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Stochastic extensions of symbols in Wiener spaces and heat operator

Lisette Jager

Abstract

The construction, in [1], of a pseudodifferential calculus analogous to the Weyl calculus, in an infinite
dimensional setting, required the introduction of convenient symbol classes. The symbols are functions
defined on an infinite dimensional Hilbert space 𝐻 , which compels us to investigate, in particular, their
stochastic extensions to a Wiener space linked with 𝐻 .
In this article, we define a new class of symbols, which applications in quantum electrodynamics

render necessary. We proceed with the study of the first classes too. The results will be used to establish,
later on, the properties that a pseudodifferential calculus is expected to satisfy. They reveal as well
links between functions defined on the Hilbert space (the Cameron–Martin space) and their stochastic
extensions.
More precisely, we prove here that the symbols of both classes and the terms of their Taylor expansions

admit stochastic extensions. We define, in this infinite dimensional setting, a semigroup 𝐻𝑡 analogous to
the classical heat semigroup on a Wiener space [5, 7]. But, instead of acting on functions defined on a
Wiener space, it acts on functions defined on its Cameron–Martin space, namely on functions belonging
to one of our symbol classes. The heat operator commutes with a second order operator similar to the
Laplacian, which is the infinitesimal generator of the semigroup. A surprising feature is that this Laplacian
is continuous on the second class of symbols. This allows us, in this case, to give an expansion in powers
of 𝑡 of 𝐻𝑡 𝑓 , or to invert it.

Extensions stochastiques de symboles et opérateur de la chaleur
Résumé

La construction d’un calcul pseudodifférentiel en dimension infinie analogue au calcul de Weyl,
dans [1], a conduit à introduire des classes de symboles adaptées. Les symboles sont des fonctions définies
sur un espace de Hilbert de dimension infinie 𝐻 , ce qui contraint à étudier, en particulier, leur extension
stochastique à un espace de Wiener construit sur 𝐻 .
Dans cet article, nous définissons une nouvelle classe de symboles, nécessaire pour une application

en électrodynamique quantique. Nous poursuivons aussi l’étude des premières classes de symboles. Ces
résultats seront utilisés ultérieurement pour établir les propriétés qu’un calcul pseudodifférentiel est
censé vérifier. Ils révèlent aussi les liens entre les fonctions définies sur l’espace de Hilbert (l’espace de
Cameron–Martin) et leurs extensions stochastiques.
Plus précisément, on prouve ici que les symboles appartenant aux deux types de classes et les termes

de leur développement de Taylor admettent des extensions stochastiques. On définit, en dimension infinie,
un semi-groupe 𝐻𝑡 analogue au semi-groupe de la chaleur classique sur l’espace de Wiener [5, 7].
Mais au lieu d’agir sur des fonctions définies sur un espace de Wiener, il agit sur des fonctions définies
sur l’espace de Cameron–Martin, c’est-à-dire sur des fonctions appartenant à nos classes de symboles.
L’opérateur de la chaleur commute avec un opérateur du second ordre analogue au Laplacien et qui est le
générateur infinitésimal du semi-groupe. Un fait surprenant est que ce Laplacien est continu sur le second
type de classes de symboles. Cela permet de développer 𝐻𝑡 en termes de puissances de 𝑡 et de l’inverser.

Keywords: stochastic extensions, heat operator, Wiener spaces, pseudodifferential calculus, symbol classes.
2020 Mathematics Subject Classification: 35K08, 28C20.

157



L. Jager

1. Introduction

This article is motivated by pseudodifferential analysis in an infinite dimensional context.
A central notion in the usual Weyl pseudodifferential calculus is the symbol classes.
Symbols are functions defined on R2𝑛, with which the Weyl calculus associates a linear
operator, according to a classical procedure involving integrations. The space R𝑛 appears
both as a Hilbert space and as a measure space.
What becomes of the spaces and of the symbols in an infinite dimensional framework?

On an infinite dimensional Hilbert space 𝐻, there is no measure which can replace the
Lebesgue measure. One solution is to use a Wiener extension 𝐵 of 𝐻, as was done in [1].
One may consult [3, 4, 5, 6, 9, 11] about Wiener spaces and the notions needed will be
recalled in the article. But let us sketch here the relationship between the Hilbert space
and its extension. The Hilbert space 𝐻 is real and separable. Its Wiener extension 𝐵 is
its completion with respect to a convenient norm on 𝐻 (called “measurable”) and it is
endowed with a Gaussian probability measure. There is no such measure on 𝐻 and the 𝐻
scalar product does not extend as such on 𝐵, even if 𝐵 is sometimes a Hilbert space too.
This distribution of properties compels us to shift constantly from one space to the

other, operation which is not necessary in the classical, finite dimensional case. The
choice made in [1] was to define the symbols on the Hilbert space. To be able to integrate,
one must associate a function 𝑓̃ , defined on the Wiener extension, with a function 𝑓 ,
defined on the Hilbert space. This is the notion of the stochastic extension, which goes
back to [3, 4, 5, 6, 9, 11]. It is studied in the present article in relation with the symbol
classes. Although the motivations come from pseudodifferential analysis, even if we
sometimes allude to the classical, finite dimensional theory, it will not be central in this
work which is focused on the notion of stochastic extension of specific symbol classes.
In this article we principally treat two different symbol classes, one originating from a

former article and one which is introduced here.
In [1], the Weyl calculus was constructed for symbols belonging to a given class,

𝑆𝑚 (B, 𝜀), recalled in Definition 2.3. Only the properties strictly necessary in view of the
construction of the pseudodifferential calculus were proved there. The symbols, defined
on 𝐻2, satisfy partial differentiability conditions with respect to a fixed orthonormal
basis B, as well as estimates (formally, they satisfy the conditions required to apply
the finite-dimensional Calderòn–Vaillancourt Theorem). In the present article we go
further with the study of these classes. We prove that the symbols in 𝑆𝑚 (B, 𝜀) have more
general stochastic extensions and are Fréchet-differentiable for sufficiently large 𝑚. We
also define the analogue of the Laplace operator and relax the dependence on the basis
of 𝐻 (Remark 4.7), which was important in [1].

158



Stochastic extensions, heat operator

In Definition 3.5 we introduce another class of symbols, 𝑆(𝑄𝐴), defined thanks to a
quadratic form linked with a trace class operator 𝐴. Indeed, the classes 𝑆𝑚 (B, 𝜀) could
be used in quantum electrodynamics but only under a cutoff assumption (see [2]), which
the classes 𝑆(𝑄𝐴) enable one to lift. Moreover, the new classes 𝑆(𝑄𝐴) do not depend on
a basis. The symbols admit stochastic extensions as well. Their smoothness is included in
their definition.
Our principal purpose is to construct and study a semigroup of operators denoted by

(𝐻𝑡 )𝑡≥0, similar to the heat operator, for both symbol classes. Then we state the properties
which will be needed, for example, to treat the composition of operators, for both classes.
For bounded Borel functions defined on the Wiener space 𝐵 itself, the heat operator is

a classical notion, to which [5] is almost entirely devoted and which is still being studied
([7]). Let us recall it briefly. If 𝜇𝐵,𝑡 is the Gaussian probability measure of (variance)
parameter 𝑡 on 𝐵, the heat operator is given by

∀ 𝑥 ∈ 𝐵, 𝐻𝑡 𝑓 (𝑥) =
∫
𝐵

𝑓 (𝑥 + 𝑦) d𝜇𝐵,𝑡 (𝑦).

