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Abstract. The Cauchy–Dirichlet problem for the Moore–Gibson–Thompson equation is analyzed. With the
focus on non-homogeneous boundary data, two approaches are offered: one is based on the theory of
hyperbolic equations, while the other one uses the theory of operator semigroups. This is a mixed hyperbolic
problem with a characteristic spatial boundary. Hence, the regularity results exhibit some deficiencies when
compared with the non-characteristic case.

Résumé. On analyse le problème de Cauchy–Dirichlet pour l’équation de Moore–Gibson–Thompson avec
des données non-homogènes. Deux méthodes sont considérées: la théorie des équations hyperboliques et la
théorie des semi-groupes d’opérateurs. Il s’agit d’un problème hyperbolique mixte avec une frontière spatiale
caractéristique. Par conséquent, les résultats de régularité présentent certaines lacunes par rapport au cas
non caractéristique.
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1. Introduction

The Moore–Gibson–Thompson (MGT) equation

wt t t +αwt t − c2∆w −b∆wt = f (1)

is a hyperbolic partial differential equation with respect to the t variable, of order three for all
b > 0. This can be seen as follows: its principal symbol is −iξ3

0+biξ0|ξ|2, and hence, the equation is
even strictly hyperbolic, since its characteristic roots 0,

p
b|ξ|,−pb|ξ| are distinct for all ξ ∈Rd \{0}.

The other terms are of lower order. Since the principal part is strictly hyperbolic, hyperbolicity is
preserved regardless of lower order terms; see [18, Corollary 12.4.10]. In this article we discuss the
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Cauchy–Dirichlet problem for the equation (1), that means the initial-boundary value problem
(IBVP)

M w = f in Q, w = g in Σ, w(0) = w0 , wt (0) = w1 , wt t (0) = w2 in Ω.

having set

M w := wt t t +αwt t − c2∆w −b∆wt , (2)

and where Ω is a (non-empty) bounded, open and connected subset of Rd with a smooth
boundary Γ. The set Q = (0,T )×Ω is the time-space cylinder with lateral boundary Σ= (0,T )×Γ
where T > 0. More specifically, we are interested in the well-posedness of this Cauchy–Dirichlet
problem in a suitable Sobolev space.

While general results for the well-posedness of hyperbolic initial-boundary value problems
are available, none of them can be just quoted here for an easy answer. The problem with the
MGT equation is that the spatial boundary Γ is characteristic. Note that this third order equation
does not contain a derivative of order three in normal direction, regardless of the geometry
of the boundary. Hence, the analysis by Sakamoto [47] cannot be used to study the present
IBVP. Only Hörmander’s discussion of the mixed hyperbolic problem [18, Section 12.9] allows
for characteristic boundaries. But his approach is limited to the constant coefficient problem in
the half space. A C∞-theory is presented, hence there are no estimates.

We explore two distinct approaches to the regularity analysis of the problem under consider-
ation. One uses the theory of hyperbolic equations – a proper perspective not embraced so far in
the literature on the MGT equation – and makes necessary adjustments to Sakamoto’s approach
because of the characteristic boundary.

The other one takes instead the perspective of Pandolfi and the first named author which
relates the MGT equation to a suitable wave equation with memory [3]. The latter approach then
appeals to the hyperbolic regularity theory for linear wave equations with Dirichlet boundary
conditions which is largely a consequence of Sakamoto’s work on scalar strictly hyperbolic
equations [46, 47]. An approach via first order system was given in the book by Chazarain and
Piriou [8, Example 7.3.10]. A closer major reference for the present analysis is the work by
Lasiecka, Lions and Triggiani, where energy methods and semigroup theory intertwine [27]. The
relevance of the theory of cosine operators for the regularity analysis of second-order equations
proves its strength also in the study of the third-order equation under examination.

The two approaches combine to bring about the final conclusion, in the form of the interior
and boundary regularity results stated as Theorem 1 below. It is interesting to note the differences
between the two approaches. The approach based on the theory of semigroups requires a little
more regularity of the Dirichlet boundary data to obtain optimal results concerning interior
regularity. On the other hand, the hyperbolic approach assumes less regularity of the boundary
data and produces less interior regularity. Both arguments lead to a trace regularity result.

The structure of the paper is readily outlined. In the next Subsection 1.1 we present the full
statement of the main results. We leave a review of pertinent literature on the MGT equation
to Subsection 1.2, along with the a brief mention of the physical considerations which brought
about the (quasilinear) Jordan–Moore–Gibson–Thompson equation, and thus its linearization.
This subsection is intended to provide a context for the MGT equation, along with an updated
list of references. Its reading can be postponed, if one aims at focusing on the core of the present
study. Section 2 and Section 3 contain the distinct analyses, that eventually culminate in the proof
of our main result, in accordance with the aforesaid distinct approaches.

C. R. Mathématique — 2021, 359, n 7, 881-903



Francesca Bucci and Matthias Eller 883

1.1. Main result

Consider the Cauchy–Dirichlet problem for the MGT equation, that we rewrite here for the
reader’s convenience:


wt t t +αwt t − c2∆w −b∆wt = f (t , x) in Q

w(0, ·) = w0 , wt (0, ·) = w1 , wt t (0, ·) = w2 inΩ

w(t , x) = g (t , x) on Σ.

(3)

We briefly recall that the partial differential equation (PDE) referred to in the literature as the
Moore–Gibson–Thompson equation – in place of the longer Stokes–Moore–Gibson–Thompson–
Jordan equation, which gives credit to various contributions during the decades, from Stokes [49]
to Jordan [20, 21] – is the linearization of a mathematical model of ultrasonic wave propagation,
known as the Jordan–Moore–Gibson–Thompson equation; see the next Subsection 1.2 for an
overview in a bit more detail. The unknown w = w(t , x), (t , x) ∈ (0,T )×Ω, represents the acoustic
velocity potential or alternatively, the acoustic pressure (cf. [24] for a discussion on this issue). The
coefficients c, b,α are constant and positive; they represent the speed and diffusivity of sound (c,
b), and a viscosity parameter (α), respectively. A relaxation parameter τ > 0 whose origin will
appear clearer in Subsection 1.2 has been set equal to 1, for simplicity of exposition. The value

γ=α− c2

b
(4)

will occur throughout, even though its property of being a threshold for uniform stability will
not play any role here; see the former investigations of Kaltenbacher et al. [23] and Marchand et
al. [39] (the latter providing a clarifying spectral analysis), as well as Dell’Oro and Pata [15] (driven
by the perspective of viscoelasticity). Indeed, the first studies on (semigroup) well-posedness of
the Cauchy–Dirichlet and Cauchy–Neumann problems associated with the MGT equation are
carried out in [23] and [39], in the case of homogeneous boundary conditions (i.e. with g ≡ 0).
The key idea in both studies is the introduction of the auxiliary variable z = wt + c2w/b and the
equivalent coupled (PDE-ODE) system satisfied by (z, w), where z solves a second-order wave
equation.

In the present work, focus is more specifically on the boundary-to-interior and interior-to-
boundary regularity of the solutions, in a basic (and natural) functional setting. Accordingly, the
regularity of the map

{
w0, w1, w2, f , g

}−→ {
w, wt , wt t ,

∂w

∂ν
,
∂2w

∂ν2

}
(5)

which associates to all data the interior solution (position, velocity, acceleration) in Q, as well as
normal derivatives of order one and two on Σ, will be the object of our investigation. Since the
differential equation is of order three, the most natural setting from the viewpoint of hyperbolic
PDE is to look for solutions w ∈ H 2

loc(Q) or w ∈C ([0,T ], H 2(Q)).
Our main result concerning the third order PDE under investigation, stated below, is similar

to the interior and boundary regularity results that pertains to the Cauchy–Dirichlet problem for
second order wave equations; see [47], [27, Theorem 3.4, Theorem 2.1].

C. R. Mathématique — 2021, 359, n 7, 881-903
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Theorem 1.

(a) With reference to the IBVP (3) with 0 < T <+∞, assume that

w0 ∈ H 2(Ω) , w1 ∈ H 1(Ω) , w2 ∈ L2(Ω) , (6)

f ∈ L2(Q) = L2 (
0,T ;L2(Ω)

)
, (7)

g ∈C
(
[0,T ], H 3/2(Γ)

)∩H 2 (
0,T ;L2(Γ)

)
, (8)

g t ∈C
(
[0,T ], H 1/2(Γ)

)
, (9)

along with the compatibility conditions

w0
∣∣
Γ = g

∣∣
t=0 ∈ H 3/2(Γ) , w1

∣∣
Γ = g t

∣∣
t=0 ∈ H 1/2(Γ) . (10)

Then the unique solution to (3) satisfies

(w, wt , wt t ) ∈C
(
[0,T ], H 2(Ω)×H 1(Ω)×L2(Ω)

)
. (11)

If, in addition g ∈ H 2(Σ), then we have the trace regularity result

∂2w

∂t ∂ν
∈ L2(Σ) . (12)

(b) Assume that g satisfies – in place of (8)-(9) – the weaker property

g ∈ H 1(Σ) and g t ∈ H 1(Σ) , (13)

with the regularity (7) of the affine term and

w0 ∈ H 1(Ω) , w1 ∈ H 1(Ω) , w2 ∈ L2(Ω)

(together with the compatibility conditions (10)). Then, the unique solution to (3) satisfies

(w, wt , wt t ) ∈C ([0,T ], H 1 (
Ω)×H 1(Ω)×L2(Ω)

)
,

and the following trace regularity result holds true:

∂w

∂ν
,
∂2w

∂t∂ν
∈ L2(Σ) . (14)

All quantities are continuous with respect to the data, consistently with the respective topologies.

