INSTITUT DE FRANCE

Académie des sciences

Comptes Rendus

Mathématique

Sergio Conti, Martin Lenz, Nora Liithen, Martin Rumpf and Barbara
Zwicknagl

Geometry of martensite needles in shape memory alloys
Volume 358, issue 9-10 (2020), p. 1047-1057
Published online: 5 January 2021

https://doi.org/10.5802/crmath.120

[cO=amm| This article is licensed under the
CREATIVE COMMONS ATTRIBUTION 4.0 INTERNATIONAL LICENSE.
http://creativecommons.org/licenses/by/4.0/

"I.<1
>
MERSENNE

Les Comptes Rendus. Mathématique sont membres du
Centre Mersenne pour I’édition scientifique ouverte
www.centre-mersenne.org
e-ISSN : 1778-3569


https://doi.org/10.5802/crmath.120
http://creativecommons.org/licenses/by/4.0/
https://www.centre-mersenne.org
https://www.centre-mersenne.org

Comptes Rendus
Mathématique

2020, 358, n°9-10, p. 1047-1057
https://doi.org/10.5802/crmath.120

Numerical Analysis / Analyse numérique

Geometry of martensite needles in shape
memory alloys

Géométries des aiguilles de martensite dans les alliages a
mémoire de forme

Sergio Conti® ¢, Martin Lenz® *' ¥, Nora Liithen ¢, Martin Rumpf® ?
and Barbara Zwicknagl® ¢

@ Institute for Applied Mathematics, University of Bonn, Endenicher Allee 60, 53115
Bonn, Germany

b Institute for Numerical Simulation, University of Bonn, Endenicher Allee 60, 53115
Bonn, Germany

¢ Chair of Risk, Safety and Uncertainty Quantification, ETH Ziirich,
Stefano-Franscini-Platz 5, 8093 Ziirich, Switzerland

4 Humboldt-Universitit zu Berlin, Departement of Mathematics, Unter den Linden 6,
10099 Berlin, Germany

E-mails: sergio.conti@uni-bonn.de, martin.lenz@ins.uni-bonn.de,
luethen@ibk.baug.ethz.ch, martin.rumpf@ins.uni-bonn.de,
barbara.zwicknagl@math.hu-berlin.de

Abstract. We study the geometry of needle-shaped domains in shape-memory alloys. Needle-shaped
domains are ubiquitously found in martensites around macroscopic interfaces between regions which are
laminated in different directions, or close to macroscopic austenite/twinned-martensite interfaces. Their
geometry results from the interplay of the local nonconvexity of the effective energy density with long-range
(linear) interactions mediated by the elastic strain field, and is up to now poorly understood. We present a
two-dimensional shape optimization model based on finite elasticity and discuss its numerical solution. Our
results indicate that the tapering profile of the needles can be understood within finite elasticity, but not
with linearized elasticity. The resulting tapering and bending reproduce the main features of experimental
observations on NigsAlgs.

Résumé. Nous étudions la géométrie des domaines en forme d’aiguille dans les alliages a mémoire de forme.
Les domaines en forme d’aiguille sont omniprésents dans les martensites pres des interfaces macroscopiques
entre régions laminées dans des directions différentes, ou prées d’interfaces macroscopiques entre austénite et
martensites jumelées. Leur géométrie résulte de I'influence relative de la non-convexité locale de la densité
d’énergie effective et des interactions a longue portée (linéaires) engendrées par le champ de déformation
élastique, et est pour le moment assez mal comprise. Nous présentons un modele d’optimisation de forme
bi-dimensionnel basé sur 1'élasticité non-linéaire et étudions son approximation numérique. Nos résultats
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montrent que le profil effilé des aiguilles peut étre expliqué dans le cadre de 'élasticité non-linéaire, mais
pas dans le cadre linéarisé. Lamincissement et la flexion qui en résultent reproduisent les caractéristiques
principales observées expérimentalement sur le NigsAlgs.

Funding. This work was partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) via Project 211504053 — SFB 1060.

Manuscript received 5th November 2019, revised 16th September 2020, accepted 22nd September 2020.

