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Abstract. We establish sharp Bohr phenomena for holomorphic functions defined on a bounded balanced
domain G in a complex Banach space X , which map into a simply connected domain or a convex domain
Ω in the complex plane C. Taking X as the n-dimensional complex plane and G as the open unit polydisk,
we consider a version of the Bohr inequality stronger than the above mentioned one and study the exact
asymptotic behaviour of the Bohr radius. Explicit lower bounds on the Bohr radii of this type are also
provided. Extending a recent result of Liu and Ponnusamy, we further record a refined form of the Bohr
inequality for the particular caseΩ=D, i.e. the open unit disk in C.
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1. Introduction and the main results

Let X be a complex Banach space and G ⊂ X , Ω ⊂ C be two domains. For any holomorphic
mapping f : G → Ω, let Dk f (x) denote the kth Fréchet derivative (k ∈ N) of f at x ∈ G , which
is a bounded symmetric k-linear mapping from

∏k
i=1 X to C. Any such f can be expanded into

the series

f (x) =
∞∑

k =0

1

k !
Dk f (x0)

(
(x −x0)k

)
(1)

in a neighborhood of any given x0 ∈G . It is understood that D0 f (x0)(x0) = f (x0) and

Dk f (x0)
(
xk

)
= Dk f (x0)(x, x, · · · , x︸ ︷︷ ︸

k-times

)
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for k ≥ 1. The reader is referred to [14] for a more general and detailed discussion in this area.
Now, let us denote by K G

X (Ω) the supremum of all r ∈ [0,1] such that the inequality

∞∑
k =1

∣∣∣∣ 1

k !
Dk f (0)

(
xk

)∣∣∣∣≤ d
(

f (0),∂Ω
)

(2)

holds for all x ∈ rG and for all holomorphic mappings f from a bounded balanced domain G ⊂ X
to Ω ⊂ C with an expansion (1) in a neighborhood of x0 = 0. We clarify that G is balanced if
uG ⊂ G for all u ∈ D, and d( f (0),∂Ω) is the Euclidean distance between f (0) and the boundary
∂Ω of the domain Ω. The sharp version of the famous theorem of Harald Bohr [8] states that
KD
C

(D) = 1/3. After this theorem found an application to the characterization problem of Banach
algebras satisfying the von Neumann inequality (cf. [12]), problems of similar type started being
studied extensively in different settings (see for example [1–7, 10, 11, 15–21] and the references
therein), and gained popularity by the name Bohr phenomenon. It is worth mentioning here that
Bohr inequalities of type (2) have been considered in [2, 15, 18]. Of particular interest to us is [1,
Theorem 8], which shows that for any balanced domain G centered at 0 in Cn , K G

Cn (D) ≥ 1/3, and
assuming G convex it was shown that K G

Cn (D) = 1/3. As a consequence of a more general theorem,
it was further proved in [15, Corollary 3.2] that K G

X (D) = 1/3 for any bounded balanced domain
G ⊂ X , X being a complex Banach space. In the following theorem, we replace D with more
general domains Ω and establish sharp Bohr phenomena. To this end, we define the following
two quantities for any given complex Banach space X and a bounded balanced domain G ⊂ X :

K̃ G
X = inf

{
K G

X (Ω) :Ω⊂C is simply connected
}

,

and

˜̃K G
X = inf

{
K G

X (Ω) :Ω⊂C is convex
}

.

Theorem 1. K̃ G
X = 3−2

p
2 and ˜̃K G

X = 1/3.

For X = C and G = D, the above theorem gives [18, Theorem 1 and Remark 1] back. Also, in
some sense, the second part of our Theorem 1 generalizes [15, Corollary 3.2].

Before we proceed further, we need to introduce some concepts. Let Dn = {(z1, z2, · · · , zn) ∈
Cn : ‖z‖∞ := max1≤k ≤n |zk | < 1} be the open unit polydisk in the n-dimensional complex plane
Cn . Any holomorphic f :Dn →C can be expanded in the power series

f (z) = c0 +
∑

|α|∈N
cαzα, z ∈Dn . (3)

Here and hereafter, we use the standard multi-index notation: α means an n-tuple (α1,α2,
· · · , αn) of nonnegative integers, |α| := α1 +α2 + ·· · +αn , z denotes an n-tuple (z1, z2, · · · , zn)
of complex numbers, and zα is the product zα1

1 zα2
2 · · · zαn

n . It is evident that in our previous
discussion, if the Banach space X is chosen to be Cn and G = Dn , then for any k ∈ N and for
any f as in (3) we have

1

k !
Dk f (0)

(
zk

)
= ∑

|α|=k
cαzα, z ∈Dn .