Remark 2 (Boundary regularity).

(i) It is important to emphasize that – just like in the case of wave equations or other
hyperbolic-like PDE – the boundary regularity (12) cannot be inferred on the only basis
of the interior regularity (w, wt ) ∈ C ([0,T ], H 2(Ω)× H 1(Ω)). Similarly, the regularity (14)
does not follow directly from the interior regularity (w, wt ) ∈C ([0,T ], H 1(Ω)×H 1(Ω)).

(ii) The MGT equation does not yield the full trace regularity ∂νw ∈ H 1(Σ) and ∂2
νw

∈ L2(Σ) which would be expected from a third-order strictly hyperbolic PDE with non-
characteristic boundary [47]. This is exactly because the boundary Σ is characteristic.

(iii) While a trace regularity result for the second-order normal derivative cannot be obtained,
we wonder whether g ∈ H 2(Σ) implies ∂w/∂ν ∈ H 1(Σ).

(iv) Instrumental to the study of an inverse problem, the regularity of boundary trace (12)
is shown in [32] for the special case of homogeneous boundary data. The said result is
contained in our Proposition 6 which pertains to the general non-homogeneous case,
and a fortiori in Theorem 1(a). The respective proofs are distinct.

Remark 3 (Interior regularity). In the case of homogeneous boundary data and affine term,
the interior regularity of solutions (11) (in Theorem 1(a)) is found already in the well-posedness
result of [39, Theorem 2.1], and also in the recent [3, Theorem 5.3]. Indeed, g ≡ 0 combined
with the assumption (6) and the compatibility conditions (10) yields w0 ∈ H 2(Ω) ∩ H 1

0 (Ω) as
well as w1 ∈ H 1

0 (Ω), which gives (w0, w1, w2) ∈ [H 2(Ω)∩H 1
0 (Ω)]×H 1

0 (Ω)×L2(Ω), where the latter

C. R. Mathématique — 2021, 359, n 7, 881-903
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functional space is nothing but the space U3 in the statement of the said of [39, Theorem 2.1].
And besides, the result is contained in the complex of regularity results summarized by the table 2
of [3, Theorem 5.3], if one takes in particular λ= 2, µ= 1, ν= 0.

As for part (b) of Theorem 1, we note that in the case g ≡ 0 it asserts in particular the
well-posedness of the IBVP for the MGT equation (with trivial boundary data) in the space
H 1

0 (Ω)×H 1
0 (Ω)×L2(Ω). This result was originally proved in [23], with the significant specification

of the group property of the evolution. It is also contained in the aforesaid [3, Theorem 5.3].

1.2. Background, literature review

The MGT equation arises in the context of a branch of physics and acoustics known as nonlinear
acoustics (NLA), where one deals more specifically with sound waves of sufficiently large ampli-
tudes. The reader is referred e.g. to the monographs [45] and [16], offering a predominant either
physical or mathematical treatment, respectively. The review paper [22] provides an overview of
established PDE models of nonlinear sound propagation, as well as of more recent develope-
ments, along with a very useful collection of references.

Aiming to introduce a minimal mathematical background for the subject of the present
investigation, we record explicitly two classical PDE models of NLA, namely, the Westervelt
equation

ut t − c2∆u −b∆ut = βa

ρc2

(
u2)

t t in (0,T )×Ω
(formulated in terms of the acoustic pressure u), and the Kuznetsov equation

ψt t − c2∆ψ−b∆ψt = ∂

∂t

(
βa −1

c2 ψ2
t +

∣∣∇ψ∣∣2
)

in (0,T )×Ω
(formulated in terms of the acoustic velocity potential ψ); all constants that occurr in the equa-
tions are positive: c,b are the speed and diffusivity of sound, ρ > 0 is the mass density, βa > 1. The
connections of the Westervelt and Kuznetsov (and Khokhlov–Zabolotskaya–Kuznetsov) models
with the Navier–Stokes and Euler compressible system is explored in the recent [12].

A well-recognized issue which arises in the modeling of propagation of acoustic and thermal
waves is the paradox of heat conduction, namely, the incongruity between the infinite speed
of propagation of a thermal disturbance with the principle of classical mechanics known as
causality; see, e.g., [21] and its references. Aiming to overcome this issue, the use of the (space-
time) Maxwell–Cattaneo law ( [6, 7])

τq̇ +q =−κ∇θ
as constitutive relation for the heat flux q (in place of the Fourier law, that corresponds to τ = 0,
whilst above τ > 0) has been proposed; such a choice eventually leads to the third-order PDE
model

τψt t t +ψt t − c2∆ψ−b∆ψt = ∂

∂t

(
1

c2

B

2A
ψ2

t +
∣∣∇ψ∣∣2

)
(15)

(A,B are positive constants), known as the Jordan–Moore–Gibson–Thompson (JMGT) equa-
tion [20]. The reader is referred to [21] for details on the derivation of the equation (15); see
also [22].

Notice that all three aforementioned equations are quasilinear PDE. And yet, differently
from the Westervelt and Kuznetsov equations, the linearization of the JMGT equation – i.e. the
MGT equation – is a strictly hyperbolic equation, as enlightened clearly in the Introduction;
its mathematical analysis raises nontrivial issues, despite it being linear. (Although perhaps
unnecessary, we recall that the linearization of the Westervelt and Kuznetsov equations – viz. the
strongly damped wave equation ut t − c2∆u − b∆ut = 0 – has a parabolic-like behaviour, as its
dynamics is governed by an analytic semigroup.)

C. R. Mathématique — 2021, 359, n 7, 881-903
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We recall at first the study of well-posedness and long-time behaviour for the JMGT equation
(with time-dependent viscosity) carried out in [24]; see also the recent [43]. Former contributions
to the understanding of the analytical features of its linearization are found in [23] and [39], where
major focus is placed on well-posedness of IBVP with homogenous (Dirichlet or Neumann)
boundary data and on stability properties; in particular, [39] further provides a detailed spectral
analysis. While they establish well-posedness in more than one functional setting and show that
the dynamics is governed by a strongly continuous group, these works disclose the crucial role
of the parameters b and γ (defined by (4)) for well-posedness and uniform stability, respectively.
Indeed, in the case b = 0 the associated initial-boundary value problems are ill-posed [23]. Given
b > 0, then γ must be positive, if one wants to ensure the property of uniform stability. These
findings have been revisited in [15] within the history framework.

Most relevant to the present work is the study of the Cauchy–Dirichlet and Cauchy–Neumann
problems with non-homogeneous boundary data performed in [3], where a novel viewpoint and
avenue of investigation is adopted. More precisely, the MGT equation is embedded in a family
of wave equations with memory depending on a vectorial parameter. This viewpoint enables the
derivation of both interior and trace regularity results; see [3, Theorem 5.3] and [3, Corollary 6.3].
The boundary data are assumed to be square integrable (in time and space) and provide a unique
solution in a weaker topology, compared to our result.

We recently learnt about the subsequent work [50] that proves results about the same Cauchy–
Dirichlet and Cauchy–Neumann problems, taking the original path of [23] and [39]. Trace regu-
larity results for both problems are obtained therein, in the case of homogeneous initial data and
forcing term, under square integrable boundary data which are subject to a continuity condition
at t = 0.

Because high intensity focused ultrasound plays a central role in several medical procedures
as well as industrial applications, optimal control problems arise naturally in the context of NLA.
A thorough overview of the literature on optimization problems associated with nonlinear PDE
models for acoustic wave propagation is beyond the present work’s scopes; cf. [22] and its ref-
erences. We limit ourselves to studies on the (MGT and) JMGT model. A functional-analytical
framework and a solution to a minimization problem associated with the MGT equation is pro-
vided in [2], combining variational arguments with operator-theoretic techniques. Specifically
for the JMGT equation, we recall that [40] deals with shape optimization; a sensitivity analysis
with respect to the (relaxation) parameter τ> 0 has been carried out in [25, 26].

We finally list a number of research works on the JMGT or the MGT equation, with a wealth
of diverse focuses and goals. These contributions concern: the case γ < 0, with an insight into
the chaotic behaviour of the dynamics [10], inverse problems [32, 35, 36], long-time behaviour
and attractors [4, 5], explicit decay rates [41, 42], null controllability for both the JMGT and
MGT equations [38], semilinear variants of the linear model and blow-ups [9]. A variation of the
original PDE model that displays an additional memory term has been studied first in [30, 31].
Questions that are explored and responded regard primarily well-posedness, the effect of the
dissipation brought about by the memory term, decay rates. Most recent articles include [1, 37],
and [13, 14].