1. Introduction

Shape-memory alloys couple complex macroscopic material behavior with specific microstruc-
tures [2, 18]. Low-energy interfaces between different variants of martensite, or between marten-
site and austenite, are possible only under specific conditions, and only with a few special ori-
entations. Indeed, in the martensitic phase one often observes finely twinned laminates with
a crystallographically-determined orientation. Most experimental situations require deviations
from those orientations and lead to complex structures, which involve curved or complex inter-
faces.

One typical situation is the appearance of so-called “needle-like” domains [4, 18, 19], see
Figure 1 for an illustration. They often appear close to macrointerfaces between austenite and
finely twinned martensite or between regions where the martensite is twinned in different
directions. Needle-like domains are believed to be crucial for the macroscopic energetics and for
the hysteresis of the phase transition, as they determine the cost of the transition state [22-24].
They are thin domains of one martensite variant, which taper approaching a tip. The bending
of the needle was related to its tapering [4], but the tapering mechanism is up to now not
understood. In particular it is not clear what determines the length scale of the needles.

A related (and competing) microstructure is the so-called branching pattern, first studied in
this context by Kohn and Miiller [13], which can be seen as a laminate which refines close to the
macrointerface. In some models branching extends down to scale zero, leading to asymptotically
self-similar deformation patterns [6]. If interfacial energy penalizes interfaces with all orienta-
tions, however, branching is expected to stop at some point, and, close to the interface, to be re-
placed by a single-scale interpolation. The latter might correspond to needles, see for example [7].
The detailed geometry of branching patterns was studied in [8]. The role of needles can be further
strengthened by evolutionary aspects, as the gain in energy made possible by branching patterns
is not necessarily dynamically accessible to the material during the phase transformation. We do
not investigate branching patterns further here.

The geometry of needles was studied analytically in a geometrically linear setting in [3, 4, 19].
This permitted in particular to find a simple relation between the bending of the thin needles and
their tapering, but the tapering profile itself could not be predicted. Numerical studies with geo-
metrically linear models also did not lead to a stable prediction of the tapering profile [16]. There
has been a considerable effort to reproduce the formation of needles numerically, with models
based on nonlinear elasticity and many different discretizations schemes. Simulations based on
aphase field method [9] have shown that a geometrically nonlinear model is needed for the mod-
eling of polytwinned microstructures. Needle formation, bending, tapering and branching have
been observed in studies based on finite elements with a nonconvex energy density [15]. Needles
close to a free surface have been studied with an atomistic discretization [17], showing that they
have a strong tendency to either retract or to transform into a laminate. An analysis based on
three-dimensional FEM with parametrized boundaries was presented, for the case of Cu-Al-Ni,
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Figure 1. (a) Experimental observation of needle-shaped domains via transmission elec-
tron microscopy in a thin sample of NigsAlss. Reprinted with permission from [4, Fig-
ure 5], available under https://doi.org/10.1103/PhysRevB.64.144105. Copyright (2001) by
the American Physical Society. (b) Sketch of the geometry in the reference configuration.
The red line outlines the fundamental cell, which is repeated periodically in the vertical di-
rection. (c) Sketch of the geometry in matrix space. The macroscopic deformation gradient
V is a weighted average of U' and U?, and is itself compatible (along a different direction)
with QU for some Q € SO(2).

in [21]. This paper focused on energy concentration around the needle tip. The resulting needle
geometry was qualitatively similar to the experimental one, but there remained significant dif-
ferences [21, Figure 8 and 9]. A phase-field approach, also with a geometrically nonlinear model,
has been presented in [14] and also shows bending and tapering of needle-like structures (see in
particular Figure 3 there). In [5] the stored elastic energy was numerically minimized with respect
to variation in the period of the twinned microstructure. The formation of needles was also ob-
served using a Fourier-space discretization of a viscoelastic model [20]. Whereas all these studies
agree in showing that models based on nonlinear elasticity can predict the formation of needles
which qualitatively resemble the observed ones, the detailed shape, and its dependence on the
parameters of the problem, was not explored.

