ≡ 1 mod 4, or k = 4n +2 for some n ∈N, then we have

Ĉk (m) =
{

q−1δ0(m)+q− k
2 −q− (k+2)

2 if m ∈Ck

−q− (k+2)
2 if m ∉Ck .

(3) If k ≥ 3 is odd, then we have

Ĉk (m) = q−1δ0(m)+q−k−1η(Q(m))G k+1
1 ,

where we use the convention that η(0) = 0.

We note that our proof of Lemma 13 is quite similar to that of [7, Proposition 2.4] with Q is
defined by Q(x) =−x1 · x2 +x2

3 +·· ·+x2
k .

C. R. Mathématique — 2022, 360, 687-698
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Proof. By the definition and the orthogonality of χ, we have

Ĉk (m) = q−k
∑

x∈Ck

χ(−x ·m)

= q−1δ0(m)+q−k−1
∑

x∈Fk
q

∑
s 6=0

χ
(
s(−x2

1 +x2
2 +·· ·+x2

k )
)
χ(−x ·m)

= q−1δ0(m)+q−k−1
∑
s 6=0

∑
x1∈Fq

χ(−sx2
1 −m1x1)

k∏
j=2

∑
x j ∈Fq

χ(sx2
j −m j x j ).

By the complete square formula (7), we obtain (8) which states that

Ĉk (m) = q−1δ0(m)+q−k−1η(−1)G k
1

∑
s 6=0

ηk (s)χ

(
Q(m)

−4s

)
.

We now fall into three cases.

Case 1. Suppose that k = 4n for some n ∈N, and q ≡ 3 mod 4. Then ηk ≡ 1 and η(−1) =−1. One
can use Lemma 10 to see that G k

1 = qk/2 for k ≡ 0 mod 4. So, η(−1)G k
1 =−qk/2. This implies

Ĉk (m) = q−1δ0(m)−q−k−1qk/2
∑
s 6=0

χ

(
Q(m)

−4s

)
.

Thus, the first part of the lemma follows by the orthogonality of χ.

Case 2. Assume that k = 4n for some n ∈N and q ≡ 1 mod 4, or k = 4n +2 for some n ∈N. Using
the same argument as in the previous case, it suffices to show that

η(−1)G k
1 = qk/2.

We first assume that k ≡ 0 mod 4 and q ≡ 1 mod 4, then −1 is a square number, i.e., η(−1) = 1,
and G k

1 = qk/2 by Lemma 10. Hence, we get η(−1)G k
1 = q

k
2 , as required.

If k ≡ 2 mod 4, then k−2 ≡ 0 mod 4, so G k−2
1 = q (k−2)/2. One can use Lemma 10 again to obtain

that G 2
1 = η(−1)q. Hence, G k

1 = η(−1)qG k−2
1 = η(−1)qk/2. In other words, we have proved that

η(−1)G k
1 = qk/2.

Case 3. Suppose that k ≥ 3 is an odd integer. Since ηk = η, it follows

Ĉk (m) = q−1δ0(m)+q−k−1η(−1)G k
1

∑
s 6=0

η(s)χ

(
Q(m)

−4s

)
.

If Q(m) = 0, then we are done by the orthogonality of η. On the other hand, if Q(m) 6= 0, then
the above summation over s 6= 0 is the same as the quantity η(−1)η(Q(m))G1, which follows by a
change of variables by letting t = Q(m)

−4s . This completes the proof of the third part. �

Since eigenvalues of GQ,k are qk · Ĉk (m) with m ∈ Fk
q , Theorem 12 follows directly from

Lemma 13.

4. Proof of Theorem 7

Eigenvalues of G‖·‖,k are of the form qk · �Sk−1
0 (m). Thus, Theorem 7 follows directly from [5,

Lemma 2.2]. For the reader convenience, we recall it here.

Lemma 14. Assume k = 4n +2 for some n ∈N, and q ≡ 3 mod 4, then we have�Sk−1
0 (m) = q−1δ0(m)−q− k+2

2
∑
r 6=0

χ(r‖m‖).

This lemma was deduced from the following general statement, which can be found in [5,
Lemma 2.3] or [4, Lemma 4].
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Lemma 15. For m ∈ Fk
q , we have

�Sk−1
0 = q−1δ0(m)+q−k−1ηk (−1)G k

1

∑
r 6=0

ηk (r )χ

(‖m‖
4r

)
.