2. An approach exploiting the connection to wave equations with memory

In this section we prove part (a) of Theorem 1. Besides the interior regularity result we show a
first boundary regularity result (both stated therein); the latter is highlighted as Proposition 6.
A sought-after improvement of the regularity of the boundary traces is briefly discussed in
Remark 7.

C. R. Mathématique — 2021, 359, n 7, 881-903
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The basis of our proofs is the connection between the MGT equation and a suitable integro-
differential equation devised in [3]. The theory of Volterra equations (of the second kind) and
the regularity theory for second-order wave equations provide the tools. Accordingly, for the
reader’s convenience we begin by considering the Cauchy–Dirichlet problem for second order
wave equations: we recall the basic mathematical tools and notation, and the representation
formula for its solutions that involves the cosine (and sine) operator, along with a few relevant
regularity results. The intermediate Proposition 4 establishes and details the connection between
the MGT equation with the said Volterra equation, and constitutes an essential prerequisite for
the understanding of the subsequent analysis. See also Remark 5.

2.1. Second order wave equations. Preliminaries

Consider the following IBVP for a second order (linear) wave equation in the unknown z = z(t , x):
zt t =∆z + f in Q

z(0, ·) = z0 , zt (0, ·) = z1 inΩ

z|Σ = g .

(16)

Let A be the realization of the Laplace operator in L2(Ω), with Dirichlet boundary conditions (BC);
namely,

Az :=∆z , D(A) = H 2(Ω)∩H 1
0 (Ω) . (17)

It is well-known that the operator A, originally defined as in (17), can be extended as A : L2(Ω) →
[D(A∗)]′. Moreover, the fractional powers of −A are well defined; cf. [29, Vol. II, §10.5.4] (paying
attention to the fact that the present A is denoted by −A therein, whereas here A is a different
operator). The Dirichlet (Green) map D is defined as usual by

D : L2(Γ) 3ϕ 7−→ Dϕ=:ψ ⇐⇒
{
∆ψ= 0 inΩ

ψ=ϕ on Γ,
(18)

namely,ψ= Dϕ is the harmonic extension ofϕ from the boundary ofΩ into its interior. Thus, the
IBVP (16) corresponds to the abstract Cauchy problem{

y ′ =Ay +Bg in [D (A∗)]′

y(0) = y0
(19)

where we set y(t ) = (z(t ), zt (t )), y0 := (z0, z1) and the linear operators (A,B) have the following
explicit representation (in terms of A and D), respectively:

A=
(

0 I
A 0

)
, B=

(
0

−AD

)
;

in particular then, B : L2(Γ) −→ [D(A∗)]′. The operator A is the infinitesimal generator of a
C0-semigroup eAt , t ≥ 0, e.g. on Y =D((−A)1/2)×L2(Ω). The abstract differential formulation (19)
brings about the following integral representation of the solution y(t ):

y(t ) = eAt y0 +
∫ t

0
eA(t−s)Bg (s)d s , (20)

which a priori makes sense at least on [D(A∗)]′.
For cosine and sine operators we follow the notation adopted already in [3, Section 2]. Intro-

duce the operator A and the families of operators R+(·), R−(·) defined as follows:

A= i (−A)1/2 , R+(t ) = eAt +e−At

2
, R−(t ) = eAt −e−At

2
. (21)

C. R. Mathématique — 2021, 359, n 7, 881-903
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R+(t ) is the strongly continuous cosine operator generated by −A in L2(Ω) ([17,48]). (See also [29,
Vol. II, § 10.5.4], paying attention to the distinct notations: indeed, even though the cosine
operator R+(t ) coincides with C (t ) therein, the operator denoted by S(t ) is actually the present
A−1R−(t ).) We note that A is the infinitesimal generator of a C0-group of operators in L2(Ω). It is
by now well-known that the semigroup eAt admits the explicit representation

eAt =
(

R+(t ) A−1R−(t )

−AR−(t ) R+(t )

)
,

in terms of the cosine and sine operators, and that the solution to the IBVP (16) is given by

z(t ) = R+(t )z0 +A−1R−(t )z1 +A−1
∫ t

0
R−(t − s) f (s)d s

−A
∫ t

0
R−(t − s)Dg (s)d s ;

(22)

see, e.g., [29, Vol. II, § 10.5.4].
Since the regularity pertaining to the cosine and sine operators, specifically when acting either

on elements of the Banach space L2(Ω) or (on elements) of the domain of the generator will be
used repeatedly, we record here first of all that

R+(·)x , R−(·)z ∈C
(
[0,T ],L2(Ω)

)
with x, z ∈ L2(Ω),

R+(·)x , R−(·)z ∈C ([0,T ],D(A)) with x, z ∈D(A).
(23)

Furthermore, a rewriting (in abstract form) of the nontrivial result{
(z0, z1) ∈ L2(Ω)×H−1(Ω) , f ≡ 0

g ∈ L2(Σ) = L2
(
0,T ;L2(Γ)

) =⇒ (z, zt , zt t ) ∈C
(
[0,T ],L2(Ω)×H−1(Ω)×H−2(Ω)

)
gives in particular

g ∈ L2(Σ) =⇒
(
A

∫ ·
0 R−(·− s)Dg (s)d s

A2
∫ ·

0 R+(·− s)Dg (s)d s

)
∈C

(
[0,T ],L2(Ω)×H−1(Ω)

)
, (24)

(for z0 = z1 ≡ 0), which in turn tells us

g ∈ L2(Σ) =⇒
(
A

∫ ·
0 R−(·− s)Dg (s)d s

A
∫ ·

0 R+(·− s)Dg (s)d s

)
∈C

(
[0,T ],L2(Ω)×L2(Ω)

)
, (25)

since H−1(Ω) ≡ [D(A)]′. The boundary-to-interior regularity results expressed by (25) will be
used quite often in the computations. (We note that the result mentioned as first, below (23),
has been shown to follow from a (sharp) boundary regularity estimate for the solution to a dual
problem. Both aforesaid results are recorded in [29] as Theorem 10.5.3.2 and Theorem 10.5.3.1,
respectively. Definitive proofs of these results are originally devised in the contemporary [33]
and [28]; a roadmap for the subject can be found in [29, Section 10.5] and in the relative Notes [29,
p. 1060]. We recall explicitly [46] and [34] as the former contributions to the regularity analysis of
the IBVP (16).)

It is useful to introduce the symbol K to denote the linear operator defined by

K : f −→ (
K f

)
(t ) :=A−1

∫ t

0
R−(t − s) f (s)d s . (26)

Specifically when f (·) = Dg (·), one has(
KDg (·)) (t ) :=A−1

∫ t

0
R−(t − s)Dg (s)d s =A−2

[
A

∫ t

0
R−(t − s)Dg (s)d s

]
,

which tells us – in view of (25) – that KDg ∈D(A2) ≡D(A), if g ∈ L2(Σ).

C. R. Mathématique — 2021, 359, n 7, 881-903



Francesca Bucci and Matthias Eller 889

2.2. Proof of Theorem 1 (a), and a first trace regularity result

The starting point of the present analysis is the connection between the MGT equation and a
wave equation with memory (and affine term depending also on initial data) first, and a suitable
Volterra equation of the second kind next, to which problem (3) can be reduced to, as shown in [3].
The Proposition below embodies the statement of [3, Proposition 3.6], without neglecting the
nontrivial forcing term f in the original IBVP (3), and removing the translation of the differential
operator∆ to∆−I , which is here unnecessary. The symbol ∗ below denotes the usual convolution
operation.

Proposition 4. Any solution w to the initial/boundary value problem (3) is such that v = e
γ
2 t w

solves the following Volterra equation of the second kind:

v(t )+
∫ t

0
L(t − s)v(s)d s = H(t ) in Q (27)

where L(·) is the strongly continuous kernel defined by

L(t )v =− βp
b
A−1R−

(p
bt

)
v − 1p

b
A−1

∫ t

0
R−

(p
b(t − s)

)
K (s)v d s , (28)

and the affine term H(·) is given – in terms of the initial and boundary data – by

H(t ) =
[

R+
(p

bt
)
+ γ

2
p

b
A−1R−

(p
bt

)]
w0 + 1p

b
A−1R−

(p
bt

)
w1+

+ 1p
b
A−1

∫ t

0
R−

(p
b(t − s)

)[
h0(t )w0 +h1(t )w1 +h2(t ) (w2 −∆w0)

]
d s−

+ 1p
b
A−1

∫ t

0
R−

(p
b(t − s)

)
f̃ (s)d s −

p
bA

∫ t

0
R−

(p
b(t − s)

)
Dg̃ (s)d s .

(29)

In the above formulas g̃ = e
γ
2 t g , while the constant β and the functions K (·), hi (·), i = 0,1,2, f̃ (·)

read explicitly as follow:

β=−γ
(

3

4
γ−α

)
, K (t ) =−γ(γ−α)2e

( 3
2γ−α

)
t ,

h0(t ) =−γ(γ−α)e
( 3

2γ−α
)
t , h1(t ) =−γe

( 3
2γ−α

)
t , h2(t ) = e

( 3
2γ−α

)
t ;

f̃ (t ) = e
γ
2 t

(
λ(t )+γ

(
e−

c2

b ·∗λ
)

(t )

)
, λ(t ) :=

∫ t

0
e−α(t−s) f (s)d s .