When 𝑓 is bounded and uniformly continuous on 𝐵, 𝐻𝑡 𝑓 , defined on 𝐵, converges
uniformly to 𝑓 when 𝑡 converges to 0. If, moreover, 𝑓 is Lipschitz continuous on 𝐵, 𝐻𝑡 𝑓

has further differentiability properties ([5, 9]).
But our construction requires this notion for symbols 𝑓 defined on the initial Hilbert

space 𝐻. Stochastic extensions are then clearly necessary and we are led to set:

∀ 𝑥 ∈ 𝐻, 𝐻𝑡 𝑓 (𝑥) =
∫
𝐵

𝑓̃ (𝑥 + 𝑦) d𝜇𝐵,𝑡 (𝑦),

where 𝑓̃ is a stochastic extension of 𝑓 in a certain sense and the resulting function 𝐻𝑡 𝑓 is
defined on 𝐻. Since 𝐻 is 𝜇𝐵,𝑡 -negligible in 𝐵, restricting 𝑓̃ makes no sense, nor is 𝑓̃ , in
general, a continuity extension of 𝑓 . But one can choose a measurable norm on 𝐻, giving
rise to a specific Wiener extension 𝐵𝐴 of 𝐻, for which the stochastic extensions have
topological properties. This is true for both kinds of symbol classes (Propositions 3.14
and 4.6). This allows us to use the theory of [5] and [9], classical in the frame of the
Wiener space theory. The extension 𝐵𝐴 may be different from the extension 𝐵 initially
chosen and is used temporarily. Of course, one checks that the integral defining 𝐻𝑡 𝑓 (𝑥)
does not depend on the chosen Wiener extension.
The main results of this article are Theorems 5.8 and 5.14, which establish, for the

classes 𝑆𝑚 (B, 𝜀) and for the classes 𝑆(𝑄𝐴), the existence of a Laplacian commuting with
the heat operator and which is its infinitesimal operator. We insist on the fact that, in the
classes 𝑆(𝑄𝐴), the Laplace operator is continuous, which allows one to inverse the heat
operator.
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Let us stress, for instance, the following expansion for 𝑓 ∈ 𝑆(𝑄𝐴), in terms of powers
of the (bounded) Laplace operator:

𝐻𝑡 𝑓 = 𝑓 +
𝑁∑︁
𝑘=1

𝑡𝑘

𝑘!

(
1
2
Δ

) 𝑘
𝑓 + 𝑡𝑁+1𝑅𝑁 (𝑡),

the remainder 𝑅𝑁 satisfying estimates independent of 𝑡. This kind of results is important
for the composition of symbols and problems purely linked to pseudodifferential analysis,
like the relationship between Wick, Anti-Wick and Weyl symbols.
Section 2 recalls the indispensable notions about Wiener space and measure. Then it

gives the vital definitions and results about the Weyl calculus in an infinite dimensional
setting. Section 3 is devoted to various stochastic extensions. It recalls and states more
precisely the results about stochastic extensions for the classes 𝑆𝑚 (B, 𝜀) of [1]. It proves
similar results for the classes 𝑆(𝑄𝐴), which are defined at this point. It also treats the case
of products of scalar products in view of the polynomial terms in the Taylor expansions of
the symbols. This brings up the alternative definition of the Weyl calculus, as a quadratic
form, which enables us to use unbounded symbols. In Section 4 we prove the Fréchet-
differentiability of the symbols in the classes 𝑆𝑚 (B, 𝜀). Then we extend stochastically
the Taylor’s expansions of symbols of both classes. The polynomial terms do not belong
to the symbol classes since they are unbounded. Still, they admit stochastic extensions
(Proposition 4.9) (and give rise, in a certain sense, to pseudodifferential operators [1]).
This section gives tools to define the heat operator. Section 5 defines the heat operator 𝐻𝑡

for functions initially defined on the Hilbert space and which are impossible to integrate
on the Wiener space without an extension. We establish the semigroup property for both
classes, together with useful properties of 𝐻𝑡 : infinitesimal generator, commutation.

Acknowledgments

The author wants to thank L. Amour and J. Nourrigat for many fruitful discussions.

2. The Weyl calculus on a Wiener space

The construction of the Wiener space may be found in [3, 4, 6, 9]. The Weyl calculus
on a Wiener space has been developed in [1]. We just recall here the notions which are
necessary to read the present article.
The abstract Wiener space (𝐻, 𝐵) is a couple where 𝐻 is a real, separable, infinite

dimensional Hilbert space and 𝐵 is a Banach space containing 𝐻 as a dense subspace.
The space 𝐵 is called a Wiener extension of 𝐻. One denotes by 〈 · 〉 (or sometimes · ) and
| · | the scalar product and the norm on 𝐻 and by ‖ · ‖ the norm on 𝐵.
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In what follows, one identifies 𝐻 with its dual space, so that 𝐵′ ⊂ 𝐻 ⊂ 𝐵, each space
being a dense subspace of the following one. One denotes by F (𝑋) the set of all finite
dimensional subspaces of a vector space 𝑋 . If 𝐸 ∈ F (𝐻), 𝜋𝐸 is the orthogonal projection
of 𝐻 onto 𝐸 . If 𝐸 ∈ F (𝐵′), one denotes by 𝑃𝐸 a generalization of the projection, where
the scalar products are replaced by the 𝐵′, 𝐵 duality.
It is impossible to extend to 𝐻 itself the Gaussian measure which is naturally defined on

its finite dimensional subspaces. Nevertheless, if the norm ‖ · ‖ of 𝐵 has a property called
measurability (see [9, Definition 4.4, Chapter 1] or [3]), one can construct a Gaussian
measure on the Borel 𝜎-algebra of 𝐵. Let

d𝜇R𝑛 ,ℎ (𝑥) = (2𝜋ℎ)−𝑛/2𝑒− 1
2ℎ

∑𝑛
𝑖=1 𝑥

2
𝑖 d𝜆(𝑥1, . . . , 𝑥𝑛)

be the Gaussian measure with variance ℎ > 0 on R𝑛. A cylinder of 𝐵 is a set of the form

C = {𝑥 ∈ 𝐵 : (𝑦1 (𝑥), . . . , 𝑦𝑛 (𝑥)) ∈ 𝐴}, (2.1)

where 𝑛 is a positive integer, 𝑦1, . . . , 𝑦𝑛 are elements of 𝐵′ and 𝐴 is a Borel set of R𝑛. If
(𝑦1, . . . , 𝑦𝑛) is orthonormal with respect to the scalar product of 𝐻, one sets

𝜇𝐵,ℎ (C) =
∫
𝐴

d𝜇R𝑛 ,ℎ (𝑥). (2.2)

The parameter ℎ represents the variance of the Gaussian measure and can also be
considered as a semiclassical parameter in the Weyl calculus. One can prove that this
measure extends as a probability measure, still denoted by 𝜇𝐵,ℎ, on the 𝜎-algebra
generated by the cylinders of 𝐵, which is the Borel 𝜎-algebra of 𝐵 (the same definition,
but starting from cylinders of 𝐻, yields a pseudomeasure which is not 𝜎-additive). One
may then integrate. The subscript 𝑝 will often denote the 𝐿 𝑝 norm in 𝐵 or 𝐵2, for the
measure with variance ℎ.
If 𝐸 ∈ F (𝐵′) has dimension 𝑛, one can identify 𝐸 and R𝑛 by choosing a basis,

orthonormal with respect to the scalar product of 𝐻 and thus define a measure 𝜇𝐸,ℎ on 𝐸 .
For every function 𝜑 ∈ 𝐿1 (𝐸, 𝜇𝐸,ℎ), the transfer theorem gives∫

𝐵

𝜑 ◦ 𝑃𝐸 (𝑥) d𝜇𝐵,ℎ (𝑥) =
∫
𝐸

𝜑(𝑢) d𝜇𝐸,ℎ (𝑢). (2.3)

If 𝑦 is an element of 𝐵′, it can be considered as a random variable on 𝐵. If 𝑦 is not
zero one sees, using (2.2), that, for every Borel set 𝐴 of R,

𝜇𝐵,ℎ (𝑦 ∈ 𝐴) =
∫
𝐴

𝑒
− 𝑣2
2ℎ |𝑦 |2 (2𝜋ℎ |𝑦 |2)−1/2 d𝑣,

which means that 𝑦 has the normal distributionN(0, 𝜎2 = ℎ|𝑦 |2) [9]. Up to the factor
√
ℎ,

this is an isometry from (𝐵′, | · |) in 𝐿2 (𝐵, 𝜇𝐵,ℎ). It can be extended as an isometry from
𝐻 in 𝐿2 (𝐵, 𝜇𝐵,ℎ) and one denotes by ℓ𝑎 the image of an element 𝑎 of 𝐻. If 𝑎 ∈ 𝐵′, ℓ𝑎 = 𝑎
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is a linear application but if 𝑎 ∈ 𝐻, ℓ𝑎 is only defined 𝜇𝐵,𝑡 - almost everywhere and is
therefore not necessarily linear. However, ℓ𝑎 (−𝑥) = −ℓ𝑎 (𝑥) and ℓ𝑎 (𝑥 + 𝑦) = ℓ𝑎 (𝑥) + 𝑎 · 𝑦
for 𝑦 ∈ 𝐻.
If 𝐸 ∈ F (𝐻) has an orthonormal basis (𝑒1, . . . , 𝑒𝑛), one sets, for 𝑥 ∈ 𝐵,

𝜋̃𝐸 (𝑥) =
𝑛∑︁
𝑗=1
ℓ𝑢 𝑗

(𝑥)𝑢 𝑗 , (2.4)

in keeping with the projection. Then, for all 𝑎 ∈ 𝐻, 𝑎 · 𝜋̃𝐸 (𝑥) = ℓ𝜋𝐸 (𝑎) (𝑥). The functions
ℓ𝑎 satisfy the following identities, recalled in [1].