In this work, we use a two-dimensional nonlinear elasticity model to show numerically that
the tapering profile can be understood as a consequence of geometric nonlinearity. Our results
indicate that the effective length of the needle is proportional to 1/, where § is the order
parameter in the bulk. Correspondingly, a geometrically linear version of the model predicts an
infinite length of the needles. For definiteness, we focus on needles completely in the martensitic
phase of NigsAlss and on the TEM observations reported in [4], but our model can be easily
generalized to other materials.

2. Model

We work with nonlinear elasticity, following [1], in two spatial dimensions. We assume that there
are two martensitic variants, with eigenstrains
16 s (1-6
U= and U” := 1

(0 1) (o 1 1)
for some 6 > 0; in the simulations we use 6 = 0.1 which is a typical value for NigsAls5 (see [4,
Section IV/A]). We use, as customary, the austenite as reference configuration, scaled to have
the same density as the martensite (so that U 1 and U? have unit determinant). The minimizers
of the free-energy density are then the deformation gradients of the form RU' or RU?, for any
R € SO(2). If there is a continuous interface between a region with deformation gradient RU' and
one with deformation gradient R'U?, then necessarily RU't = R'U?7 for any tangent vector 7.

C. R. Mathématique, 2020, 358, n° 9-10, 1047-1057
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This equation has two pairs of solutions for 7 € S!, the first one being 7 = +e; (with R’ = R); and
the second one being T = +e, (with R, R’ related by R(6,1) = R'(-6,1)).

We assume that the left part of the sample is in variant U!, and the right part is in a mixture of
variants U' and U? as displayed in Figure 1(b).

We denote by Q! (or Q?) the part of the domain in which variant U 1 (or U?) is used, and
minimize the energy

E[$, Q1,07 :=f WI(D<p)dx+f W2 (D) dx, @)
Q! 02

where ¢ : Q' UQ? — R? is the elastic deformation, and W' is the free-energy density of variant i.
A detailed exposition of the physical configuration will be given in Section 4. Here we confine to
the discussion of the relevant parameters of the domains Q! and Q? to describe the important
geometric characteristics of the needle configuration.

We do not include a surface-energy term, proportional to the length of the interface between
Q! and Q2. This contribution is typically much smaller than the elastic energy. The surface energy
is crucial in determining the length-scale of the U'/ U? mixture on the right of the interface, which
determines the number of interfaces and hence their total length, an effect we do not study here.
The bending and tapering of the needle instead have only a minor effect on the total length of
the interface, whereas they have a significant effect on the long-range elastic incompatibility.
Therefore surface energy is not crucial in this situation, and for simplicity we do not include it in
the model.

We impose boundary conditions on the two domains Q!, Q? corresponding to the geometry
illustrated in Figure 1(b), and determine both the elastic deformation ¢ and the two sets Q', Q?
by minimizing the energy E, resulting in a shape-optimization problem. As we do not optimize
over the topology, we opt for a reparametrization scheme (discussed below) for the optimization
of the two shapes. The domains Q!, Q? are parametrized via low-order polynomials.

We assume that on the far right a periodic mixture of the U' and U? variants is present, with
periodicity H, and volume fractions 0 and 1 -6, 6 € (0,1) (cf. Figure 2). This is geometrically
possible, since U le, = U?ey. The average deformation gradient in this region is then V :
QU +(1-0)U? =1d+(20 — 1)8e; ® e, and is compatible to a different rotation of the U! variant,
QU'e 59 = Ve‘” where e‘” \ﬁ% The rotation Q can be easily computed in terms of § and 6.
We are 1nterested in resolv1ng the structure around this macrointerface, which is oriented along

‘239, assuming the periodicity is not changed.