Hence, we are motivated to consider a “stronger” Bohr phenomenon in this case. To be more
specific, we denote by Kn(Ω) the supremum of all r ∈ [0,1) such that

∞∑
k =1

( ∑
|α|=k

∣∣cαzα
∣∣)≤ d

(
f (0),∂Ω

)
(4)

for all z ∈Dn satisfying ‖z‖∞ ≤ r and for all holomorphic f :Dn →Ωwith an expansion (3). Lower
and upper bounds for Kn(D) were obtained in [7, 10] and the recent article [4] has improved over
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previously known lower bounds. Although for any n > 1 the exact value for Kn(D) is yet unknown,
it is known from [3] that Kn(D) behaves asymptotically as

√
logn/

p
n. Let us define

K̃ n := inf
{
Kn(Ω) :Ω⊂C is simply connected

}
.

In the next theorem, we show that K̃ n has the same asymptotic behaviour as Kn(D).

Theorem 2. limn→∞ K̃ n
p

n/(
√

logn) = 1.

The aim of the penultimate theorem of this article is to give lower bounds on Kn(Ω) for simply
connected and convex domainsΩ inC. For this purpose, we need to be familiar with the quantity
S(k,n), known as the Sidon constant for the index set {α = (α1,α2, · · · , αn) : |α| = k}. S(k,n) is
defined as the smallest constant C such that

∑
|α|=k

|aα| ≤C sup
z∈Dn

∣∣∣∣∣ ∑
|α|=k

aαzα
∣∣∣∣∣

for any k-homogeneous polynomial P (z) =∑
|α|=k aαzα in n-complex variables (see f.i. [11]).

Theorem 3. SupposeΩ⊂C is a simply connected domain and f :Dn →Ω is holomorphic with an
expansion (3). Then Kn(Ω) ≥ r0, r0 being the only root in (0,1) of the equation

y +
∞∑

k =2
kS(k,n)yk = 1

4
. (5)

In addition, if Ω is assumed to be convex, then Kn(Ω) ≥ r1, r1 being the only root in (0,1) of the
equation

y +
∞∑

k =2
S(k,n)yk = 1

2
. (6)

We remark here that the lower bound r1 of Kn(Ω) in the second part of the above Theorem 3
was obtained for Ω = D in [4, Theorem 3.3]. Finally, we concentrate on the functions mapping
into D. In particular, very recently a refined version of [1, Theorem 8] has appeared in [17,
Theorem 2.1] along with several other Bohr or Bohr-type inequalities (see also [20, Theorem 2] for
one variable versions of [17, Theorem 2.1]). Like [1, Theorem 8], [17, Theorem 2.1] also deals with
the holomorphic functions defined on a balanced domain G ⊂ Cn , and the result was shown to
be sharp for G convex. Motivated by [15, Corollary 3.2], we show in the last theorem of this article
that [17, Theorem 2.1] extends for the holomorphic functions defined on a bounded balanced
domain G in any complex Banach space X .

Theorem 4. Suppose X is a complex Banach space, G ⊂ X is a bounded balanced domain and
f : G →D is a holomorphic function with an expansion (1) in a neighborhood of x0 = 0. Then

ap +
∞∑

k =1

∣∣∣∣ 1

k !
Dk f (0)

(
xk

)∣∣∣∣+(
1

1+a
+ r

1− r

) ∞∑
k =1

∣∣∣∣ 1

k !
Dk f (0)

(
xk

)∣∣∣∣2

≤ 1 (7)

for x ∈ rp (a)G and r ≤ rp (a), where rp (a) = (1−ap )/(2−a2−ap ), a = | f (0)| and p > 0. The number
rp (a) and the factor 1/(1+a) in (7) cannot be improved.