(30)

In particular then, the initial and boundary data for v are related to those of w as follows:

v |t=0 =: v0 ≡ w0 , vt |t=0 =: v1 = γ

2
w0 +w1 ;

v |Σ = g̃ := e
γ
2 t g .

(31)

Proof. It suffices to follow the perspective of [3], and more specifically the arguments in
Section 3.1, which eventually result in Proposition 3.6 therein. With slight modifications and a
straightforward computation, one arrives here at the following (equivalent) IBVP for an integro-
differential equation satisfied by v = e

γ
2 t w :

vt t = b∆v +
∫ t

0
K (t − s)v(s)d s +βv

+[
h0(t )w0 +h1(t )w1 +h2(t ) (w2 −b∆w0)

]+ f̃ (t ) in Q

v(0, ·) = w0 , vt (0, ·) = γ
2 w0 +w1 inΩ

v = g̃ on Σ

(32)

C. R. Mathématique — 2021, 359, n 7, 881-903



890 Francesca Bucci and Matthias Eller

(with all functions defined in (30) and g̃ = e
γ
2 t g ). Thus, mutatis mutandis, the representation

formula (22) provides the tool. �

Before starting the proof of our main result, a few considerations on the regularity of solutions
to Volterra equations are in order; they were partly given already in [3], partly they are new.
Consider a general Volterra equation of the second kind, that is v +L∗ v = h with

(L∗ v)(t ) =
∫ t

0
L(t − s)v(s)d s =

∫ t

0
L(s)v(t − s)d s .

It is known that if L is a strongly continuous function of time, with values in L(H) (H is a Hilbert
space) and h(·) is an integrable H-valued function, then the corresponding solution has the
explicit representation

v = h +
∞∑

k=1
(−1)k L(∗k) ∗h , (33)

where L(∗n) indicate the iterated convolutions, recursively defined as follow:

L(∗1) = L , L(∗(n+1)) ∗h = L∗ (
L(∗n) ∗h

)
, n ≥ 1;

the uniform convergence of the series can be easily proved (cf. e.g. [11, Chapter 5]). From
formula (33) we see that the regularity in time and space of v is determined by the one of h, as
well as of the said iterated convolutions. In the present case, with L given by (28) (and h eventually
replaced by H), the first iteration reads as

(L∗h)(t ) =− βp
b
A−1

∫ t

0
R−

(p
b(t − s)

)
h(s)d s

− 1p
b
A−1

∫ t

0

[∫ t−s

0
R−

(p
b(t − s − r )

)
K (r )dr

]
h(s)d s .

Thus, in the regularity analysis of this convolution the properties of the first summand will
prevail. Since the said term is (neglecting the constant in front) nothing but (Kh)(·), with the
operator K defined in (26), the regularity properties of K such as that e.g.

K ∈L
(
L1 (

0,T ;L2(Ω)
)

,C
(
[0,T ], H 1

0 (Ω)
))

(34)

will imply that e.g.,

h ∈ L1 (
0,T ;L2(Ω)

)=⇒ L∗h ∈C
(
[0,T ], H 1

0 (Ω)
)

,

continuously with respect to the topologies under consideration. The same consideration is valid,
a fortiori, to the next iterated convolution, and so on. In conclusion, since K is smoothing both
in time and space, it will suffice to pinpoint the regularity of the affine term h, which determines
the regularity of v .

Remark 5. To summarize the above considerations: the representation (33), combined with
the specific structure (28) of the kernel L in the Volterra equation v + L ∗ v = h, guarantees
v ∈C ([0,T ], X ) on the basis of h ∈C ([0,T ], X ) also in the case X is a Sobolev space H k (Ω); namely,
also in the case X is not the domain of a fractional power of the operator −A, as are the spaces Xα

in the statement of [3, Lemma 4.1].

Proof of Theorem 1 (a). In order to establish the interior regularity of solutions to the Cauchy-
Dirichlet problem (3) as specified by (11), in view of Proposition 4 we turn our attention to the
Volterra equation (27), that is v + L ∗ v = H (in short), with L and H defined by (28) and (29),
respectively. Because specifically v ∈ C ([0,T ], H 2(Ω)) will be guaranteed by H ∈ C ([0,T ], H 2(Ω))
(cf. Remark 5), the optimal regularity (in time and space) of the affine term H(t ) must be
pinpointed.
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1. In order to render the computations more readable, we initially set

F (t ) := h0(t )w0 +h1(t )w1 +h2(t ) (w2 −∆w0) ; (35)

one needs to remember thatF depends on initial data. Owing to the assumption (8), which yields
as well g̃ ∈ H 2(0,T ;L2(Γ)) for g̃ = e

γ
2 t g , we are allowed to integrate by parts (in time) twice in (29),

thereby obtaining (after setting b = 1 for the sake of simplicity and the readers’ convenience) first

H(t ) =
[

R+(t )+ γ

2
A−1R−(t )

]
w0 +A−1R−(t )w1 +R+(t − s)Dg̃ (s)

∣∣∣s=t

s=0

−
∫ t

0
R+(t − s)Dg̃ t (s)d s +A−1

∫ t

0
R−(t − s)

(
F (s)+ f̃ (s)

)
d s

= R+(t )
(
w0 −Dg̃ (0)

)+A−1R−(t )
[γ

2
w0 +w1

]
+Dg̃ (t )

−
∫ t

0
R+(t − s)Dg̃ t (s)d s +A−1

∫ t

0
R−(t − s)

(
F (s)+ f̃ (s)

)
d s ,

(36)

and next

H(t ) = R+(t )
[
w0 −Dg (0)

]+A−1R−(t )
[γ

2
w0 +w1

]
+Dg̃ (t )+A−1Dg̃ t (t )

−A−1R−(t )Dg̃ t (0)−A−1
∫ t

0
R−(t − s)Dg̃ t t (s)d s

+A−1
∫ t

0
R−(t − s)

(
F (s)+ f̃ (s)

)
d s

= R+(t )
[
w0 −Dg (0)

]+A−1R−(t )
[γ

2
w0 +w1 −D

(γ
2

g (0)+ g t (0)
)]

+Dg̃ (t )+A−1Dg̃ t (t )−A−1
∫ t

0
R−(t − s)Dg̃ t t (s)d s

+A−1
∫ t

0
R−(t − s)

[
h0(s)w0 +h1(s)w1 +h2(s) (w2 −∆w0)+ f̃ (s)

]
d s

=:
9∑

i=1
Ti .

(37)

Let us examine either summand Ti , i = 1,2, . . . , 9 in (37). Recall the assumptions w0 ∈ H 2(Ω),
w1 ∈ H 1(Ω), along with the definition (18) of the Dirichlet map D ; it will be used that

D ∈L(
H s (Γ), H s+1/2(Ω)

) ∀ s . (38)

Then, with g (0) ∈ H 3/2(Γ) and g t (0) ∈ H 1/2(Γ), we see that w0 −Dg (0) ∈ H 2(Ω) and w1 −Dg t (0)
∈ H 1(Ω), respectively; in addition, on account of the compatibility conditions (10), we also know
that [

w0 −Dg (0)
]∣∣
Γ = 0,

[
w1 −Dg t (0)

]∣∣
Γ = 0.

The above means in particular w0 −Dg (0) ∈D(A), so that the action of the cosine operator R+(t )
generated by A ensures that T1 := R+(·)[w0 −Dg (0)] ∈C ([0,T ],D(A)) as well. Similarly, we have

T2 :=A−1R−(·)
[γ

2

(
w0 −Dg (0)

)+ (
w1 −Dg t (0)

)] ∈C ([0,T ],D(A))

and conclude that

Ti ∈C ([0,T ],D(A)) ⊂C
(
[0,T ], H 2(Ω)

)
, i = 1,2. (39)

In view of the regularity assumptions (8)-(9) on the boundary datum, and taking into account
once again (38), one finds

T3 +T4 := Dg̃ +A−1Dg̃ t ∈C
(
[0,T ], H 2(Ω)

)
. (40)
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As for T5, readily

T5 =−A−1
∫ t

0
R−(t − s)Dg̃ t t (s)d s =A−2

{
−A

∫ t

0
R−(t − s)Dg̃ t t (s)d s

}
∈C ([0,T ],D(A)) (41)

as a consequence of the regularity result (25), which holds true since g̃ t t ∈ L2(Σ) (the role of g is
played by g̃ t t , here).