∀ (𝑢, 𝑣) ∈ 𝐻2,
∫
𝐵

𝑒ℓ𝑢 (𝑥)+𝑖ℓ𝑣 (𝑥) d𝜇𝐵,ℎ (𝑥) = 𝑒
ℎ
2 ( |𝑢 |

2−|𝑣 |2+2𝑖𝑢 ·𝑣) .

∀ 𝑎 ∈ 𝐻, ∀ 𝑝 ∈ [1, +∞[,
∫
𝐵

|ℓ𝑎 (𝑥) |𝑝 d𝜇𝐵,ℎ (𝑥) =
(2ℎ) 𝑝/2
√
𝜋

|𝑎 |𝑝 Γ

(
𝑝 + 1
2

)
.

(2.5)

Setting

𝐾 (𝑝) = 21/2𝜋−1/2𝑝
(
Γ

(
𝑝 + 1
2

))1/𝑝
, (2.6)

one can write that ‖ℓ𝑎‖𝐿𝑝 (𝐵,𝜇𝐵,ℎ) = 𝐾 (𝑝)ℎ1/2 |𝑎 |. Notice that 𝐾 (2) = 1. One sees, too,
that for all 𝑎 and 𝑏 in 𝐻,∫

𝐵

𝑒ℓ𝑏 (𝑢) |ℓ𝑎 (𝑢) |𝑝 d𝜇𝐵,ℎ (𝑢) = 𝑒ℎ
|𝑏 |2
2

∫
R
|
√
ℎ|𝑎 |𝑣 + ℎ𝑎 · 𝑏 |𝑝 d𝜇R,1 (𝑣). (2.7)

Let us recall the Wick Theorem:

Theorem 2.1. Let 𝑢1, . . . 𝑢2𝑝 be vectors of 𝐻 (𝑝 ≥ 1). Let ℎ > 0. Then one has∫
𝐵

ℓ𝑢1 (𝑥) . . . ℓ𝑢2𝑝 (𝑥) d𝜇𝐵,ℎ (𝑥) = ℎ𝑝
∑︁

(𝜑,𝜓) ∈𝑆𝑝

𝑝∏
𝑗=1

〈𝑢𝜑 ( 𝑗) , 𝑢𝜓 ( 𝑗)〉 (2.8)

where 𝑆𝑝 is the set of all couples (𝜑, 𝜓) of one to one maps from {1, . . . , 𝑝} into
{1, . . . , 2𝑝} such that:

(1) For all 𝑗 ≤ 𝑝, 𝜑( 𝑗) < 𝜓( 𝑗).

(2) The sequence (𝜑( 𝑗)) (1≤ 𝑗≤𝑝) is an increasing sequence.

The measure 𝜇𝐵,ℎ transforms, under translation of a vector 𝑎 ∈ 𝐻, into another
measure which is absolutely continuous with respect to the former one. More precisely,
for all 𝑔 ∈ 𝐿1 (𝐵, 𝜇𝐵,ℎ), one has, for all 𝑎 in 𝐻:∫

𝐵

𝑔(𝑥) d𝜇𝐵,ℎ (𝑥) = 𝑒−
1
2ℎ |𝑎 |2

∫
𝐵

𝑔(𝑥 + 𝑎)𝑒− 1ℎ ℓ𝑎 (𝑥) d𝜇𝐵,ℎ (𝑥). (2.9)
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Stochastic extensions, heat operator

If 𝑎 belongs to 𝐵 \ 𝐻 or if ℎ changes, both measures are mutually singular.
The Weyl calculus on the Wiener space has been constructed in two different ways.

One of the constructions is rather similar to the finite dimensional definition of a calculus,
in that it relies on classes of symbols which satisfy differentiability conditions and it
yields operators which are bounded on a 𝐿2 space. We will work in this frame most of the
time. We do not have, though, an integral definition of Op( 𝑓 )𝑢, neither on 𝐻 nor on 𝐵.
The symbols are functions defined on 𝐻2 by Definition 2.3. It is possible (and necessary)
to extend them to functions defined on 𝐵2 according to the definition below. This notion
is inspired by the theory of Wiener spaces (see [3, 4, 6, 9, 11]), where the sequences
converge in probability and not necessarily in a 𝐿 𝑝 space.

Definition 2.2. Let (𝐻, 𝐵) be an abstract Wiener space and ℎ, a positive number. A
function 𝑓 admits a stochastic extension 𝑓̃ in 𝐿 𝑝 (𝐵, 𝜇𝐵,ℎ) (1 ≤ 𝑝 < ∞) if, for every
increasing sequence (𝐸𝑛) in F (𝐻), whose union is dense in 𝐻, the functions 𝑓 ◦ 𝜋̃𝐸𝑛

are
in 𝐿 𝑝 (𝐵, 𝜇𝐵,ℎ) and if the sequence 𝑓 ◦ 𝜋̃𝐸𝑛

converges in 𝐿 𝑝 (𝐵, 𝜇𝐵,ℎ) to 𝑓̃ .
One defines likewise the stochastic extension of a function on 𝐻2 to a function on 𝐵2.

One can check, for example thanks to (2.5), that ℓ𝑎 is the stochastic extension of the
scalar product with 𝑎 and that 𝜋̃𝐸 is the stochastic extension of 𝜋𝐸 in 𝐿 𝑝 . The stochastic
extension can be obtained in a more topological manner (see [9, Chapter 1, Section 6]).
There exists a result about extensions of holomorphic functions ([1, Theorem 8.8]),
obtained by martingale methods, which proves a property announced by [8].
The symbol classes used in [1] and which we recall below share derivability properties

and estimates with the classes of the finite dimensional Calderón–Vaillancourt Theorem:

Definition 2.3. Let (𝐻, 𝐵) be an abstract Wiener space, let B = (𝑒 𝑗 ) ( 𝑗∈Γ) be a Hilbert
basis of 𝐻, indexed by a countable set Γ, with 𝑒 𝑗 ∈ 𝐵′ for all 𝑗 . Set 𝑢 𝑗 = (𝑒 𝑗 , 0)
and 𝑣 𝑗 = (0, 𝑒 𝑗 ) ( 𝑗 ∈ Γ). A multiindex is a map (𝛼, 𝛽) from Γ into N × N such that
𝛼 𝑗 = 𝛽 𝑗 = 0 except for a finite number of indices. Let 𝑀 be a nonnegative real number,
𝑚 a nonnegative integer and 𝜀 = (𝜀 𝑗 ) ( 𝑗∈Γ) a family of nonnegative real numbers. One
denotes by 𝑆𝑚 (B, 𝑀, 𝜀) the set of bounded continuous functions 𝐹 : 𝐻2 → C satisfying
the following condition. For every multiindex (𝛼, 𝛽) of depth 𝑚 (that is to say such that
max 𝑗∈Γ (𝛼 𝑗 , 𝛽 𝑗 ) ≤ 𝑚), the derivative in the inequality below is well defined, continuous
on 𝐻2 and satisfies, for every (𝑥, 𝜉) in 𝐻2�����

[∏
𝑗∈Γ

𝜕
𝛼𝑗

𝑢 𝑗
𝜕
𝛽 𝑗

𝑣𝑗

]
𝐹 (𝑥, 𝜉)

����� ≤ 𝑀
∏
𝑗∈Γ

𝜀
𝛼𝑗+𝛽 𝑗

𝑗
. (2.10)
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One recalls the following very useful property, stated in the proof of Proposition 4.14
of [1]. If 𝜀 is square summable, every 𝐹 in 𝑆1 (B, 𝑀, 𝜀) verifies a Lipschitz condition:

∀ (𝑋,𝑉) ∈ 𝐻2, |𝐹 (𝑋 +𝑉) − 𝐹 (𝑋) | ≤ 𝑀 |𝑉 |
√
2

[∑︁
𝑗∈Γ

𝜀2𝑗

]1/2
. (2.11)

It is more convenient to represent classes of symbols as vector spaces.