We use a generic polyconvex nonlinear elastic energy density with the cubic symmetry of the

austenite [11],

W (F):= a tr(FT F)? + ap det(FT F) — ag log(det(FT F)) + a4 (FT F)3, + (FT F)3,), 3)

and extend it to the two martensite variants by setting W'(F) := W(F(U")™!), W2(F) :=
W(EFWUAH™Y. If 4a;, + a, — a3 + 2a4 = 0 and suitable inequalities hold, then W is minimized on
SO(2). The remaining three conditions for a;, a,, as, a4 depend on the three elasticity constants
of a cubic material. We choose c;; =200GPa, c¢12 = 130GPa, c44 = 110GPa, which are appropriate
for the B2 austenite phase of NigsAlss, see for example [10, Table I]. Then dp; := ¢1; - cle c11,
dip == c12 — cfz/ c11 and dy4 := cy4 are the effective elastic coefficients for a two-dimensional
plane stress reduction. The three conditions %du = 16a; +2ap + 2a3 + 12ay, di» = 16a; + 8ay,
and 2dy4 = 16a; —4ay + 4as + 8a, ensure the Hessian of W coincides with the two-dimensional
elasticity tensor given by these elastic coefficients. We solve this system for a;, a», as, a; and
obtain a; = 11.56 GPa, a; = —17.44GPa, as = 10.04 GPa, a4 = —9.38 GPa. We used the plane-stress
reduction to obtain the two-dimensional elastic constants d;; from the three-dimensional con-
stants c; j since the experiments in [4] are performed in thin films. Using a plane-strain reduction
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would lead to different values for the elastic constants, but not to changes in the model or the
functional form of W in (3). The model studied in this paper is purely two dimensional.

3. Results

We have numerically optimized the total elastic energy E[¢,Q',Q?] both in the deformation ¢
and in the shape of the domains Q' and Q2. We use a finite-element discretization for the de-
formation and minimize it out for any fixed domain geometry. The resulting effective functional,
which depends only on the domains, is then minimized in the shape of the needles, which is
parametrized in terms of the total needle length L” and two quadratic curves y* and y” describ-
ing the top and bottom needle profiles in the reference configuration, respectively. Since we as-
sume periodicity along the interface, only one needle needs to be resolved numerically. For a de-
tailed explanation of the concrete parametrization of the needle geometry and the shape opti-
mization method we refer to Section 4.

The resulting shape of the needles is illustrated in Figure 2(a). The needle tapering naturally
occurs on a length scale which is of the order of 5 to 10 needle spacings, in agreement with
experiment (see Figure 1(a)). This tapering effect was not resolved in the geometrically linear
modelin [4] and is discussed in more detail below. The tapering in turn generates a bending of the
needle, as apparent both in the numerical results of Figure 2 (a) and in the experimental image in
Figure 1(a). In the reference configuration the bending of the needle is almost absent, and only a
small asymmetry between the two boundaries is apparent (see Figure 1(b) and discussion below).
This confirms that the experimentally observed bending results from the fact that compatibility
across a tapering needle requires a nontrivial rotation, as predicted by the geometrically linear
analysis [4]. In the following we discuss the tapering length and the asymmetry in more detail.

One important result of our computations is that the tapering length can be explained by a
two-dimensional model based on finite elasticity, but not by the geometrically linear version.
This can be qualitatively understood as a consequence of the well-known differences between
linear and nonlinear elasticity in the theory of elastic plates. Indeed, the key mechanism driving
the deformation in the needle region is the need for the region Q? to accommodate two different
orientations: the deformation gradient is close to U? in the part around the right boundary, and
close to RyU? around the vertical interface, where Ry € SO(2) is such that RyU? — QU! is a rank-
one matrix, as illustrated in Figure 1. A detailed analysis shows that the leading-order energy
contribution in finite kinematics is different from the one in the linearized theory. This will be
discussed in a forthcoming publication.

Needle length

Figure 2 shows the optimal needle shape obtained for § = 0.1 and volume fraction 8 = 0.25. The
right panel shows an enlargement of the shape of a single needle, which is almost, but not exactly,
symmetric in the reference configuration (see below).

Figure 3 shows that the general structure with an almost symmetric tapering in the reference
configuration and a substantial bending in the deformed configuration is not specific to § = 0.1.
At the same time the effective tapering length L" (defined precisely via the formulas for y* and
yP given in Section 4 below) depends strongly on § (defined in (1)). By scaling one easily sees
that necessarily L = H f () for the present scale-invariant model. The right panel shows that the
dependence is very well approximated by L” = cH/§, predicting an infinite tapering length in the
limit § — 0. This is precisely the limit in which linearized elasticity applies.