It may be noted that the other Bohr-like inequalities, i.e. [17, the Theorems 2.3, 2.6, 2.7 and
the Corollary 2.8] can also be proved in sharp form for the holomorphic functions defined on a
bounded balanced domain of a complex Banach space X in a similar manner as in Theorem 4.
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2. Proofs of the theorems

Proof of Theorem 1. We start with any arbitrary simply connected domain Ω ⊂ C. For any
holomorphic f : G → Ω with an expansion (1) around x0 = 0, we observe that the holomorphic
function

f1(u) := f (uβ) = f (0)+
∞∑

k =1

(
1

k !
Dk f (0)

(
βk

))
uk ,u ∈D (8)

maps D into the same domainΩ for any fixed β ∈G . Therefore, f1 is subordinate to g in D, where
g is the univalent Riemann mapping fromD ontoΩ, satisfying g (0) = f1(0) = f (0). Now, using the
well-known theorem of de Branges (cf. [9] and [13, p. 197]), we have∣∣∣∣ 1

k !
Dk f (0)

(
βk

)∣∣∣∣≤ k
∣∣ f ′

1(0)
∣∣

for all k ≥ 1. Since β is arbitrary, [18, Lemma 1] gives∣∣∣∣ 1

k !
Dk f (0)

(
xk

)∣∣∣∣≤ 4kd
(

f (0),∂Ω
)

(9)

for any x ∈G . Hence, given any r ∈ [0,1),
∞∑

k =1

∣∣∣∣ 1

k !
Dk f (0)

(
yk

)∣∣∣∣≤ 4r

(1− r )2 d
(

f (0),∂Ω
)

for all y ∈ rG . Thus, inequality (2) is satisfied whenever 4r /(1− r )2 ≤ 1, i.e. if r ≤ 3−2
p

2, which
implies that K G

X (Ω) ≥ 3− 2
p

2, and therefore K̃ G
X ≥ 3− 2

p
2. To show that K̃ G

X is actually equal
to 3 − 2

p
2, we adopt the approach of [15]. For any r̃ ∈ (3 − 2

p
2,1), there exists c ∈ (0,1) and

V ∈ ∂G such that cr̃ > 3− 2
p

2 and c supx∈∂G ‖x‖ < ‖V ‖. Now, we consider the Koebe function
K (u) = u/(1−u)2,u ∈ D and define the holomorphic function f on G by f (x) = K (cφV (x)/‖V ‖),
where φV is a bounded linear functional on X with φV (V ) = ‖V ‖ and ‖φV ‖ = 1. It is easy to see
that f maps inside a simply connected domain Ω, which is, in this case, the range of K , i.e. the
whole plane C minus the part of the negative real axis from −1/4 to infinity. Thus, for x = r̃ V ,

∞∑
k =1

∣∣∣∣ 1

k !
Dk f (0)

(
xk

)∣∣∣∣= cr̃

(1− cr̃ )2 > 1

4
= d

(
f (0),∂Ω

)
,

showing that K̃ G
X cannot be bigger than 3− 2

p
2. Similar argument can be used for completing

the proof of the case ˜̃K G
X = 1/3. We only need to note that the right hand side of the inequality (9)

will be replaced by 2d( f 0),∂Ω) (see [18, Lemmas 2, 3]), and for the proof of the sharpness of the
constant 1/3, we have to use L(u) = u/(1−u),u ∈ D instead of K (u), and observe that L maps D
onto the half-plane c(w) >−1/2. �

Proof of Theorem 2. We follow the ideas of [3] in this proof. Given any k-homogeneous (k ≥ 1)
complex polynomial P (z) =∑

|α|=k aαzα defined inCn and for any pre-assigned ε> 0, there exists
µ> 0 such that ( ∑

|α|=k

|aα|
2k

k+1

) k+1
2k

≤µ(1+ε)k sup
‖z‖∞=1

∣∣∣∣∣ ∑
|α|=k

aαzα
∣∣∣∣∣ (10)

(see [3, Theorem 1.1]). Now, for any holomorphic function f which maps Dn into a simply
connected domainΩ⊂C and has an expansion (3), it is immediate from (9) that( ∑

|α|=k

|cα|
2k

k+1

) k+1
2k

≤ 4µk(1+ε)k d
(

f (0),∂Ω
)

.