Definition 2.4. Let 𝜀 be a sequence of positive real numbers and let 𝑚 ∈ N. One sets
𝑆𝑚 (B, 𝜀) =

⋃
𝑀 ≥0 𝑆𝑚 (B, 𝑀, 𝜀). For 𝐹 ∈ 𝑆𝑚 (B, 𝜀) one sets ‖𝐹‖𝑚,𝜀 = inf{𝑀 ≥ 0 : 𝐹 ∈

𝑆𝑚 (B, 𝑀, 𝜀)}.

Notice that 𝑆𝑚 (B, 𝜀), equipped with ‖ · ‖𝑚,𝜀 , is a Banach space. Setting 𝑆∞ (B, 𝜀) =⋂∞
𝑚=0 𝑆𝑚 (B, 𝜀), one can, classically, define a distance by d(𝐹, 𝐺)=

∑∞
𝑚=0 2−𝑚

‖𝐹−𝐺 ‖𝑚,𝜀

1+‖𝐹−𝐺 ‖𝑚,𝜀
.

Then (𝑆∞ (B, 𝜀), 𝑑) is complete.
An alternative construction of the Weyl calculus uses an analogue of the Wigner

function in order to associate a quadratic form with a function 𝐹 defined, this time,
on 𝐵2. This quadratic form is applied to cylindrical functions, depending on a finite
number of variables. Let us only recall that this construction requires of 𝐹 to belong to
𝐿1 (𝐵2, 𝜇𝐵2 ,ℎ/2) and to be such that there exists a nonnegative integer 𝑚 such that

𝑁𝑚 (𝐹) = sup
𝑌 ∈𝐻 2

‖𝐹 ( · + 𝑌 )‖𝐿1 (𝐵2 ,𝜇
𝐵2 ,ℎ/2)

(1 + |𝑌 |)𝑚 < +∞. (2.12)

This norm is finite if the function 𝐹 is bounded or if it is a polynomial expression of
degree 𝑚 with respect to functions (𝑥, 𝜉) → ℓ𝑎 (𝑥) + ℓ𝑏 (𝜉), with 𝑎 and 𝑏 in 𝐻, as we shall
see in Subsection 3.3.
These approaches complement one another. The approach relying on symbol classes

enables us to work on 𝐿2 spaces on 𝐵, but the symbol has to be bounded, the other
one allows us to use unbounded symbols, but the domain of the quadratic forms
contains only cylindrical functions. Both definitions coincide under certain conditions
([1, Theorem 1.4]).

3. Stochastic extensions

3.1. Stochastic extensions of symbols in 𝑆𝑚(B, 𝜀)

We first generalize a proposition stated in [1, Proposition 8.4] in the case when 𝑝 = 1.
Moreover, we show that the stochastic extension does not depend on ℎ, which is not
necessarily the case since the measures are mutually orthogonal for different variance
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parameters ℎ. This result is important to integrate with respect to the variance parameter,
as in Section 3.4.

Proposition 3.1. Let 𝐹 be a function in 𝑆1 (B, 𝜀), with respect to a Hilbert basis
B = (𝑒 𝑗 ) ( 𝑗∈Γ) , where the sequence (𝜀 𝑗 ) ( 𝑗∈Γ) is summable. Then, for every positive ℎ and
every 𝑞 ∈ [1, +∞[, 𝐹 admits a stochastic extension in 𝐿𝑞 (𝐵2, 𝜇𝐵2 ,ℎ).

Moreover, there exists a function 𝐹 which is the stochastic extension of 𝐹 in
𝐿𝑞 (𝐵2, 𝜇𝐵2 ,ℎ) for all ℎ ∈ ]0,∞[ and 𝑞 ∈ [1, +∞[.

For any 𝐸 ∈ F (𝐻2), we then have the inequality : ∀ (ℎ, 𝑞) ∈ ]0, +∞[ × [1, +∞[,

‖𝐹 ◦ 𝜋̃𝐸 − 𝐹‖𝐿𝑞 ≤ ‖𝐹‖1, 𝜀𝐾 (𝑞)ℎ1/2
∞∑︁
𝑗=1
𝜀 𝑗 ( |𝑢 𝑗 − 𝜋𝐸 (𝑢 𝑗 ) | + |𝑣 𝑗 − 𝜋𝐸 (𝑣 𝑗 ) |). (3.1)

Proof. Let (𝐸𝑛) be an increasing sequence of F (𝐻2), whose union is dense in 𝐻2. For
all 𝑚 and 𝑛 such that 𝑚 < 𝑛, let 𝑆𝑚𝑛 be the orthogonal complement of 𝐸𝑚 in 𝐸𝑛. We can
state an inequality analogous to the inequality (120) of [1]:

‖𝐹 ◦ 𝜋̃𝐸𝑚
− 𝐹 ◦ 𝜋̃𝐸𝑛

‖𝐿𝑞 ≤ ‖𝐹‖1, 𝜀𝐾 (𝑞)ℎ1/2
∞∑︁
𝑗=1
𝜀 𝑗 ( |𝜋𝑆𝑚𝑛

(𝑢 𝑗 ) | + |𝜋𝑆𝑚𝑛
(𝑣 𝑗 ) |). (3.2)

Indeed, one just needs to replace 𝐿1 by 𝐿𝑞 in the original proof, since the only changes
take place in the explicit 𝐿𝑞 norms of the ℓ𝑎 functions appearing there. This inequality
proves that 𝐹 ◦ 𝜋̃𝐸𝑚

is a Cauchy sequence in 𝐿𝑞 (𝐵2, 𝜇𝐵2 ,ℎ) and one can verify that the
limit does not depend on the sequence (𝐸𝑛).
We first construct a representative of the stochastic extension common to all (ℎ, 𝑞) ∈

]0, ℎ0] × [1, 𝑞0], for a given finite 𝑞0. Let (𝐸𝑛) be an increasing sequence of elements of
F (𝐵′). The right term of (3.2) is smaller than an expression 𝐶 (𝑚, 𝑛) which depends only
on ℎ0, 𝑞0. Then, there exist an increasing sequence (𝑛𝑖)𝑖 satisfying 𝐶 (𝑛𝑖+1, 𝑛𝑖) < 2−𝑖−1
and a sequence of functions (𝐹𝑁 )𝑁 defined by

𝐹𝑁 := 𝐹 ◦ 𝜋̃𝐸𝑛1
+

𝑁∑︁
𝑗=1

(
𝐹 ◦ 𝜋̃𝐸𝑛𝑗+1

− 𝐹 ◦ 𝜋̃𝐸𝑛𝑗

)
on 𝐵2,

exactly as in the classical proof of the Riesz–Fisher Theorem. The functions 𝐹𝑁 are
defined everywhere on 𝐵2 and independent of (ℎ, 𝑞). The limit 𝐹 of this sequence is
the representative we are looking for, it takes finite values on a subset of 𝐵2 whose
𝜇𝐵2 ,ℎ-measure is 1 for all ℎ ≤ ℎ0. Inequality (3.1) is a consequence of (3.2), with 𝐸𝑚 = 𝐸

and 𝑛 growing to infinity.
We now lift the restriction on 𝑞0. Denote by 𝐹2 (resp. 𝐹𝑛) the stochastic expansion

valid for ℎ ∈ ]0, ℎ0] and 𝑞 ∈ [1, 2] (resp. 𝑞 ∈ [1, 𝑛]). Let (𝐸𝑠) be an increasing sequence
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of F (𝐻2), whose union is dense in 𝐻2. One then has, for 𝑞 ≤ 2,

lim
𝑠→∞

‖𝐹 ◦ 𝜋̃𝐸𝑠
− 𝐹2‖𝑞,ℎ = 0, lim

𝑠→∞
‖𝐹 ◦ 𝜋̃𝐸𝑠

− 𝐹𝑛‖𝑞,ℎ = 0.