Of the three summands T6 = (K(h0(·)w0)(t ), T7 = (K(h1(·)w1)(t ) and

T8 =A−1
∫ t

0
R−(t − s)h2(s) (w2 −∆w0) d s = (K(h2(·) (w2 −∆w0)) (t ) ,

it is sufficient to analyze the latter. We simply have w2 −∆w0 ∈ L2(Ω) by Assumption (6), and (34)
does not suffice to obtain the needed space regularity. Then, we use the fact that h2 ∈ C∞,
integrate by parts (in time), and establish

T8 =−A−2R+(t − s)h2(s) (w2 −∆w0)
∣∣∣s=t

s=0
+A−2

∫ t

0
R+(t − s)h′

2(s) (w2 −∆w0) d s

=−A−2
{

h2(t ) (w2 −∆w0)−R+(t )h2(0)(w2 −∆w0)

−
∫ t

0
h′

2(t − s)R+(s) (w2 −∆w0) d s

}
∈C ([0,T ],D(A)) .

(42)

That

T6 , T7 ∈C ([0,T ],D(A)) (43)

follows similarly (neglecting the better regularity in space, as it is here unnecessary).
To analyze the term

T9 :=−A−1
∫ t

0
R−(t − s) f̃ (s)d s

that is T9 = (K f̃ (·))(t ), we observe preliminarly that the regularity of f̃ (t ) is determined by the
one of λ(t ), which in turn is the same of (e−α· ∗ f )(t ). Since by assumption f ∈ L2(Q), then
λ ∈ H 1(0,T ;L2(Ω)), with

λ′(t ) = d

d t

∫ t

0
e−α(t−s) f (s)d s = f (t )−αλ(t ) .

Therefore, we find

A−1
∫ t

0
R−(t − s)λ(s)d s =−A−2

{
R+(t − s)λ(s)

∣∣∣s=t

s=0
−

∫ t

0
R+(t − s)

(
f (s)−αλ(s)

)
d s

}
=−A−2

{
λ(t )−

∫ t

0
R+(t − s)

(
f (s)−αλ(s)

)
d s

}
=−A−2

{
λ(t )−

∫ t

0
R+(t − s)

(
f (s)−αλ(s)

)
d s

}
∈C ([0,T ],D(A)) ,

which gives

T9 ∈C ([0,T ],D(A)) ⊂C
(
[0,T ], H 2(Ω)

)
(44)

as well. In conclusion, combining (44) with (42), (43), (41), (40) and (39) we find

H ∈C
(
[0,T ], H 2(Ω)

)
,

which implies v ∈ C ([0,T ], H 2(Ω)); consequently, we attained w ∈ C ([0,T ], H 2(Ω)), that is the
regularity statement for the ‘position’ in (11).

2. We need to show now that regularity pertaining to wt and wt t in (11) holds true, namely, that
(wt , wt t ) ∈C ([0,T ], H 1(Ω)×L2(Ω)) holds. We proceed similarly as in the proof of [3, Theorem 4.2]:
the said regularity will be inherited by the regularity of the derivatives vt and vt t of the solution v
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to the Volterra equation (27), which is in turn determined by the one of the respective right hand
sides of the Volterra equations satisfied by vt and vt t . Rewrite (27) as

v(t )+
∫ t

0
L(s)v(t − s)d s = H(t )

to deduce that vt satisfies

vt (t )+
∫ t

0
L(t − s)vt (s)d s = Ht (t )−L(t )v0 , (45)

where – given the expression (28) of the kernel L – we know that

L(t )v0 = L(t )w0 ∈C ([0,T ],D(A)) ⊂C
(
[0,T ], H 1(Ω)

)
.

Therefore, aiming at showing the regularity statement for the ‘velocity’ wt in (11), and given the
right hand side in the Volterra equation (45), the regularity Ht ∈C ([0,T ], H 1(Ω)) is what we need
to prove. Restart from (36), to find – after an integration by parts (in time) in two summands –

Ht (t ) =AR−(t )
[
w0 −Dg (0)

]+R+(t )
[γ

2
w0 +w1

]
−A

∫ t

0
R−(t − s)Dg̃ t (s)d s +

∫ t

0
R+(t − s)

[
F (s)+ f̃ (s)

]
d s

=AR−(t )
[
w0 −Dg (0)

]+R+(t )
[γ

2
w0 +w1

]
+R+(t − s)Dg̃ t (s)

∣∣∣s=t

s=0

−
∫ t

0
R+(t − s)Dg̃ t t (s)d s −A−1R−(t − s)

[
F (s)+ f̃ (s)

]∣∣∣s=t

s=0

+A−1
∫ t

0
R−(t − s)

[
F ′(s)+ f̃ ′(s)

]
d s

=AR−(t )
[
w0 −Dg (0)

]+R+(t )
[γ

2
w0 +w1

]
+Dg̃ t (t )−R+(t )Dg̃ t (0)

−
∫ t

0
R+(t − s)Dg̃ t t (s)d s +A−1R−(t )F (0)

+A−1
∫ t

0
R−(t − s)

[
F ′(s)+ f̃ ′(s)

]
d s ,

where it has been used that f̃ (0) = 0 and once again that R−(0) = 0 (the term Dg̃ t (t ) and its
opposite are canceled at the outset). Substituting g̃ t (0) = γ

2 g (0)+ g t (0) in the latter espression,
we arrive at the following clean representation of Ht (t ):

Ht (t ) =AR−(t )
[
w0 −Dg (0)

]+R+(t )
[γ

2

(
w0 −Dg (0)

)+ (
w1 −Dg t (0)

)]+Dg̃ t (t )

−
∫ t

0
R+(t − s)Dg̃ t t (s)d s +A−1R−(t )F (0)+A−1

∫ t

0
R−(t − s)

[
F ′(s)+ f̃ ′(s)

]
d s . (46)

We examine now each summand in the right hand side of (46) to find, in succession,

AR−(·)[w0 −Dg (0)
] ∈C ([0,T ],D(A)) ⊂C

(
[0,T ], H 1(Ω)

)
,

R+(·)
[γ

2

(
w0 −Dg (0)

)+ (
w1 −Dg t (0)

)] ∈C ([0,T ],D(A)) ,

Dg̃ t ∈C
(
[0,T ], H 1(Ω)

)
, in view of g̃ t ∈C

(
[0,T ], H 1/2(Γ)

)
,∫ t

0
R+(t − s)Dg̃ t t (s)d s ∈C ([0,T ],D(A)) , in view of (25)

A−1R−(·)F (0) ∈C ([0,T ],D(A)) because of R−(·)F (0) ∈C
(
[0,T ],L2(Ω)

)
,

A−1
∫ ·

0
R−(·− s)

[
F ′(s)+ f̃ ′(s)

]
d s ∈C ([0,T ],D(A)) ,
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that confirms the membership

Ht ∈C
(
[0,T ], H 1(Ω)

)
.

Consequently, the above establishes vt ∈ C ([0,T ], H 1(Ω)), so that wt ∈ C ([0,T ], H 1(Ω)), as re-
quired by (11). It remains to prove wt t ∈C ([0,T ],L2(Ω)), which is accomplished in the next step.

3. From (45) it follows that vt t solves the Volterra equation

vt t +
∫ t

0
L(t − s)vt t (s)d s = Ht t (t )− d

d t
[L(t )v0]−L(t )v1 , (47)

where it is immediately seen that

d

d t
[L(t )v0]−L(t )v1 =−βR+(t )v0 −

∫ t

0
R+(t − s)K (s)v0 d s −L(t )v1 ∈C

(
[0,T ],L2(Ω)

)
. (48)

To establish the optimal regularity of the right hand side in (47), we pinpoint the one of Ht t . We
resume then (46), derive one more time with respect to t , thus obtaining

Ht t (t ) =A2R+(t )
[
w0 −Dg (0)

]+AR−(t )
[γ

2

(
w0 −Dg (0)

)+ (
w1 −Dg t (0)

)]
−A

∫ t

0
R−(t − s)Dg̃ t t (s)d s +R+(t )F (0)+

∫ t

0
R+(t − s)

[
F ′(s)+ f̃ ′(s)

]
d s ,

where all summands readily belong to C ([0,T ],L2(Ω)). (Again, the term Dg̃ t t (t ) and its opposite
produce a cancellation.) The obtained regularity Ht t ∈ C ([0,T ],L2(Ω)) combined with (48) im-
plies the same membership for the right hand side of (47) and hence for vt t and wt t . �

Boundary regularity results

To pinpoint the regularity of the normal traces, assume the stronger hypothesis g ∈ H 2(Σ).
We resume the IBVP (32) satisfied by v = eγt/2w , where F (t ) denotes the function in (35) that
depends on initial data (w0, w1, w2); the present initial and boundary data (v0, v1, g̃ ) are defined
in terms of (w0, w1, g ) as in (31). Thus, denote by f̂ (·) the sum

f̂ (t ) =βv(t )+
∫ t

0
K (t − s)v(s)d s︸ ︷︷ ︸
f0(t )

+h0(t )w0 +h1(t )w1︸ ︷︷ ︸
f1(t )

+h2(t ) (w2 −∆w0)︸ ︷︷ ︸
f2(t )

+ f̃ (t ) ,

that we will consider as an affine term in (32). We then have v(t ) = z(t )+ v2(t ), having set

z(t ) := R+(t )v0 +A−1R−(t )v1 +A−1
∫ t

0
R−(t − s)

[
f0(s)+ f1(s)

]
d s

−A
∫ t

0
R−(t − s)Dg̃ (s)d s ,

v2(t ) :=A−1
∫ t

0
R−(t − s)

[
f2(s)+ f̃ (s)

]
d s =:

[
K

(
f2(·)+ f̃ (·))](t ) .