When k = 4n +2 and q ≡ 1 mod 4, or k = 4n, one can compute from Lemma 15 that

λm = qk ·
{

q−1δ0(m)+q− k
2 −q− k+2

2 if ‖m‖ = 0

−q− k+2
2 if ‖m‖ 6= 0.

When k is odd, we have

λm = qk−1δ0(m)+q−1η(−‖m‖)G k+1
1 .

5. Proofs of Theorems 4 and 6

To prove the incidence bounds, we make use of the following lemma, which can be easily proved
by following the proof of the Expander mixing lemma [9, Theorem 2.11] and using the fact that
the only positive non-trivial eigenvalue of GQ,k is q

k−2
2 when k ≡ 0 mod 4 and q ≡ 3 mod 4. The

interested reader can also find a similar proof in [8, Lemma 2.6].

Lemma 16. Suppose that k ≡ 0 mod 4 and q ≡ 3 mod 4. Let Q(x) = −x2
1 +

∑k
i=2 x2

i . Let W be a
vertex set in GQ,k and e(W,W ) be the number of edges in W , then we have

e(W,W ) ≤ |W |2
q

+q
k−2

2 |W |.

We are ready to prove Theorem 4.

Proof of Theorem 4. Set k = d + 1. We identify each point p = (p1, . . . , pd ) in P with (0, p) ∈ Fk
q

and each sphere s centered at a ∈ Fd
q of square radius r 2 with (r, a) ∈ Fd

q . It is clear that there
is an incidence between the point p and the sphere s if (p1 − a1)2 + ·· · + (pd − ad )2 = (r − 0)2.
This means that (0, p)− (r, a) ∈ Ck , i.e. an edge between (0, p) and (r, a) in GQ,k . Let P ′ and S′ be
the sets of corresponding points in Fk

q . We have I (P,S) = e(P ′,S′). Set W = P ′∪S′. It is clear that
e(P ′,S′) ≤ e(W,W ). Thus, the theorem follows from Lemma 16 and theorem’s assumptions. �

Proof of Theorem 6. Set k = d +1. Notice that −1 is not a square since we have assumed that q is
congruent to 3 mod 4. From the fact that the product of two non-squares is a square, we see that
−r is a squre number in Fq for any non-square r in Fq . Hence, the argument is the same as what
we did for Theorem 4, except that we use the graph G‖·‖,k in place of GQ,k . �

6. Proof of Theorem 8

To prove Theorem 8, we need to deal with two cases d ≡ 3 mod 4 and d ≡ 1 mod 4. However,
the proofs for these two situations are almost identical, so we only present an argument for
d ≡ 3 mod 4. In particular, we will show that

Theorem 17. Let A be a set in Fq with q ≡ 3 mod 4 and |A| À q1/2. For d ≡ 3 mod 4, we have at
least one of two following statements:

(1) |A+ A| ≥ min
{

q
d+1
2d , |A| d+1

d

}
.

(2) |d A2|À |A|d
q

d−1
2

.
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For a triple (x, y, z) ∈ A × A × A, we say that (x, y, z) is a square triple if x2 + y2 + z2 is a square,
otherwise, we say it is a non-square triple.

For A ⊂ Fq , define A2 := {x2 : x ∈ A}. A tuple (x1, . . . , xd ) ∈ Ad is called square-sum-type if
x2

1 + ·· · + x2
d is a square in Fq . The next lemma shows that a constant proportion of d-tuples in

Ad is of square-sum-type.

Lemma 18. Any set A ⊂ Fq with |A|À q1/2 has at least À|A|d square-sum-type tuples.

Proof. Let SQ(Fq ) be the set of non-zero square elements in Fq , and B be the multi-set defined by
B := {x2

1 +x2
2 +·· ·+x2

d−1 : xi ∈ A}. We write B for the set of distinct elements in B and
∑

b∈B̄ m(b)2,
where m(b) is the multiplicity of b, is the number of tuples

(x1, . . . , xd−1, y1, . . . , yd−1) ∈ A2(d−1)

such that x2
1 +·· ·+x2

d−1 = y2
1 +·· ·+ y2

d−1. We denote the number of these tuples by E(B). One can
check that E(B) ¿|A|2d−3. We now consider the following equation

x y = a +b, (9)

where x, y ∈ SQ(Fq ), a ∈ A2,b ∈ B . Let M be the number of solutions of this equation. Since
|SQ(Fq )| = q−1

2 , it follows from Lemma 11 that∣∣∣∣M − |A2||B |(q −1)2

4q

∣∣∣∣≤ q1/2
(

(q −1)E(B)

2

)1/2 (
(q −1)|A2|

2

)1/2

.