Consequently 𝐹2 = 𝐹𝑛 𝜇𝐵2 ,ℎ , almost everywhere. It follows that 𝐹2 ∈ 𝐿𝑞 (𝐵2, 𝜇𝐵2 ,ℎ) for
𝑞 ≤ 𝑛 and that the convergence is true. To obtain the inequality one similarly replaces 𝐹𝑛
by 𝐹2.
We lift the restriction on ℎ0 in the same way. Consider 𝐹ℎ0 , 𝐹ℎ′0 the extensions

corresponding to different values of ℎ0 and an increasing sequence (𝐸𝑛) as before. Then
‖𝐹 ◦ 𝜋̃𝐸𝑠

− 𝐹ℎ0 ‖1,ℎ and ‖𝐹 ◦ 𝜋̃𝐸𝑠
− 𝐹ℎ′0 ‖1,ℎ converge to 0 for ℎ ≤ min(ℎ0, ℎ′0), which

proves that 𝐹ℎ0 = 𝐹ℎ′0 , 𝜇𝐵2 ,ℎ almost everywhere. �

Corollary 3.2. If 𝐹 ∈ 𝑆1 (B, 𝜀) where 𝜀 is summable, then for all ℎ > 0 and all
𝑝 ∈ [1, +∞[,

|𝐹 | ≤ ‖𝐹‖1, 𝜀 𝜇𝐵2 ,ℎ-a.s., ‖𝐹‖𝐿𝑝 (𝐵2 ,𝜇
𝐵2 ,ℎ) ≤ ‖𝐹‖1, 𝜀 .

Let P be the operator which associates, with a function in 𝑆1 (B, 𝜀), its stochastic extension
in 𝐿 𝑝 (𝐵2, 𝜇𝐵2 ,𝑡 ). This linear operator is thus bounded, with norm smaller than 1.

Proof. For every increasing sequence (𝐸𝑛)𝑛 of F (𝐻2), whose union is dense in 𝐻2, the
sequence (𝐹 ◦ 𝜋̃𝐸𝑛

)𝑛 converges to 𝐹 in 𝐿 𝑝 (𝐵2, 𝜇𝐵2 ,𝑡 ). Since |𝐹 ◦ 𝜋̃𝐸𝑛
| is smaller than

‖𝐹‖1, 𝜀 𝜇𝐵2 ,ℎ, almost everywhere on 𝐵2 (on the domain where 𝜋̃𝐸𝑛
is defined or on 𝐵2

if 𝐸𝑛 ⊂ 𝐵′), so is |𝐹 |. Moreover, ‖𝐹 ◦ 𝜋̃𝐸𝑛
‖𝐿𝑝 ≤ ‖𝐹‖1, 𝜀 and letting 𝑛 grow to infinity

yields ‖𝐹‖𝐿𝑝 ≤ ‖𝐹‖1, 𝜀 . �

We now state a result about translations, denoting by 𝜏𝑌 𝐹 the function defined by
𝜏𝑌 𝐹 (𝑋) = 𝐹 (𝑋 + 𝑌 ) (with 𝑋,𝑌 ∈ 𝐻 or 𝐻2).

Lemma 3.3. Let 𝐹 be a globally Lipschitz continuous function on 𝐻, admitting a
stochastic extension 𝐹 in 𝐿 𝑝 for every 𝑝 ∈ [1, +∞[ and ℎ > 0. If 𝑌 ∈ 𝐻, then 𝜏𝑌 𝐹 admits
𝜏𝑌 𝐹 as a stochastic extension in 𝐿 𝑝 (𝐵, 𝜇𝐵,ℎ) for ℎ > 0 and 𝑝 ∈ [1, +∞[.

Proof. Let (𝐸 𝑗 ) be an increasing sequence of F (𝐻), whose union is dense in 𝐻. If we
denote by an index 𝑝 the 𝐿 𝑝 (𝐵, 𝜇𝐵,ℎ) norm, we obtain that

‖𝜏𝑌 𝐹 − (𝜏𝑌 𝐹) ◦ 𝜋̃𝐸 𝑗
‖ 𝑝 ≤ ‖𝜏𝑌 𝐹 − 𝜏𝑌 (𝐹 ◦ 𝜋̃𝐸 𝑗

)‖ 𝑝 + ‖𝜏𝑌 (𝐹 ◦ 𝜋̃𝐸 𝑗
) − (𝜏𝑌 𝐹) ◦ 𝜋̃𝐸 𝑗

‖ 𝑝 .

For all 𝑝′ > 𝑝, the inequality

‖𝜏𝑌 𝐹 − 𝜏𝑌 (𝐹 ◦ 𝜋̃𝐸 𝑗
)‖ 𝑝 =

(∫
𝐵2

|𝐹 − 𝐹 ◦ 𝜋̃𝐸 𝑗
|𝑝 (𝑋)𝑒 1ℎ ℓ𝑌 (𝑋 ) d𝜇𝐵2 ,ℎ (𝑋)𝑒−

1
2ℎ |𝑌 |2

)1/𝑝
≤ ‖𝐹 − 𝐹 ◦ 𝜋̃𝐸 𝑗

‖ 𝑝′𝑒
|𝑌 |2

2ℎ (𝑝′−𝑝)
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holds true, thanks to the translation change of variables (2.9), to Hölder’s inequality and
to the formula (2.5). The first term then goes to 0 as 𝑗 → ∞. So does the second one.
Indeed, since 𝐹 is globally Lipschitz, one has

|𝐹 (𝜋̃𝐸 𝑗
(𝑋 + 𝑌 )) − 𝐹 (𝜋̃𝐸 𝑗

(𝑋) + 𝑌 ) | = |𝐹 (𝜋̃𝐸 𝑗
(𝑋) + 𝜋𝐸 𝑗

(𝑌 )) − 𝐹 (𝜋̃𝐸 𝑗
(𝑋) + 𝑌 ) |

≤ 𝐶 |𝜋𝐸 𝑗
(𝑌 ) − 𝑌 |𝐻 ,

which implies that ‖𝜏𝑌 (𝐹 ◦ 𝜋̃𝐸 𝑗
) − (𝜏𝑌 𝐹) ◦ 𝜋̃𝐸 𝑗

‖ 𝑝 ≤ 𝐶 |𝜋𝐸 𝑗
(𝑌 ) − 𝑌 |𝐻 and it converges

to 0 when 𝑗 → ∞. �

Corollary 3.4. If 𝐹 ∈ 𝑆𝑚 (B, 𝜀) with 𝑚 ≥ 1 and 𝜀 summable, if 𝐹 is the stochastic
extension in the 𝐿 𝑝 given above, if𝑌 ∈ 𝐻2, then 𝜏𝑌 𝐹 admits 𝜏𝑌 𝐹 as a stochastic extension
in the 𝐿 𝑝 (𝐵2, 𝜇𝐵2 ,ℎ) for ℎ > 0 and 𝑝 ∈ [1, +∞[.

This result is a consequence of the lemma, thanks to Proposition 3.1 for the stochastic
extensions and to (2.11) for the Lipschitz condition. The fact that the functions are defined
on 𝐻 or 𝐻2 does not change anything.

3.2. Symbol classes defined thanks to a quadratic form

We now define a new class of symbols.