(49)

The analysis of the (sharp) boundary regularity of the summand z is straightforward: indeed, in
view of the regularity assumed on (w0, w1, g ) we know that v0 ∈ H 2(Ω), v1 ∈ H 1(Ω), g̃ ∈ H 2(Σ)
(with all meaningful compatibility conditions), while it is easily seen that f0 + f1 belongs to
C∞([0,T ], H 1(Ω)) ⊂ L2(0,T ; H 1(Ω)). (To ascertain the latter claim, observe that f0(·) possesses
the interior regularity of v(·), i.e. v ∈ C ([0,T ], H 2(Ω)) – in view of part (a) of the proof –, which is
even stronger than required, whilst f1 ∈ C∞([0,T ], H 1(Ω)) because w1, w0 ∈ H 1(Ω) and hi ∈ C∞,
i = 0,1.) Consequently, the trace result

∂z

∂ν
∈ H 1(Σ) = L2 (

0,T ; H 1(Ω)
)∩H 1 (

0,T ;L2(Γ)
)

(50)
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is valid ([47], [27, Theorem 2.2]); in particular,

∂2z

∂t ∂ν
∈ L2(Σ) . (51)

Let us prove that ∂v2
∂ν ∈ H 1(0,T ;L2(Γ)), as well. Rewrite v2 = v21 + v22, and examine the first

summand

v21(t ) := (
K f2

)
(t ) =A−1

∫ t

0
h2(t − s)R−(s) (w2 −∆w0) d s .

Since h2 ∈C 1, then

v21t (t ) = ∂

∂t
v21(t ) =A−1h2(0)R−(t ) (w2 −∆w0)+A−1

∫ t

0
h′

2(t − s)R−(s) (w2 −∆w0) d s

=A−1R−(t )h2(0)(w2 −∆w0)+A−1
∫ t

0
R−(t − s)h′

2(s) (w2 −∆w0) d s ,

which shows that v21t (t ) is the solution to an IBVP for a second-order linear wave equation such
as (16), with specifically

z0 = 0, z1 = h2(0)(w2 −∆w0) ∈ L2(Ω) ,

f (t ) = h′
2(s) (w2 −∆w0) ∈C∞ (

[0,T ],L2(Ω)
)

, g ≡ 0.

The regularity of initial and boundary data, along with the compatibility condition z0|Γ = g |t=0

= 0 ensure then
∂v21t

∂ν
∈ L2(Σ)

(cf. [47], [27]). A similar computation performed for the second component v22(t ) = (K f̃ )(t ) –
where it is utilized that f̃ ∈ H 1(0,T ;L2(Ω)) – allows to confirm the same regularity of its normal
trace on Γ. Consequently,

∂2v2

∂t ∂ν
∈ L2(Σ) (52)

as well.
Recalling that w = e−γt/2v and v = z + v2, in view of the boundary regularity results (51)

and (52) established for either summand, the very same regularity is valid for w . The trace
regularity result is stated explicitly in the following Proposition.

Proposition 6. Under the hypotheses of Theorem 1 (a) with the stronger assumption g ∈ H 2(Σ) on
the Dirichlet data, the following boundary regularity result holds true:

∂2w

∂t ∂ν
∈ L2(Σ) .

Return now to v = z + v2 and recall that the first summand z satisfies the full trace result (50)
anyhow. We thus examine the summand v2 and observe that if f ∈ L1(0,T ; H 1(Ω)), we also have
f̃ ∈ L1(0,T ; H 1(Ω)) (the time regularity is better, actually) so that

∂

∂ν

(
K f̃

) ∈ H 1(Σ)

([47], [27, Theorem 2.2]). As for the component v21, the same arguments yield

∂v21

∂ν
= ∂

∂ν

[
K (h2(·)(w2 −∆w0)

] ∈ H 1(Σ) ,

provided w2 −∆w0 ∈ H 1(Ω).

Remark 7. One the basis of these last observations, it appears that the approach taken in the
present section enables us to achieve the full trace result ∂u/∂ν ∈ H 1(Σ) under the hypotheses of
Theorem 1(a), provided that

g ∈ H 2(Σ) , f ∈ L1 (
0,T ; H 1(Ω)

)
, w2 −b∆w0 ∈ H 1(Ω) ,
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which is true e.g. in the case w0 = w2 = 0, still with f ∈ L1(0,T ; H 1(Ω)).

3. An approach based on the theory of hyperbolic equations: Proof of Theorem 1 (b)

Even though the characteristic boundary will force us to make some adjustments to the general
theory of mixed problems for hyperbolic equations, the overall procedure will be the same as
described by Sakamoto [47, Chapter 3]. We start by deriving a resolvent estimate for the operator
M . A duality argument establishes then the existence and uniqueness of the initial-boundary
value problem with homogeneous initial data. In order to include inhomogeneous initial data
one needs to extend the resolvent estimate to a semigroup estimate.

Throughout this section we will work with the infinite time interval and denote Q∞ = R×Ω
and Σ∞ =R×Γ. From the theory of hyperbolic equations, we know the estimate

β
∥∥∥e−βt v

∥∥∥2

1,β,Q∞
+

∥∥∥e−βt∂νv
∥∥∥2

Σ∞
.

1

β

∥∥∥e−βt (
∂2

t −b∆
)

v
∥∥∥2

Q∞
+

∥∥∥e−βt v
∥∥∥2

1,β,Σ∞

for sufficiently large β and all v satisfying e−βt v ∈ H 2(Q), see e.g. [19, formula (24.1.4)] Here the
norms are weighted Sobolev norms

‖u‖2
k,β,Q∞ = ∑

|α|≤k
β2k−2|α|∥∥∂αu

∥∥2
L2(Q∞) and ‖u‖2

k,β,Σ∞ = ∑
|α|≤k

β2k−2|α|∥∥∂αu
∥∥2

L2(Σ∞) ,

where the derivatives in the second norm are all tangential derivatives.
Choose w ∈ H 3(Q) and set v = ∂t w . The estimate above appear then as

β
∥∥∥e−βt wt

∥∥∥2

1,β,Q∞
+‖∂νwt‖2

Σ∞ .
1

β

∥∥∥e−βt (
∂2

t −b∆
)

wt

∥∥∥2

Q∞
+

∥∥∥e−βt wt

∥∥∥2

1,β,Σ∞
,

which is already an estimate for the principal part of the MGT operator. However, we estimate
only time-derivatives. Hence, we add to this estimate the original estimate of the wave operator
with v = w , multiplied with β2 and obtain

β3
∥∥∥e−βt w

∥∥∥2

1,β,Q∞
+β

∥∥∥e−βt wt

∥∥∥2

1,β,Q∞
+β2

∥∥∥e−βt∂νw
∥∥∥2

Σ∞
+

∥∥∥e−βt∂νwt

∥∥∥2

Σ∞

.
1

β

∥∥∥e−βt (
∂2

t −b∆
)

wt

∥∥∥2

Q∞
+β

∥∥∥e−βt (
∂2

t −∆
)

w
∥∥∥

Q∞
+

∥∥∥e−βt wt

∥∥∥2

1,β,Σ∞
+β2

∥∥∥e−βt w
∥∥∥2

1,β,Σ∞
.

Using now the fact that ∂t is a hyperbolic operator we estimate

β
∥∥∥e−βt (

∂2
t −b∆

)
w

∥∥∥2

Q∞
.

1

β

∥∥∥e−βt (
∂2

t −b∆
)

wt

∥∥∥2

Q∞
(53)

which improves the estimate above to

β
∥∥∥e−βt (

βw, wt
)∥∥∥2

1,β,Q∞
+

∥∥∥e−βt (
β∂νw,∂νwt

)∥∥∥2

Σ∞

.
1

β

∥∥∥e−βt (
∂3

t −b∆∂t
)

w
∥∥∥2

Q∞
+

∥∥∥e−βt (βw, wt )
∥∥∥2

1,β,Σ∞
. (54)

Next we will show that in the last estimate we can replace the operator of third order ∂3
t −b∆∂t

which is the principal part of the MGT equation, by the operator M . This is not a triviality here
since our estimate does not have all derivatives of second-order on the left hand side. From the
triangle inequality we infer that

β
∥∥∥e−βt∆w

∥∥∥2

Q∞
.β

∥∥∥e−βt (
∂2

t −b∆
)

w
∥∥∥2

Q∞
+β

∥∥∥e−βt∂2
t w

∥∥∥2

Q∞
,
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which tells us that we can include the Laplacian of w on the left-hand side in (54), that is

β
∥∥∥e−βt∆w

∥∥∥2

Q∞
+β

∥∥∥e−βt (βw, wt )
∥∥∥2

1,β,Q∞
+

∥∥∥e−βt (
β∂νw,∂νwt

)∥∥∥2

Σ∞

.
1

β

∥∥∥e−βt (
∂3

t −b∆∂t
)

w
∥∥∥2

Q∞
+

∥∥∥e−βt (βw, wt )
∥∥∥2

1,β,Σ∞
.