Hence, using the Hölder’s inequality and the estimate(
n +k −1

k

)
≤ (n +k −1)k

k !
<

( e

k

)k
(n +k −1)k < ek

(
1+ n

k

)k
,
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we get, by setting r = (1−2ε)
√

(logn)/n

∞∑
k =1

r k
∑

|α|=k

|cα| ≤
∞∑

k =1
r k

( ∑
|α|=k

|cα|
2k

k+1

) k+1
2k

(
n +k −1

k

) k−1
2k

< 4µd
(

f (0),∂Ω
) ∞∑

k =1
k

(
r
p

e(1+ε)
)k

(
1+ n

k

) k−1
2

= 4µd
(

f (0),∂Ω
) ∞∑

k =1
k

√
logn

n

p
e(1−2ε)(1+ε)

k (
1+ n

k

) k−1
2

.

For n large enough,

tn :=
√

logn

n1/4

p
2e(1−2ε)(1+ε) < 1,

and for k >p
n, observe that (

1+ n

k

) k−1
2 < (

2
p

n
) k

2 .

Using both the above facts,

∑
k >p

n

k

√
logn

n

p
e(1−2ε)(1+ε)

k (
1+ n

k

) k−1
2 ≤ ∑

k >p
n

k

(√
log n

n1/4

p
2e(1−2ε)(1+ε)

)k

≤ tn

(1− tn)2

which goes to 0 as n → ∞. For k ≤ p
n, we start by making n sufficiently large such that

2 < k0 ≤ logn can be chosen for which the inequalities

k
1

k0−1

0 ≤ 1+ ε

2
,

∑
k0 ≤k ≤p

n

k
(
(1−2ε)(1+ε)3/2)k ≤ 1

8µ
and

(
1

n

) k0−2
2(k0−1) ≤ ε

2

are satisfied. Observing that x1/(x−1) is decreasing and (x −2)/2(x −1) is increasing in (1,∞), we
obtain, for k ≥ k0:(

k
k

k−1

(
1

n
+ 1

k

)) k−1
k ≤

((
1

n

) k−2
2(k−1) +k

1
k−1

) k−1
k

≤
(

1

n

) k0−2
2(k0−1) +k

1
k0−1

0

 k−1
k

≤ (1+ε)
k−1

k ≤ 1+ε,

which, after a little simplification, gives(
1+ n

k

) k−1
2 ≤ (1+ε)

k
2

n
k
2

n
1
2 k

k
2

.

Therefore, observing that x 7→ n1/x x is decreasing upto x = logn and increasing thereafter, we get

∑
k0 ≤k ≤p

n

k

√
logn

n

p
e(1−2ε)(1+ε)

k (
1+ n

k

) k−1
2

≤ ∑
k0 ≤k ≤p

n

k

(√
e logn(1−2ε)(1+ε)3/2

√
1

n1/k k

)k

≤ ∑
k0 ≤k ≤p

n

k
(
(1−2ε)(1+ε)3/2)k ≤ 1

8µ
.
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It remains to analyze the case 1 ≤ k ≤ k0. In this case, we observe that for n large enough,

k

n
+1 ≤ k0

n
+1 ≤ ε+1,

and hence (
1+ n

k

) k−1
2 ≤ (1+ε)

k
2

(n

k

) k−1
2

.

Making use of the above inequality and the fact that x 7→ n1/x x is decreasing in [1,k0], it is easily
seen that

k0∑
k =1

k

√
logn

n

p
e(1−2ε)(1+ε)

k (
1+ n

k

) k−1
2 ≤

k0∑
k =1

k

(√
e logn(1−2ε)(1+ε)3/2 k1/(2k)

k1/2
0 n1/(2k0)

)k

,

which tends to 0 as n →∞. Combining all the above three estimates, we have
∞∑

k =1
r k

∑
|α|=k

|cα| ≤ 4µd
(

f (0),∂Ω
)( 1

8µ
+o(1)

)
≤ d

(
f (0),∂Ω

)
for n large enough. Therefore, Kn(Ω) ≥ (1−2ε)