Definition 3.5. Let 𝐴 be a linear, selfadjoint, nonnegative, trace class application on a
Hilbert space 𝐻. For all 𝑥 ∈ 𝐻 one sets 𝑄𝐴(𝑥) = 〈𝐴𝑥, 𝑥〉. Let 𝑆(𝑄𝐴) be the class of all
functions 𝑓 ∈ 𝐶∞ (𝐻) such that there exists 𝐶 ( 𝑓 ) > 0 satisfying:

∀ 𝑥 ∈ 𝐻, | 𝑓 (𝑥) | ≤ 𝐶 ( 𝑓 ), ∀ 𝑚 ∈ N∗, ∀ 𝑥 ∈ 𝐻, ∀ (𝑈1, . . . ,𝑈𝑚) ∈ 𝐻𝑚,

| (d𝑚 𝑓 ) (𝑥) (𝑈1, . . . ,𝑈𝑚) | ≤ 𝐶 ( 𝑓 )
𝑚∏
𝑗=1
𝑄𝐴(𝑈 𝑗 )1/2. (3.3)

The smallest constant 𝐶 ( 𝑓 ) such that (3.3) holds is denoted by ‖ 𝑓 ‖𝑄𝐴
.

Notice that 𝑆(𝑄𝐴), equipped with the norm ‖ · ‖𝑄𝐴
, is a Banach space. One can also

check that, if 𝐴 and 𝐵 satisfy the conditions of Definition 3.5, a product of functions
belonging to 𝑆(𝑄𝐴), 𝑆(𝑄𝐵) is in 𝑆(𝑄2(𝐴+𝐵) ) with

‖ 𝑓 𝑔‖𝑄2(𝐴+𝐵) ≤ ‖ 𝑓 ‖𝑄𝐴
‖𝑔‖𝑄𝐵

. (3.4)

Moreover, if 𝐴 is as above but defined on 𝐻2, the class 𝑆(𝑄𝐴) is included in a class
𝑆∞ (B, 𝜀) for any orthonormal basis B = (𝑒 𝑗 ) of 𝐻, with 𝜀 𝑗 = max(𝑄𝐴(𝑒 𝑗 , 0)1/2,
𝑄𝐴(0, 𝑒 𝑗 )1/2). Since the sequence 𝜀 is only square summable, the existence results for
the stochastic extensions must be obtained otherwise.
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Remark 3.6. One may think of a less restrictive class, of functions 𝑓 satisfying the
inequality (3.3) with constants 𝐶𝑚 ( 𝑓 ) depending on the order 𝑚. This space is a Fréchet
space and some of the results below are still valid in this frame (for example Propositions 3.9
and 3.11 for stochastic extensions, inequality 5.8, with a constant 𝐶𝑘+1 ( 𝑓 ) depending
on the order). Here we use the (smaller) class of Definition 3.3, for which the reverse
heat equation will be solvable. In the finite dimensional case, this class corresponds to
some analytic class with |𝜕𝛼 𝑓 (𝑥) | ≤ 𝐶 ( 𝑓 )𝑅 |𝛼 | (and 𝑅 = 1) and is therefore better than
real-analytic.

Lemma 3.7. For 𝐸 ∈ F (𝐻) and ℎ > 0, 𝑦 ↦→ 𝑄𝐴(𝜋̃𝐸 (𝑦))1/2 belongs to 𝐿 𝑝 (𝐵, 𝜇𝐵,ℎ)
for all 𝑝 ∈ [1, +∞[. More precisely, if (𝑢 𝑗 ) is a Hilbert basis of 𝐻 whose vectors are
eigenvectors of 𝐴 and if one denotes by 𝜆 𝑗 the corresponding eigenvalues (which can be
equal to 0), one obtains

‖𝑄1/2
𝐴

◦ 𝜋̃𝐸 ‖𝐿𝑝 (𝐵,𝜇𝐵,ℎ) ≤ 𝐶 (𝑝)
( ∞∑︁
0
𝜆 𝑗 |𝜋𝐸 (𝑢 𝑗 ) |max(𝑝,2)

)1/max(𝑝,2)
ℎ1/2,

with 𝐾 (𝑝) defined by (2.6) and

𝐶 (𝑝) = 𝐾 (𝑝)
( ∞∑︁
0
𝜆 𝑗

)1/2− 1
𝑝

for 𝑝 > 2, 𝐶 (𝑝) = 1 for 𝑝 ≤ 2. (3.5)

Proof. By decomposing 𝐴 on its eigenvector basis, one obtains that

𝑄𝐴(𝜋̃𝐸 (𝑦)) =
∞∑︁
𝑗=0
𝜆 𝑗 (𝑢 𝑗 · 𝜋̃𝐸 (𝑦))2 =

∞∑︁
𝑗=0
𝜆 𝑗 (ℓ𝜋𝐸 (𝑢 𝑗 ) )2,

using the properties of 𝜋̃. For 𝑝 = 2 it suffices to integrate this equality and to use (2.5).
For 𝑝 > 2, one uses Jensen’s inequality for a probability measure on N. Set 𝑆 =

∑∞
0 𝜆 𝑗 .

One then has

𝑄𝐴(𝜋̃𝐸 (𝑦))
𝑝

2 =
©­«

∞∑︁
𝑗=0

𝜆 𝑗

𝑆
𝑆(ℓ𝜋𝐸 (𝑢 𝑗 ) )2

ª®¬
𝑝

2

≤
∞∑︁
𝑗=0

𝜆 𝑗

𝑆
(𝑆(ℓ𝜋𝐸 (𝑢 𝑗 ) )2)

𝑝

2 ,

and it remains to integrate. Finally, for 𝑝 ∈ [1, 2[, one applies Hölder’s inequality. �

Remark 3.8. One can give an upper bound for ‖𝑄1/2
𝐴

◦ 𝜋̃𝐸 ‖𝐿𝑝 (𝐵,𝜇𝐵,ℎ) , which does not
depend on 𝐸 : 

𝑄1/2

𝐴
◦ 𝜋̃𝐸




𝐿𝑝 (𝐵,𝜇𝐵,ℎ) ≤ 𝐶 (𝑝)

( ∞∑︁
0
𝜆 𝑗

)1/max(𝑝,2)
ℎ1/2.

One can prove the following result.
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Proposition 3.9. Let ℎ > 0 and let 𝑝 ∈ [1, +∞[. Every function 𝑓 belonging to 𝑆(𝑄𝐴)
admits a stochastic extension 𝑓̃ in 𝐿 𝑝 (𝐵, 𝜇𝐵,ℎ). The function 𝑓̃ is bounded 𝜇𝐵,ℎ , almost
everywhere by ‖ 𝑓 ‖𝑄𝐴

. Moreover, for all 𝐸 ∈ F (𝐻),

‖ 𝑓 ◦ 𝜋̃𝐸 − 𝑓̃ (𝑥)‖𝐿𝑝 (𝐵,𝜇𝐵,ℎ) ≤ 𝐶 (𝑝)ℎ1/2‖ 𝑓 ‖𝑄𝐴

©­«
∑︁
𝑗≥0

𝜆 𝑗 |𝜋𝐸 (𝑢 𝑗 ) − 𝑢 𝑗 |max(𝑝,2)
ª®¬
1/max(𝑝,2)

,

with the notations of Lemma 3.7.

Proof. Let (𝐸𝑛) be an increasing sequence of F (𝐻), whose union is dense in 𝐻. Let 𝑓
be in 𝑆(𝑄𝐴). Let 𝑚 and 𝑛 be such that 𝑚 < 𝑛. Let 𝑆𝑚𝑛 be an orthogonal complement of
𝐸𝑚 in 𝐸𝑛. Then

𝑓 (𝜋̃𝐸𝑛
(𝑥)) − 𝑓 (𝜋̃𝐸𝑚

(𝑥)) =
∫ 1

0
(d 𝑓 ) (𝜋̃𝐸𝑚

(𝑥) + 𝜃𝜋̃𝑆𝑚𝑛
(𝑥)) (𝜋̃𝑆𝑚𝑛

(𝑥)) d𝜃.

Hence

| 𝑓 (𝜋̃𝐸𝑛
(𝑥)) − 𝑓 (𝜋̃𝐸𝑚

(𝑥)) | ≤ ‖ 𝑓 ‖𝑄𝐴

∫ 1

0
𝑄𝐴(𝜋̃𝑆𝑚𝑛

(𝑥))1/2 d𝜃.

