

Comptes Rendus Mathématique

Jeffrey D. Carlson

The K-theory of the conjugation action

Volume 359, issue 7 (2021), p. 795-796

Published online: 2 September 2021

https://doi.org/10.5802/crmath.235

This article is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org e-ISSN: 1778-3569

Comptes Rendus Mathématique

2021, 359, n° 7, p. 795-796 https://doi.org/10.5802/crmath.235

Geometry and Topology / Géométrie et Topologie

The K-theory of the conjugation action

Jeffrey D. Carlson^a

 a Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2AZ, LIK

E-mail: j.carlson@imperial.ac.uk

Abstract. In 1999, Brylinski and Zhang computed the complex equivariant K-theory of the conjugation self-action of a compact, connected Lie group with torsion-free fundamental group. In this note we show it is possible to do so in under a page.

Manuscript received 7th April 2021, revised and accepted 9th June 2021.

Brylinski and Zhang [2] showed that if G is a compact, connected Lie group with torsion-free fundamental group, then the equivariant K-theory of its conjugation action G^{Ad} is isomorphic to the ring $\Omega^*_{RG/\mathbb{Z}}$ of Grothendieck differentials on the complex representation ring RG of G. Their proof uses results on holomorphic differentials on complex manifolds, a reduction to the case G is a torus, and some algebraic geometry. We show a more concrete and arguably more natural expression for the ring $K^*_G(G^{\mathrm{Ad}})$ can be obtained rapidly using only Hodgkin's Künneth spectral sequence [5], in the same manner they already use it, and elementary algebraic considerations. We then show this purely algebraic isomorphism admits a satisfying geometric interpretation, and remark finally that this geometric version gives back Brylinski and Zhang's description in terms of Grothendieck differentials at no added cost.

Theorem (Brylinski–Zhang [2, Thm. 3.2]). Let G be a compact, connected Lie group with torsion-free fundamental group. Then $K_G^*(G^{\operatorname{Ad}})$ is isomorphic to $RG \otimes K^*G$ as an RG-algebra. Under this identification, the forgetful map $f \colon K_G^*(G^{\operatorname{Ad}}) \longrightarrow K^*G$ becomes reduction with respect to the augmentation ideal IG of RG.

Proof. Write G^{bi} for G under the $(G \times G)$ -action $(h,k) \cdot g = hg\,k^{-1}$. The orbit space of $G^{\mathrm{bi}} \times G^{\mathrm{bi}}$ under the restricted, free diagonal action of $1 \times G$ is $(G \times 1)$ -equivariantly diffeomorphic to G^{Ad} via $(g',g) \longmapsto g'g^{-1}$, so when $X = Y = G^{\mathrm{bi}}$, Hodgkin's $(\mathbb{Z} \times \mathbb{Z}/2)$ -graded Künneth spectral sequence $\mathrm{Tor}_{R(G \times G)}(K_{G \times G}^*X, K_{G \times G}^*Y) \Longrightarrow K_{G \times G}^*(X \times Y)$ reduces to $\mathrm{Tor}_{RG \otimes RG}(RG, RG) \Longrightarrow K_G^*(G^{\mathrm{Ad}})$. Here the two structure maps $RG \otimes RG \longrightarrow RG$ are the both the multiplication of RG. Recall [5, Prop. 11.1] that under our hypotheses, RG is the tensor product of a polynomial ring on generators $y_i \in IG$ and a Laurent polynomial ring on generators $t_j \in 1 + IG$. Let P be the free abelian group on generators q_i and w_j and let $\gamma \colon P \longrightarrow IG$ be the linear map taking q_i to y_i and w_j to $t_j - 1$. Then an $(RG)^{\otimes 2}$ -module resolution of RG is given by $RG \otimes \Lambda P \otimes RG$, with differential the derivation vanishing on $RG \otimes \mathbb{Z} \otimes RG$ and sending $1 \otimes z \otimes 1$, for $z \in P$, to $1 \otimes 1 \otimes \gamma(z) - \gamma(z) \otimes 1 \otimes 1$. To compute the Tor, apply $-\otimes_{RG \otimes RG} RG$ to this resolution to obtain the CDGA $RG \otimes \Lambda P$ with 0 differential, RG in bidegree (0,0), and P in bidegree (-1,0).

The spectral sequence collapses because the differentials d_r for $r \geq 2$ send all generators into the right half-plane. Since π_1G is torsion-free and X = G is locally contractible of finite covering dimension, the spectral sequence strongly converges to the intended target. Hence $RG \otimes \Lambda P$ is the graded algebra associated to a filtration $(F_p)_{p \leq 0}$ of $K_G^*(G^{\mathrm{Ad}})$ with $F_0 \cong RG$ and $F_{-1}/F_0 \cong RG \otimes P$. Since F_0 and F_0 are both free abelian, there is no additive extension problem, so F_0 is also free abelian as a group. Let F_0 be elements in F_0 lifting F_0 and F_0 and F_0 under the isomorphism F_0 and F_0 are F_0 and F_0 and F_0 and F_0 are F_0 and F_0 and square to 0 since F_0 and F_0 contains no 2-torsion, and by induction, they generate F_0 as an F_0 and F_0 and F_0 are F_0 and F_0 are F_0 and F_0 as an F_0 and F_0 as an F_0 and F_0 are F_0 and F_0 and F_0 are F_0 are F_0 are F_0 are F_0 and F_0 are F_0 are F_0 are F_0 and F_0 are F_0 are F_0 are F_0 and F_0 are F_0 are

To see the forgetful map f is as claimed, note that forgetting the $(G \times 1)$ -action on G^{bi} induces a map to the spectral sequence $\mathrm{Tor}_{RG}(\mathbb{Z},\mathbb{Z}) \Longrightarrow K^*G$, which again collapses by lacunary considerations. Computing $\mathrm{Tor}_{RG}(\mathbb{Z},\mathbb{Z}) \cong \Lambda P$ with the resolution $\Lambda P \otimes RG$ of \mathbb{Z} shows the map $E_2(f) \colon RG \otimes \Lambda P \longrightarrow \Lambda P$ is reduction modulo IG and $\Lambda P \cong K^*G$.