Since the lower order term of the MGT equation is combination of the Laplacian and a second-
order time derivative, this last estimate – in connection with the triangle inequality – provides our
basic estimate of the MGT operator M , that is,

β
∥∥∥e−βt (

βw, wt
)∥∥∥2

1,β,Q∞
+

∥∥∥e−βt (
β∂νw,∂νwt

)∥∥∥2

Σ∞

.
1

β

∥∥∥e−βt M w
∥∥∥2

Q∞
+

∥∥∥e−βt (βw, wt )
∥∥∥2

1,β,Σ∞
. (55)

It may be worthwhile to compare the estimate (55) with the standard resolvent estimates for
hyperbolic boundary problems in the non-characteristic case [47, Section 3.3]. While we do
not manage to estimate neither the H 2(Q∞) norm of w nor the H 1(Σ∞) of the exterior normal
derivative on the boundary, our estimate does not require the H 2(Σ∞) norm w on the right-hand
side. Furthermore, the L2-norm of ∂2

νw cannot occur in the left-hand side, since the operator
∂3

t −∆∂t does not involve any normal derivative of order 3. What is more surprising is that the
H 1-norm of the normal derivative (of order one) does not occur on the left-hand side in (55).
On the other hand, even the boundary term on the right-hand side is different than in the non-
characteristic case.

We also wish to point out that we can obtain estimate (55) by using micro-local analysis, as
in [47, Section 3.3]. The Dirichlet boundary operator satisfies the Kreiss–Sakamoto condition
(uniform Lopatinskii condition) with respect to the operator M . However, we feel that our
approach is more direct, also since the initial estimate for the wave operator can be established
by energy integrals [19, Section 24.1].

Furthermore, estimates similar to (55) can be derived. For example, one can use elliptic
estimates to include second-order space derivatives which will force us to include the norm in
L2(R, H 3/2(Γ)) of w in the right-hand side. This way we could provide an alternative proof to
Theorem 1(a) and we would gain complete flexibility with respect to lower-order terms. While
the notation of a finite energy solution is clearly defined in the non-characteristic case, it seems
that in the characteristic case several avenues can be pursued.

At this point in time we do not know whether the more complete estimate (with respect to the
traces) ∥∥∥e−βt w

∥∥∥2

2,β,Q∞
+

∥∥∥e−βt∂νw
∥∥∥2

1,β,Σ∞
.

1

β

∥∥∥e−βt M w
∥∥∥2

Q∞
+

∥∥∥e−βt w
∥∥∥2

2,β,Σ∞

holds.
Now we will discuss, how the apriori estimate (55) can be used to obtain and existence-

and-uniqueness statement for our initial-boundary-value problem. Note at first that, by setting
u = e−βt w , we have

β
∥∥(
βu,ut

)∥∥2
1,β,Q∞ +∥∥(

β∂νu,∂νut
)∥∥2
Σ∞ .

1

β

∥∥Mβu
∥∥2

Q∞ +∥∥(
βu,ut

)∥∥2
1,β,Σ∞ , (56)

where

e−βt M w = (
∂t +β

)3 u −b∆
(
∂t +β

)
u +α(

∂t +β
)2 u − c2∆u = Mβu .

Since we will need to scale our basic estimate (55) to different tangential Sobolev levels, it will
be convenient to introduce semigeodesic local coordinates. Localizing the function, we may
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assume that Ω∞ = {xd > 0} and Σ∞ = {xd = 0}. The spatially tangential variables are denoted
by y = (x1, . . . , xd−1) and we define a family of tangential operators

Λs w = 1

(2π)d

∫
Rd

e i[τt +〈y,η〉] (
τ2 +β2 +|η|2)s/2

ŵ
(
τ,η, xd

)
dτdη , for s ∈R,

where ŵ denotes the Fourier transform in the tangential variables (t , y). This estimate can be
scaled to other Sobolev norms with respect to the tangential variables. Replacing u by Λs u, we
have

β
∥∥Λs (

βu,ut
)∥∥2

1,β,Q∞ +∥∥Λs (
β∂d u,∂d ut

)∥∥2
Σ∞ .

1

β

∥∥Λs Mβu
∥∥2

Q∞ +∥∥Λs (
βu,ut

)∥∥2
1,β,Σ∞ . (57)

for any s ∈ R and u ∈ H(3, s)(Q∞) [47, Lemma 3.3.7] and sufficiently large β. The anisotropic
Sobolev space H(m, s)(Q∞) has been introduced in [19, Appendix B2].

In semi-geodesic coordinates, the Laplacian will transfer to the Riemann Laplacian

∆a = 1p
det a(x)

d∑
j=1

∂ j

√
det a(x)a j k (x)∂k ,

where a j d = δ j d , a j k = ak j for j ,k = 1, . . . , d are smooth functions. Hence, the changes in
the operator M are such that the Laplacian ∆ is replaced by the Riemann Laplacian ∆a . The
estimates (56) and (57) are then established at first locally and then combined by means of a
partition of unity.

For future reference we point out that the Riemann Laplacian can be written as

∆a = 1p
det a

∂d

p
det a∂d +∆′

a (58)

where ∆′
a is the Laplace-Beltrami operator on the surfaces {xd = c} for small positive c.

From the estimate (57) we can derive an existence statement for the boundary problem

Mβu = e−βt f in Q∞, u
∣∣
Σ∞ = e−βt g in Σ∞ (59)

by means of duality. For u, z ∈ H 3(Q∞) one obtains using integration by parts the identity(
Mβu, z

)
Q∞ =

(
u, M∗

βz
)

Q∞
+〈

u,
(
c2 +βb

)
∂νz −b∂νzt

〉
Σ∞ −〈(

c2 +βb
)
∂νu +b∂νut , z

〉
Σ∞ .

Here (·, ·)Q∞ is the scalar product in L2(Q∞) and 〈·, ·〉Σ∞ denotes the scalar product in L2(Σ∞).
The resolvent estimate for the adjoint operator is

β
∥∥(
βz, zt

)∥∥2
1,β,Q∞ +∥∥(

β∂νz,∂νzt
)∥∥2
Σ∞ .

1

β

∥∥∥M∗
βz

∥∥∥2

Q∞
+∥∥(

βz, zt
)∥∥2

1,β,Σ∞ .

for all z ∈ H 3(Q∞) and β ≥ β1 > 0. This estimate is established in a similar fashion as (55) since
the two operators M∗

β
and −M−β have the same principal part. As the estimate for the primal

problem, this one can be also scaled to other Sobolev norms in the tangential variables. For s ∈R
and z ∈ H(3, s)(Q∞), we have, for β sufficiently large,

β
∥∥Λs (

βz, zt
)∥∥2

1,β,Q∞ +∥∥Λs (
β∂νz,∂νzt

)∥∥2
Σ∞ .

1

β

∥∥∥Λs M∗
βz

∥∥∥2

Q∞
+∥∥Λs (

βz, zt
)∥∥2

1,β,Σ∞ . (60)

This estimate is crucial when proving the existence of solutions to the boundary problem (59),
[47, Theorem 3.4(b)].

Proposition 8. Let s be a non-negative integer and suppose that β is sufficiently large that the
two estimates (57) and (60) hold. For e−βt f ∈ H s (Q∞) and e−βt (g , g t ) ∈ H s+1(Σ∞), the boundary
value problem (59) has a unique weak solution u ∈ H 1+s (Q∞). This solution is the strong limit
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of functions which are smooth. It has the additional regularity properties ut ∈ H s+1(Q∞) and
∂νu,∂νut ∈ H s (Σ∞), and the estimate

β
∥∥(
βu,ut

)∥∥2
1+s,β,Q∞ +∥∥(

β∂νu,∂νut
)∥∥2

s,β,Σ∞ .
1

β

∥∥∥e−βt f
∥∥∥2

s,β,Q∞
+

∥∥∥e−βt (
βg , g t

)∥∥∥2

1+s,β,Σ∞

holds.

Proof. In the first step we prove the existence of a weak solution using a duality argument. For
that we define

Y =
{

z ∈ H(3,−s−1)(Q∞) : z
∣∣∣
Σ∞

= 0

}
and Z = {M∗

β
z : z ∈ Y }. Note that Z is a subspace of H(0,−s−1)(Q∞). Consider the linear functional

defined by

l (z) =
(
z,e−βt f

)
Q∞

+ (
c2 +βb

)〈
∂d z,e−βt g

〉
Σ∞

−b
〈
∂d zt ,e−βt g

〉
Σ∞

.

This linear functional is bounded on Z since

|l (z)|.
∥∥∥e−βt f

∥∥∥
s,β,Q∞

∥∥Λ−s z
∥∥

Q∞ +
∥∥∥e−βt g

∥∥∥
s+1,β,Σ∞

∥∥∥[∥∥Λ−s−1∂d zt
∥∥
Σ∞ +∥∥Λ−s−1β∂d z

∥∥
Σ∞

]
.