This implies that

‖ 𝑓 ◦ 𝜋̃𝐸𝑛
− 𝑓 ◦ 𝜋̃𝐸𝑚

‖𝐿𝑝 (𝐵,𝜇𝐵,ℎ) ≤ ‖ 𝑓 ‖𝑄𝐴



𝑄1/2
𝐴

◦ 𝜋̃𝑆𝑚𝑛




𝐿𝑝 (𝐵,𝜇𝐵,ℎ) .

Using the preceding Lemma 3.7, one gets that

‖ 𝑓 ◦ 𝜋̃𝐸𝑛
− 𝑓 ◦ 𝜋̃𝐸𝑚

‖𝐿𝑝 (𝐵,𝜇𝐵,ℎ) ≤ 𝐶 (𝑝)ℎ1/2‖ 𝑓 ‖𝑄𝐴

©­«
∑︁
𝑗≥0

𝜆 𝑗 |𝜋𝑆𝑚𝑛
(𝑢 𝑗 ) |max(𝑝,2)

ª®¬
1/max(𝑝,2)

.

The right term converges to 0 when 𝑚 grows to infinity, according to the dominated
convergence Theorem. Indeed, for all 𝑗 , |𝜋𝑆𝑚𝑛

(𝑢 𝑗 ) | converges to 0 when 𝑚 grows to
infinity, |𝜋𝑆𝑚𝑛

(𝑢 𝑗 ) |max(𝑝,2) ≤ 1 and the series
∑
𝜆 𝑗 converges. The sequence ( 𝑓 (𝜋̃𝐸𝑛

))𝑛 is
therefore a Cauchy sequence in 𝐿 𝑝 (𝐵, 𝜇𝐵,ℎ). One can verify that its limit, in 𝐿 𝑝 (𝐵, 𝜇𝐵,ℎ),
does not depend on the sequence (𝐸𝑛). Since the function | 𝑓 ◦ 𝜋̃𝐸𝑛

| is almost everywhere
smaller than ‖ 𝑓 ‖𝑄𝐴

, so is its limit. To get the final inequality, one takes 𝐸 = 𝐸𝑚 in one of
the above inequalities and lets 𝑛 converge to infinity. �

Remark 3.10. This result holds true for the class of Remark 3.6, with max(𝐶0 ( 𝑓 ), 𝐶1 ( 𝑓 ))
instead of ‖ 𝑓 ‖𝑄𝐴

in the estimates.

Proposition 3.11. Let ℎ > 0, 𝑝 ∈ [1, +∞[. Let 𝑘 be a positive integer and let 𝑥 be a fixed
point in 𝐻. Set 𝑆 =

∑
𝜆 𝑗 . The function 𝑦 ↦→ d𝑘 𝑓 (𝑥) · 𝑦𝑘 defined on 𝐻 admits a stochastic
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extension in 𝐿 𝑝 (𝐵, 𝜇𝐵,ℎ). Moreover, for all 𝐸 ∈ F (𝐻), denoting by P the passage to a
stochastic extension,

‖d𝑘 𝑓 (𝑥) · 𝜋̃𝐸 (𝑦)𝑘 − P(𝑦 ↦→ d𝑘 𝑓 (𝑥) · 𝑦𝑘 )‖ 𝑝

≤ 𝑘 ‖ 𝑓 ‖𝑄𝐴
𝐶 (𝑝𝑘)𝑘𝑆

𝑘−1
𝛼𝑝𝑘 ℎ

𝑘
2

(∑︁
𝜆𝑠 |𝜋𝐸 (𝑢𝑠) − 𝑢𝑠 |𝛼𝑝𝑘

) 1
𝛼𝑝𝑘

,

where the subscript 𝑝 indicates the 𝐿 𝑝 (𝐵, 𝜇𝐵,ℎ) norm.

Proof. We still use the notations of Lemma 3.7 and set 𝛼𝑝 = max(𝑝, 2). Let 𝐸, 𝐹 ∈ F (𝐻)
with 𝐸 ⊂ 𝐹. For all 𝑦 ∈ 𝐵, one has the telescopic summation

d𝑘 𝑓 (𝑥) · 𝜋̃𝐸 (𝑦)𝑘 − d𝑘 𝑓 (𝑥) · 𝜋̃𝐹 (𝑦)𝑘

=

𝑘∑︁
𝑗=1
d𝑘 𝑓 (𝑥) (𝜋̃𝐸 (𝑦) 𝑗−1, 𝜋̃𝐸 (𝑦) − 𝜋̃𝐹 (𝑦), 𝜋̃𝐹 (𝑦)𝑘− 𝑗 ).

Using Definition 3.5, one deduces that

|d𝑘 𝑓 (𝑥) · 𝜋̃𝐸 (𝑦)𝑘 − d𝑘 𝑓 (𝑥) · 𝜋̃𝐹 (𝑦)𝑘 |

≤
𝑘∑︁
𝑗=1

‖ 𝑓 ‖𝑄𝐴
𝑄

𝑗−1
2

𝐴
(𝜋̃𝐸 (𝑦))𝑄

𝑘− 𝑗

2
𝐴

(𝜋̃𝐹 (𝑦))𝑄1/2𝐴
(𝜋̃𝐸 (𝑦) − 𝜋̃𝐹 (𝑦)).

Integrating, using Hölder’s inequality and Remark 3.8, one obtains that

‖d𝑘 𝑓 (𝑥) · 𝜋̃𝐸 (𝑦)𝑘 − d𝑘 𝑓 (𝑥) · 𝜋̃𝐹 (𝑦)𝑘 ‖ 𝑝

≤
𝑘∑︁
𝑗=1

‖ 𝑓 ‖𝑄𝐴



𝑄1/2
𝐴

◦ 𝜋̃𝐸


 𝑗−1
𝑝𝑘



𝑄1/2
𝐴

◦ 𝜋̃𝐹


𝑘− 𝑗

𝑝𝑘



𝑄1/2
𝐴

◦ (𝜋̃𝐸 − 𝜋̃𝐹 )




𝑝𝑘

≤ 𝑘 ‖ 𝑓 ‖𝑄𝐴
(𝐶 (𝑝𝑘)𝑆

1
𝛼𝑝𝑘 ℎ1/2)𝑘−1𝐶 (𝑝𝑘)ℎ1/2

(∑︁
𝜆𝑠 | (𝜋𝐸 − 𝜋𝐹 ) (𝑢𝑠) |𝛼𝑝𝑘

) 1
𝛼𝑝𝑘

.

Then one proceeds as in the preceding proposition, replacing 𝐸 and 𝐹 by the terms of an
increasing sequence of F (𝐻) whose union is dense in 𝐻 and whose first term is 𝐸 . �

Remark 3.12. This result holds with the class defined by Remark 3.6, with 𝐶𝑘 ( 𝑓 ) instead
of ‖ 𝑓 ‖𝑄𝐴

.

A consequence of Lemma 3.7 is the following result, which partly generalizes
Proposition 8.7 of [1]:

Corollary 3.13. Let ℎ > 0 and 𝑝 ∈ [1, +∞[. The function 𝑄1/2
𝐴

admits a stochastic
extension in 𝐿 𝑝 (𝐵, 𝜇𝐵,ℎ).
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Proof. As in the proof of Proposition 3.9, one introduces an increasing sequence (𝐸𝑛) of
F (𝐻). Let 𝑆𝑚𝑛 be an orthogonal complement of 𝐸𝑚 in 𝐸𝑛 if 𝑚 ≤ 𝑛. Lemma 3.7 implies
the inequality



𝑄1/2
𝐴

◦ 𝜋̃𝑆𝑚𝑛




𝐿𝑝 (𝐵,𝜇𝐵,ℎ) ≤ 𝐶 (𝑝)

( ∞∑︁
0
𝜆 𝑗 |𝜋𝑆𝑚𝑛

(𝑢 𝑗 ) |max(𝑝,2)
)1/max(𝑝,2)

ℎ1/2,

which proves that (𝑄1/2
𝐴

◦ 𝜋̃𝐸𝑛
)𝑛 is a Cauchy sequence in 𝐿 𝑝 (𝐵, 𝜇𝐵,ℎ). �

The point of the following result is that it enables us to use another Wiener space
associated with 𝐻 than the space 𝐵 initially chosen and to use uniform continuity. We may
then use the results of the classical Wiener-space theory ([5, 7]) and restrict stochastic
extensions to the (dense but negligible) subspace 𝐻, as in Proposition 5.3 below.