C. R. Mathématique, 2020, 358, n° 9-10, 1047-1057
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(a)

|
|
:
|

Figure 2. (a) Periodic needle pattern (in the deformed configuration) as obtained by
numerical minimization of the functional (2) with § = 0.1 and 8 = 0.25, to be compared
with the experimental observation in Figure 1(a). We also show the needle shape in the
reference (b) and deformed (c) configuration, scaled by a factor of 4 vertically in order to
better illustrate the shape of the needle. The shape in the reference configuration is almost
symmetric, but in the deformed configuration a substantial bending appears.

n
6=02 L

12
§=0.05 I 10 |-

(b) 6=01

J ‘ | | |

0.05 0.1 0.2 1

Figure 3. Optimal needle shape for different values of § in the (a) reference and (b) de-
formed configuration, scaled for clarity by a factor of 4 vertically as in Figure 2(b) and (c).
The right panel shows the needle length L” as a function of § (the filled circles mark the
configurations on the left). The black line shows the slope of 1/6.

Linearized elasticity

We also considered a linearization of the present model, in which the energy density defined
in (3) is replaced by Wiin (€) := 3 d11 (€3, +€3,) + di2€11€22 + 2das€?, and WLliﬁ (€):= Wiin(e £ 18(e1 ®
e + ex ® e)), with €(¢) := %(Dq) + D¢)T) —Id. Correspondingly, the macrointerface between the
average displacement gradient (20 —1)6e; ® e, and the variant d e; ® e is oriented along e,, which
is the leading-order linearization of the vector ege introduced above. Therefore the appropriate
boundary condition in the linear context is ¢p(x;, H) = ¢p(x1,0)+ Hep + (20 —1)6 He; . The numerics
(cf. Figure 4) show that the stored elastic energy, after optimizing with respect to the remaining
degrees of freedom, decays for increasing L". In fact, the elastic energy appears to be proportional

to 1/L", so that the optimal value of L” seems to be infinity.
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2-1073

5-1074 I | | I
3 4 6 10 1"

Figure 4. Linearized elastic energy of the optimal needle shape for different values of L",

demonstrating that there is no fixed length scale in the linearized case. The black line shows
the slope of 1/L".

Nonsymmetric, curved needle geometry

The optimal needle geometry appears almost, but not exactly, symmetric. In fact, the needle tip
is shifted upwards by = 0.003 with respect to the centerline of the corresponding laminate layer
in the reference configuration. Closer inspecting the optimized, parametric curves y’ and y?,
one observes a tangential alignment of the needle geometry and the corresponding martensitic
laminate layer of constant thickness at the right boundary. For our finest mesh computation the

slope of y! is 1.9-10* and the slope of y? is 5.4- 1075 at the point where the needle merges into
the laminate (in the reference configuration).

4. Numerical scheme for the optimization of the needle geometry

In order to numerically optimize over the geometry we use a change-of-variables technique
related to configurational mechanics, see, e.g., [12]. Precisely, we let the physical domain Q be
the image of a (fixed) computational domain € via a map w[a] depending on a finite set of
design parameters a. The physical reference configuration represents the undeformed state of
the fundamental cell of the martensitic twin microstructure and is deformed by the actual elastic
deformation ¢. Computational domain and physical reference configuration are sketched in
Figure 5. In the physical reference configuration the top and bottom boundaries of the needle are

€9 €2
LIT " i: L]T L L
\
H OL Q2 (1-0)H H“\
At \
\
| A
~b
\_/ ’Yb
Yla]