Thus, M À |A|d (q−1)2

q if E(B) ¿ |A|2d−1

q , which can be satisfied under the condition |A| À q1/2,

since E(B) ¿|A|2d−3.
Observe that for a ∈ A2 and b ∈ B , if a +b is a square, then it contributes (q −1)/2 solutions to

the equation (9). Hence, the number of square-sum-type tuples (a1, . . . , ad ) ∈ Ad is at least 2M
q−1 .

This completes the proof of the lemma. �

We are now ready to prove Theorem 17

Proof of Theorem 17. If |A + A| ≥ |A|(d+1)/d or |A + A| ≥ q
d+1
2d , then we are done. Without loss of

generality, we assume that |A+ A| < |A| d+1
d and |A+ A| < q

d+1
2d .

We consider the following equation

(x1 − y1)2 + (x2 − y2)2 +·· ·+ (xd − yd )2 = t , (10)

where x1, x2, . . . , xd ∈ A+ A, y1, y2, . . . , yd ∈ A, t ∈ d A2 ∩SQ(Fq ) = (A2 +·· ·+ A2)∩SQ(Fq ).
Let M be the number of solutions of this equation.
By Lemma 18, the number of square-sum-type tuples in Ad is at least À|A|d . For each of those

tuples, denoted by (a1, . . . , ad ), it will contribute À |A|d solutions to the number of solutions of
the equation (10). Indeed, tuples with (x1, . . . , xd , y1, . . . , yd ) = (y1 +a1, . . . , yd +ad , y1, . . . , yd ) with
yi ∈ A satisfy the equation (10). Therefore, M À|A|2d .

Define P := (A + A)× (A + A)×·· ·× (A + A) ⊂ Fd
q and S be the set of spheres centered at points

in Ad of square radii in d A2. We have |P | = |A+ A|d and |S| = |A|d |d A2|.
To apply Theorem 4 effectively, one has to have the condition |P | ∼ |S|. To this end, we

partition the radius set into m subsets of size |A+A|d
|A|d , where m = |d A2||A|d

|A+A|d > 1 since otherwise

|A + A| ≥ |A|(d+1)/d . We denote those radius sets by R1, . . . ,Rm . For 1 ≤ i ≤ m, let Si be the set of
spheres centered at points in Ad of square radii in Ri . Notice that, for each i , Si can be an empty
set if there is no square element in Ri , but what we only need is an upper bound of Si which is
|A+ A|d .
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One can check that M is bounded by
∑m

i=1 I (P,Si ). For each i , applying Theorem 4 gives us

I (P,Si ) ≤ |A+ A|2d

q
+q

d−1
2 |A+ A|d ¿ q

d−1
2 |A+ A|d ,

since |A+ A| ≤ q
d+1
2d . Taking the sum over all i , we achieve

M =
m∑

i=1
I (P,Si ) ≤ q

d−1
2 |A+ A|d · |d A2||A|d

|A+ A|d = q
d−1

2 |d A2||A|d .

Using the fact that M À|A|2d leads to

|d A2|À |A|d
q

d−1
2

.

This completes the proof of the theorem. �

7. Open questions

Theorems 4 and 6 give some answers for Question 2, but we do not know whether or not
Theorem 1 can be improved for the following cases:

(1) (square radii): d ≡ 3 mod 4 and q ≡ 1 mod 4.
(2) (square radii): d ≡ 1 mod 4.
(3) (square radii): d ≡ 2 mod 4 and q ≡ 1 mod 4.

(4) (non-square radii): d ≡ 1 mod 4 and q ≡ 1 mod 4.
(5) (non-square radii): d ≡ 3 mod 4.
(6) (non-square radii): d is even.

We hope to address these cases in a subsequent paper.
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