[∥∥∥e−βt f
∥∥∥2

s,β,Q∞
+

∥∥∥e−βt g
∥∥∥

s+1,β,Σ∞

]∥∥∥Λ−s−1M∗
βz

∥∥∥
Q∞

,

where we applied formula (60) with s replaced by −s−1. Applying the Theorems by Hahn–Banach
and by Riesz, there exists an element u ∈ H(0, s+1)(Q∞) such that l (z) = (Mβz,u)Q∞ , that is(

Mβz,u
)

Q∞ =
(
z,e−βt f

)
Q∞

+ (
c2 +βb

)〈
∂d z,e−βt g

〉
Σ∞

−b
〈
∂d zt ,e−βt g

〉
Σ∞

for all z ∈ Y . Hence, u is a weak solution to the boundary value problem.
In the second step, the regularity in the direction normal to the boundary is established. From

equation Mβu = e−βt f and the Laplacian in local coordinates (58) we know that

c2 +βbp
det a

∂d

(p
det a∂d u

)
+ bp

det a
∂d

(p
det a∂d ut

)
= (

∂t +β
)3 u +α(

∂t +β
)2 u − (

c2 −bβ
)
∆′

au −b∆′
aut −e−βt f . (61)

This equation can be considered as a ordinary differential equation for the unknown
∂d (

√
det g∂d )u with respect to t . In the following we abbreviate the right-hand side in this

equation by h and note that h ∈ H(0, s−2)(Rd+1+ ). Integrating in time gives

1p
det a

∂d

(p
det a∂d u

)
(t , x) = 1

b

∫ t

−∞
e−(c2/b+β)(t−s)h(s, x)d s

and hence ∂d (
p

det a∂d u) ∈ H(0,s−1)(Rd+1+ ) since h has time derivatives of order three but space
derivatives of order two. Now note that the identity

1

(det a)1/4
∂2

d

[
(det a)1/4u

]= 1p
det a

∂d

[p
det a∂d u

]
+u

∂2
d (det a)1/4

(det a)1/4

implies (det a)1/4u ∈ H(2, s−1)(Rd+1+ ) and thus u ∈ H(2, s−1)(Rd+1+ ), because of the smoothness of
det a.

This process can be repeated and results in u ∈ H s+1(Q∞). Furthermore, derivatives in normal
direction can be estimated in terms of tangential derivatives and the forcing term. These facts
can be combined into an improvement of the estimate (57). For u ∈ H s+3(Q∞) we have

β
∥∥(
βu,ut

)∥∥2
1+s,β,Q∞ +∥∥(

β∂νu,∂νut
)∥∥2

s,β,Σ∞.
1

β

∥∥Mβu
∥∥2

s,β,Q∞ +∥∥(
βu,ut

)∥∥2
1+s,β,Σ∞ (62)

Finally, we prove that the solution u ∈ H s+1(Q∞) satisfies ut ∈ H s+1(Q∞), ∂νu,∂νut ∈ H s (Σ∞), and
the estimate stated in the proposition. Approximating the forcing term and the boundary data by
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functions in H s+2(Q∞) and H 3+s (Σ) we obtain a sequence of solutions in u(n) ⊂ H 3+s (Q∞). Using
estimate (62) on u(n) −u(m) shows that this sequence u(n) and u(n)

t are Cauchy in H s+1(Q∞), the
sequence is Cauchy and that the sequences ∂νu(n) and ∂νu(n)

t are Cauchy in H s (Σ). The limit
function u ∈ H 1+s (Q∞) is then the strong solution and satisfies the estimate. �

Returning to the original variable w we have solved the boundary problem M w = f in Q∞,
w = g in Σ∞ whose solution satisfies the estimate

β
∥∥∥e−βt (

βw, wt
)∥∥∥2

1+s,β,Q∞
+

∥∥∥e−βt (
β∂νw,∂νwt

)∥∥∥2

s,β,Σ∞

.
1

β

∥∥∥e−βt f
∥∥∥2

s,β,Q∞
+

∥∥∥e−βt (
βg , g t

)∥∥∥2

1+s,β,Σ∞ .

This estimate can be used to solve the initial-boundary value problem with homogeneous initial
data. If f and g both vanish for t < 0, then w has to vanish for t < 0 as well, see [47, Lemma 3.4.4].

Now we discuss non-homogeneous initial data. For s, a non-negative integer, and w ∈ H 3+s (Q)
one has the semigroup estimate∥∥∥e−βT w(T )

∥∥∥2

1+s,β,Ω
+

∥∥∥e−βT wt (T )
∥∥∥2

1+s,β,Ω
+

∥∥∥e−βT wt t (T )
∥∥∥2

s,β,Ω

+β
∥∥∥e−βt (

βw, wt
)∥∥∥2

1+s,β,Q
+

∥∥∥e−βt (
β∂νw,∂νwt

)∥∥∥2

s,β,Σ

.
1

β

∥∥∥e−βt M w
∥∥∥2

s,β,Q
+

∥∥∥e−βt (
βw, wt

)∥∥∥2

1+s,β,Σ

+‖w(0)‖2
1+s,β,Ω+‖wt (0)‖2

1+s,β,Ω+‖wt t (0)‖2
s,β,Ω .

(63)

This semigroup estimate is proved as in Sakamoto’s book [47, Section 3.5]. The only difference is
that our starting point is not the energy integral

ℜ
∫

Q
e−2βt M w

(
2∂2

t −b∆
)

w d td x but rather ℜ
∫

Q
e−2βt M w

(
2∂2

t +β2b
)

w d td x .

This is due to the fact that our resolvent estimate does not have second-order space derivatives
on the left-hand side. The semigroup estimate plays a crucial role in the proof of the following
result which includes part (b) of Theorem 1 in the case s = 0. In order to talk about solutions
to the initial-boundary value problem (3) of higher regularity, we need to discuss compatibility
conditions.

If f ∈ H s (Q), s ≥ 1 then the differential equation M w = f can be used to recover the initial
values of higher-order time derivatives ∂l+2

t w(0), l = 1,2, . . . , s. If ∂l
t g (0) = ∂l

t w(0) on Γ for
l = 0,1, . . . , s + 1, then the data f , g , w0, w1, w2 satisfy the compatibility condition of order s.
The compatibility conditions of order s = 0 are the ones stated in Theorem 1.

Proposition 9. Let s be a non-negative integer. Consider the initial-boundary value problem (3)
with f ∈ H s (Q), g , g t ∈ H s+1(Σ), and w0, w1 ∈ H s+1(Ω), w2 ∈ H s (Ω) satisfying the compatibility
conditions of order s. There exists a unique solution (w, wt ) ∈ C ([0,T ], H s+1(Ω)× H s+1(Ω)) with
additional trace regularity ∂νw,∂νwt ∈ H s (Σ) and the estimate

‖(w(T ), wt (T ))‖2
1+s,Ω+‖wt t (T )‖2

s,Ω+‖(w, wt )‖2
1+s,Q +‖(∂νw,∂νwt )‖2

s,Σ

. ‖ f ‖2
s,Q +∥∥(g , g t )

∥∥2
1+s,Σ+‖(w0, w1)‖2

1+s,Ω+‖w2‖2
s,Ω ,

holds.

Proof. The forcing term f , the Dirichlet data g and the initial data w0, w1, w2 can be all approxi-
mated by sequences of functions f (n) ∈ H s+2(Q), g (n) ∈ H s+4(Σ), w (n)

0 ∈ H s+9/2, w (n)
1 ∈ H s+7/2(Ω),
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w (n)
2 ∈ H s+5/2(Ω) and satisfy the compatibility conditions of order s +2 [44, Lemma 3.3]. By the

trace theorem in Sobolev spaces, there exists a sequence w (n)
I I ∈ H s+5(Q) such that

∂
j
t w (n)

I I (0) = w (n)
j (0) for j = 0,1,2.

Let w (n)
I be the solution to the initial-boudary value problem

M w = f (n) −M w (n)
I I in Q , w = g (n) −w (n)

I I in Σ , w(0) = wt (0) = wt t (0) = 0 .

According to Proposition 8 and the discussion right after its proof, this problem has a unique
solution w (n)

I ∈ H s+3(Q). Consequently, the function w (n) := w (n)
I + w (n)

I I satisfies the initial-
boundary value problem

M w = f (n) in Q, w = g (n) in Σ, w(0) = w (n)
0 , wt (0) = w (n)

1 , wt t (0) = w (n)
2 inΩ

Using the semigroup estimate (63), the difference w (n) −w (m) is shown to be Cauchy in H s+1(Q).
Its limit w ∈ H s+1(Q) is then the solution to the initial-boundary value problem (3) and the
estimate and the additional regularity statements follow from (63) applied to w (n) and taking
the limit. �

Remark 10. Once we consider a finite interval the exponential term e−βt as well as the Sobolev
norms with the parameter β become unnecessary. Hence, we decided to formulate the estimate
in the last Proposition without them. In the infinite time interval is considered, one has to use
weighted norms and the exponential term.
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