Remark. We can be completely explicit about the exterior generators. As observed by Hodgkin [4, Thm. A], the injection $U(n) \rightarrow U := \varinjlim U(n)$ induces an additive map $\beta \colon RG \longrightarrow K^1G$ descending to a group isomorphism between the module $IG/(IG)^2$ of indecomposables of RG and the module PK^*G of primitives of the exterior Hopf algebra $K^*G \cong \Lambda PK^*G$. In particular, a set of generators is given by $\beta(\lambda_i) = \beta(\lambda_i - \dim \lambda_i)$ for λ_i lifts in G of the fundamental representations of the commutator subgroup G' and $\beta(t_j) = \beta(t_j - 1)$ for $t_j \colon G \to G/G' \twoheadrightarrow U(1)$ circular coordinate functions of the torus $G^{ab} = G/G' \cong (S^1)^{\operatorname{rk} G - \operatorname{rk} G'}$. Let $Q = \{\lambda_i, t_i\}_{i=1}^n$.

The map β in fact factors as $f \circ \beta^{\mathrm{Ad}}$ for a map $\beta^{\mathrm{Ad}} : RG \longrightarrow K_G^*(G^{\mathrm{Ad}})$, already giving surjectivity of f since PK^*G generates $K^*G = \Lambda PK^*G$ as a ring. Atiyah [1, Lem. 2, pf.] described β^{Ad} and hence β geometrically: given a representation $\rho : G \longrightarrow \mathrm{U}(n)$, we can build a representative E of $\beta(\rho)$ via the clutching construction, taking with two trivial bundles $CG \times \mathbb{C}^n$ over the cone CG on G and gluing them along $G \times \mathbb{C}^n$ via the relation $(g,v) \sim (g,\rho(g)v)$ to obtain a bundle over the suspension $CG \cup_G CG$. The action $h \cdot (g,v) = (hgh^{-1},\rho(h)v)$ of G on $G^{\mathrm{Ad}} \times \mathbb{C}^n$ preserves this relation and so induces a G-action on E making it a G-equivariant bundle over the suspension of G^{Ad} .

The RG-module structure on $K_G^*(X)$ is always given by $\sigma \cdot [E] = [\alpha(\sigma) \otimes E]$, where if $\sigma \colon G \longrightarrow \operatorname{Aut} V$ is a representation, then $\alpha(\sigma)$ is the trivial bundle $X \times V$ equipped with the diagonal G-action. Thus $\sigma \otimes \prod_k \beta(\rho_k) \longmapsto \alpha(\sigma) \cdot \prod_k \beta^{\operatorname{Ad}}(\rho_k)$ for $\rho_k \in Q$ gives an explicit isomorphism $RG \otimes K^*G \xrightarrow{\sim} K_G^*(G^{\operatorname{Ad}})$.

Remark. The first paragraph of our proof is a variant of Brylinski–Zhang's §4 [2]. Once the ring structure is determined as in our proof's second paragraph, replacing §5–6, one knows their map $\phi\colon \Omega^*_{RG/\mathbb{Z}} \longrightarrow K^*_G(G^{\operatorname{Ad}})$ from the ring of Grothendieck differentials is an isomorphism as soon as one knows it is a well-defined RG-algebra map [2, Prop 3.1], for the class $\beta^{\operatorname{Ad}}(\rho) \in K^1_G(G^{\operatorname{Ad}})$ from the previous remark is in fact the same as Brylinski–Zhang's $\phi(d\rho)$, so that $f \circ \phi$ takes a basis $\{d\rho: \rho \in Q\}$ of the free RG-module $\Omega^1_{RG/\mathbb{Z}}$ to a \mathbb{Z} -basis $\{\beta(\rho): \rho \in Q\}$ of PK^*G .

References

- [1] M. F. Atiyah, "On the K-theory of compact Lie groups", Topology 4 (1965), no. 1, p. 95-99.
- [2] J.-L. Brylinski, B. Zhang, "Equivariant K-theory of compact connected Lie groups", K-Theory 20 (2000), no. 1, p. 23-36.
- [3] C.-K. Fok, "The Real K-theory of compact Lie groups", SIGMA, Symmetry Integrability Geom. Methods Appl. 10 (2014), article no. 022 (26 pages).
- [4] L. Hodgkin, "On the K-theory of Lie groups", Topology 6 (1967), no. 1, p. 1-36.
- [5] ——, "The equivariant Künneth theorem in *K*-theory", in *Topics in K-theory*, Lecture Notes in Mathematics, vol. 496, Springer, 1975, p. 1-101.

¹ the corrected version of—see Fok [3, Rmk. 2.8.1]