Figure 5. Sketch of the transformation of the fundamental cell from the computational
domain to the physical reference configuration, cf. Figure 1.
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described by curves y* and y?, which in turn are parametrized via w[a] over two (fixed) piecewise
affine curves 7/ and 7 at corresponding positions in the computational domain. The horizontal
length L of the fundamental cell is fixed and splits up into the length of left U' variant L!, which
is fixed as well, the length of the needle tip L” and the length of the laminate component on
the right L” (ideally this is an infinite domain, we make it finite only for computational reasons).
The needle length L” in the physical reference configuration is one of the design parameters
and consequently L” = L— L! — L. The overall height for the fundamental cell is denoted by H,
which splits up into fractions 6 and (1 — 0) corresponding to the two martensitic variants. In our
computations we chose H = 1. The values of L and L' were chosen depending on the expected
range of L", i.e. L = 14.5, L! = 2.5 for Figure 2 and Figure 6, L = 22.5, L = 2.5 for Figure 3, and
L=16, L =2for Figure 4.

Another design parameter is the width A of the needle cross section at the end of the needle
tip above the x; axis along the sheared direction egg. In particular the composite component with
L™ < x < L™+ L' is shifted in this direction. Correspondingly, the width below the x; axis in the
physical configuration is 8 H—A. The parametrization y[«a] is composed of three transformations:
(1) a linear stretching of the needle tip interval of length L” along the x; axis by a factor L—Z and a
corresponding linear compression of the laminate component to the right, (2) a piecewise affine
deformation on slices in the direction of e, within the needle interval [0, L] which maps ?b to
yP, ¥* to y*, and 7” + He, to y? + He,, and (3) a shearing deformation keeping e; fixed and
mapping e, onto 6(250' To describe the curved needle geometries we consider simple quadratic
curves y! = {(x,a'x?* + (& — a'L")x) : x € [0,L"1}, y¥ = {(x, aPx® + (A9 — aPL")x) : x € [0, L]}
where the coefficients a’ and a” are additional degrees of freedom. Altogether we consider as the
vector of design variables a := (A, L", ab ab).

Given this geometric configuration we aim at minimizing the shape functional a — _#[a],
where ¢[al := &[a, plal] with ¢[a] being the elastic deformation minimizing the stored elastic
energy (2), which we assume to be unique. Taking into account the parametrizations Q! :=
vlal (ﬁl'z) of the two physical domains Q! and Q?, we obtain for the stored elastic energy for
a deformation ¢ := ¢poylal

&la,P):= E[p,Q', Q7] =f

~ Wl(D¢)dx+ f ~ W*(D¢)dx
wlal(Qh)

ylal(©?)
= 2 f w™ (D) (Dyla) () ') det Dyla)(®) .
m=1,2JQ™"
Here, we assume that the w[a] is bijective and used the chain rule D¢(x) =
5$[a](f) (ﬁw[a](?c))_l where D is the differential in reference coordinates X with x = wial(X).
Finally, we consider periodic boundary conditions on the top and bottom boundary of our
fundamental domain and natural boundary conditions on the left and on the right.

A necessary condition for a reference deformation ¢ to minimize the elastic energy &|a, ¢)
for fixed «a is given by the EAuler—Lagrange equation 0 = g ola, @], where 3, b denotes the Fréchet
derivative with respect to ¢. For the spatial discretization we consider an admissible simplicial
finite element mesh for the reference domains Q2 with coinciding nodes on the common
interface. Denoting by V', the associated space of piecewise affine and continuous functions from
Q to R? we consider the conforming finite element discretization of our variational problem with
¢ in V. The solution ¢[a] is computed using Newton’s scheme for the state equation & ola, $1=0
where a small number of iterations (up to 11) are sufficient to obtain a residual in the L? norm
of 1078, This scheme can easily be extended via a suitable projection to incorporate translational
invariance [, (¢ —Id)dx=0. L

To minimize the cost functional #|[a] = &[a, ¢[a]] we consider a cascadic nonlinear conjugate
gradient scheme. For the linesearch with step size control in the descent we proceed as follows.

C. R. Mathématique, 2020, 358, n°9-10, 1047-1057
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Given a descent direction g in the design variable @ we define f(¢) := _#(a+ tq) and let p be a
quadratic polynomial solving the interpolation problem p(0) = f(0), p’'(0) = f'(0) = _Zq[al(g),
and p(/l/) = f(A) for a suitable A > 0. The minimum of p is attained for the time step 1* =
—m. This time step is then used as input for Armijo’s time step control applied
to t— f(t). We descend until | £ 4[all < 1072, with at most 101 descent steps on each level of the
cascadic scheme in our numerical experiments.