√
(logn)/n, provided n is sufficiently large. On the

other hand, it is known from [7] that limn→∞Kn(D)
√

n/(logn) ≤ 1. Since K̃ n ≤ Kn(D), our proof
is complete. �

Proof of Theorem 3. First suppose that Ω is simply connected. Hence, using the definition of
Sidon constant, it follows from (9) that∑

|α|=k

|cα| ≤ 4kS(k,n)d
(

f (0),∂Ω
)

for all k ≥ 1. Assume that ‖z‖∞ ≤ r . Then applying the above inequality and noting that S(1,n) = 1,
it is clear that (4) is satisfied if

4
∞∑

k =1
kS(k,n)r k = 4

(
r +

∞∑
k =2

kS(k,n)r k

)
≤ 1. (11)

It is easily seen that

R(y) := y +
∞∑

k =2
kS(k,n)yk −1/4

is increasing in (0,1), R(0) =−1/4 < 0, R(1/2) = 1/4+∑∞
k =2 kS(k,n)(1/2)k > 0, and therefore R has

exactly one root r0 in (0,1). As a consequence, the inequality (11) holds if ‖z‖∞ ≤ r0, where r0 is
the only root in (0,1) of the equation (5), i.e. Kn(Ω) ≥ r0. For convexΩ, we only have to start from
the inequality ∑

|α|=k
|cα| ≤ 2S(k,n)d

(
f (0),∂Ω

)
for all k ≥ 1, and argue exactly as above. �

Proof of Theorem 4. We construct f1 as in the proof of Theorem 1, which then becomes a
holomorphic self mapping ofDwith an expansion (8). Since β ∈G is arbitrary, [17, Theorem A(b)]
asserts the validity of (7) under the conditions x ∈ rp (a)G and r ≤ rp (a), rp (a) as defined in the
statement of Theorem 4. To prove the sharpness part, we again need to use arguments similar
to that of the article [15]. For the sake of completeness, it is included here. Given any a ∈ [0,1),
we begin by considering the function F (u) = (a −u)/(1− au),u ∈ D. For any r̃ ∈ (rp (a),1), there
exists c ∈ (0,1) and V ∈ ∂G such that cr̃ > rp (a) and c supx∈∂G ‖x‖ < ‖V ‖. Now we define the
holomorphic function f on G by f (x) = F (cφV (x)/‖V ‖), where φV is a bounded linear functional

C. R. Mathématique — 2021, 359, n 7, 911-918
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on X with φV (V ) = ‖V ‖ and ‖φV ‖ = 1. Hence, for x = r̃ V and r = r̃ , the left hand side of the
inequality (7) reduces to

η(a, r̃ ) := ap + cr̃
(
1−a2

)
1−acr̃

+ 1+ar̃

(1+a) (1− r̃ )

(
1−a2

)2
(cr̃ )2

1− (acr̃ )2 > ap + (
1−a2) cr̃

1− cr̃
> 1.

On the other hand, let us assume that the quantity 1/(1+ a) in (7) can be replaced by a bigger
number A and the resulting inequality is still valid for all x ∈ rp (a)G and r ≤ rp (a). We use the
same f and F as already defined, but instead of fixing some r̃ , we will work with rp (a) itself;
and for any c ∈ (0,1), we get a V ∈ ∂G as above. Now for x = crp (a)V and r = rp (a), the left
hand side of the modified inequality (7) is bigger than η(a,crp (a)), which is again bigger than
ap + (1−a2)(c2rp (a))/(1− c2rp (a)). It is evident that the last quantity approaches to 1 as c → 1−,
and at the same time the modified inequality (7) is satisfied for this particular x and r as well.
Therefore,

lim
c →1−

(
ap + c2rp (a)

(
1−a2

)
1−ac2rp (a)

+
(

A+ rp (a)

1− rp (a)

) (
1−a2

)2 (
c2rp (a)

)2

1− (
ac2rp (a)

)2

)

= ap + rp (a)
(
1−a2

)
1−arp (a)

+
(

A+ rp (a)

1− rp (a)

) (
1−a2

)2 (
rp (a)

)2

1− (
arp (a)

)2

= 1 = ap + (
1−a2) rp (a)

1− rp (a)
,

i.e. A = 1/(1+a). Summarizing the above discussion, we conclude that neither the number rp (a)
nor the factor 1/(1+a) could be improved. �
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