We have experimentally studied the convergence of the elastic energy and the geometry
degrees of freedom a. For the shape shown in Figure 2 convergence plots for a spatial grid size
h=27"for n=2,...7 are presented in Figure 6. As a robustness check we have also considered
different types of finite element meshes, i.e. meshes with diagonal faces in the (1,-1) (N) and
(1,1) (;n) directions, respectively. All computations in Section 3 have been performed on a mesh
with i = 27% with a N grid, oriented as in Figure 6. The results have also been verified to be robust
with respect to the choice of initial conditions for the optimization parameters.

E 3-1073
0.124
1.8-1073 F

2:107 0.123
1.6-107%

/ 0.122
1-103 ¢ o

1.4-107%
=

Figure 6. Top: Coarsest finite element mesh, 4 = 272, M type. Bottom: Convergence plots
for the total energy and the four optimization parameters (the two curvatures —a‘ and a? in
the second plot). In each plot the results for N (blue x markers, corresponding to the mesh
depicted on top) and 1 (green circle markers) grids are shown for successive refinement by
quadrisection. A symmetric needle would have A = 0.125.
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Légendes des figures

Figure 1. (a) Observation expérimentale de domaines en forme d’aiguille par microscopie élec-
tronique en transmission dans un échantillon mince de NigsAlss, réimprimé avec la permission
de [4, Figure 5], disponible sous https://doi.org/10.1103/PhysRevB.64.144105, Copyright (2001)
American Physical Society. (b) Esquisse de la géométrie dans la configuration de référence. La
ligne rouge délimite la cellule fondamentale, qui est répétée périodiquement dans le sens ver-
tical. (c) Esquisse de la géométrie dans I'espace matriciel. Le gradient de déformation macro-
scopique V est une moyenne pondérée de U' et U?, et est lui-méme compatible (dans une direc-
tion différente) avec QU pour certains Q € SO(2).

Figure 2. (a) Modeéle d’aiguille périodique (dans la configuration déformée) obtenu par
minimisation numérique de la fonctionnelle (2) avec 6 = 0.1 et 8 = 0.25, & comparer avec
I'observation expérimentale de Figure 1(a). Nous montrons également la forme de 'aiguille dans
la configuration de référence (b) et déformée (c), mis aI’échelle verticalement d'un facteur 4 afin
de mieux illustrer la forme de I'aiguille. La forme dans la configuration de référence est presque
symétrique, mais dans la configuration déformée, une flexion importante apparait.

Figure 3. Forme optimale de 'aiguille L" pour différentes valeurs de §, dans la configuration
(a) de référence et (b) déformée, mis al’échelle pour la clarté d'un facteur 4 verticalement, comme
dans la figure 2 (b) et (c). Le panneau de droite montre la longueur de I'aiguille L" en fonction de
6 (les cercles pleins indiquent les configurations a gauche). La ligne noire indique la pente de 1/6.

Figure 4. Energie élastique linéarisée de la forme optimale de I'aiguille pour différentes valeurs
de L", démontrant qu’il n'y a pas d’échelle de longueur fixe dans le cas linéarisé. La ligne noire
indique la pente de 1/L".

Figure 5. Esquisse de la transformation de la cellule fondamentale du domaine de calcul a la
configuration de référence physique, cf. figure 1.

Figure 6. En haut: le maillage par éléments finis le plus grossier, 1 = 272, type N. En bas:
graphique de convergence pour I'énergie totale et les quatre parametres d’optimisation (les
deux courbures —a’ et a” dans le deuxieme tracé). Dans chaque graphique, les résultats pour
les maillages N (marqueurs x bleus, correspondant au maillage représenté en haut) et @ (mar-
queurs circulaires verts) s’affichent pour un raffinement successif par quadrisection. Une aiguille
symétrique aurait A = 0.125.
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