Proposition 3.14. Let 𝐴 be a linear, selfadjoint, nonnegative, trace class application in a
Hilbert space 𝐻. There exists a measurable norm (see [9, Definition 4.4] or [3]), ‖ · ‖𝐴,𝑛
on 𝐻, and hence a completion 𝐵𝐴 of 𝐻 with respect to this norm, such that the following
property is satisfied: if 𝑓 belongs to the class 𝑆(𝑄𝐴), then 𝑓 is uniformly continuous on
𝐻 with respect to the norm ‖ · ‖𝐴,𝑛.

The function 𝑓 admits a uniformly continuous extension 𝑓𝐴 on 𝐵𝐴. The stochastic
extension 𝑓̃ of 𝑓 in the sense of Proposition 3.9 (on 𝐵 = 𝐵𝐴) is equal to 𝑓𝐴 𝜇𝐵𝐴,ℎ-a.e.

Proof. If 𝐴 is a one to one map, one sets ‖𝑥‖𝐴,𝑛 = 〈𝐴𝑥, 𝑥〉1/2 = 𝑄𝐴(𝑥)1/2. If not, if
(𝑒𝑠)𝑠∈N is an orthonormal basis of Ker(𝐴), one can add to 𝐴 the operator 𝐶 defined,
for example, by 𝐶𝑥 =

∑
𝑠 𝑒

−𝑠 〈𝑥, 𝑒𝑠〉𝑒𝑠. The operator 𝐴 + 𝐶 is selfadjoint, nonnegative,
trace class and it is one to one. One then sets ‖𝑥‖𝐴,𝑛 = 〈(𝐴 +𝐶)𝑥, 𝑥〉1/2 = 𝑄𝐴+𝐶 (𝑥)1/2. It
follows from Theorem 3 in [3] that ‖ · ‖𝐴,𝑛 is a measurable seminorm. It is a norm since
𝐴 (or 𝐴 + 𝐶) is one to one. Taylor’s formula gives, in both cases, the inequality

| 𝑓 (𝑦) − 𝑓 (𝑥) | ≤ ‖ 𝑓 ‖𝑄𝐴
𝑄𝐴(𝑦 − 𝑥)1/2 ≤ ‖ 𝑓 ‖𝑄𝐴

‖𝑥 − 𝑦‖𝐴,𝑛,

which in turn implies the uniform continuity. The topological extension 𝑓𝐴 of 𝑓 is then
uniformly continuous on 𝐵𝐴. According to Theorem 6.3 in [9, Chapter 1], 𝑓𝐴 and 𝑓̃
coincide almost everywhere. �

3.3. Stochastic extension of products

This part begins with stochastic extensions of general products of functions defined on 𝐻.
The results are then applied to products of scalar products, which appear in the Taylor
expansions of Section 4.
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The following lemma is a straightforward consequence of the general Hölder’s
inequality, applied to a telescopic decomposition of

∏𝑁
𝑖=1 𝑓𝑖 −

∏𝑁
𝑖=1 𝑔𝑖:

𝑁∏
𝑖=1

𝑓𝑖 −
𝑁∏
𝑖=1

𝑔𝑖 =

𝑁∑︁
𝑘=1

(
𝑘−1∏
𝑖=1

𝑓𝑖

𝑁∏
𝑖=𝑘+1

𝑔𝑖

)
( 𝑓𝑘 − 𝑔𝑘 ).

Lemma 3.15. Let (Ω,T , 𝑚) be a measure space. Let 𝑁 ≥ 2 be an integer. For 𝑖 ≤ 𝑁 , let
𝑓𝑖 , 𝑔𝑖 be functions on Ω with values in R such that, for all 𝑝 ∈ [1, +∞[, 𝑓𝑖 ∈ 𝐿 𝑝 (Ω,T , 𝑚),
𝑔𝑖 ∈ 𝐿 𝑝 (Ω,T , 𝑚). For all 𝑝 ∈ [1, +∞[, set 𝑀𝑝 = max1≤𝑖≤𝑁 (‖𝑔𝑖 ‖ 𝑝 , ‖ 𝑓𝑖 ‖ 𝑝). Then for
all 𝑝 ∈ [1, +∞[, 




 𝑁∏

𝑖=1
𝑓𝑖 −

𝑁∏
𝑖=1

𝑔𝑖







𝑝

≤ (𝑀𝑝𝑁 )𝑁−1
𝑁∑︁
𝑘=1

‖ 𝑓𝑘 − 𝑔𝑘 ‖ 𝑝𝑁 . (3.6)

More precisely, one has




 𝑁∏
𝑖=1

𝑓𝑖 −
𝑁∏
𝑖=1

𝑔𝑖







𝑝

≤
𝑁∑︁
𝑘=1

(
𝑘−1∏
𝑖=1

‖ 𝑓𝑖 ‖ 𝑝𝑁
𝑁∏

𝑖=𝑘+1
‖𝑔𝑖 ‖ 𝑝𝑁

)
‖( 𝑓𝑘 − 𝑔𝑘 )‖ 𝑝𝑁 . (3.7)

Corollary 3.16. Let 𝐹1, . . . , 𝐹𝑁 𝑁 be functions defined on 𝐻2 and admitting stochastic
extensions 𝐹̃1, . . . , 𝐹̃𝑁 in 𝐿 𝑝 (𝐵2, 𝜇𝐵2 ,ℎ) for all 𝑝 ∈ [1, +∞[. Then

∏𝑁
𝑖=1 𝐹𝑖 admits∏𝑁

𝑖=1 𝐹𝑖 as a stochastic extension in 𝐿 𝑝 (𝐵2, 𝜇𝐵2 ,ℎ) for all 𝑝 ∈ [1, +∞[.

Proof. Let (𝐸𝑛) be an increasing sequence of F (𝐻2), whose union is dense in 𝐻2.
According to (3.6),




 𝑁∏

𝑖=1
𝐹𝑖 ◦ 𝜋̃𝐸𝑛

−
𝑁∏
𝑖=1

𝐹𝑖







𝑝

≤
(
sup

𝑛∈N,𝑖≤𝑁
(‖𝐹𝑖 ◦ 𝜋̃𝐸𝑛

‖𝑁 𝑝 , ‖𝐹𝑖 ‖𝑁 𝑝)
)𝑁−1 𝑁∑︁

𝑖=1
‖𝐹𝑖 ◦ 𝜋̃𝐸𝑛

− 𝐹𝑖 ‖𝑁 𝑝 , (3.8)

which gives the result. �

Let 𝑎1, . . . , 𝑎𝑛 be vectors of 𝐻. Let 𝛼 = (𝛼1, . . . , 𝛼𝑛) be a multiindex such that 𝛼𝑖 > 0
for every 𝑖. One defines the function 𝑎𝛼 on 𝐻 by

𝑎𝛼 (𝑥) =
𝑛∏
𝑖=1

〈𝑎𝑖 , 𝑥〉𝛼𝑖 .
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Proposition 3.17. For ℎ > 0 and 𝑝 ∈ [1, +∞[, the function 𝑎𝛼 admits the function∏𝑛
𝑖=1 ℓ

𝛼𝑖
𝑎𝑖 as a stochastic extension in 𝐿 𝑝 (𝐵, 𝜇𝐵,ℎ). Moreover, for all 𝐸 ∈ F (𝐻),




𝑎𝛼 ◦ 𝜋𝐸 −

𝑛∏
𝑖=1

ℓ𝛼𝑖
𝑎𝑖







𝑝

≤ 𝐾 (𝑝 |𝛼 |) |𝛼 |ℎ |𝛼 |/2
(
max
1≤𝑖≤𝑛

|𝑎𝑖 |
) |𝛼 |−1 𝑛∑︁

𝑖=1
𝛼𝑖 |𝜋𝐸 (𝑎𝑖) − 𝑎𝑖 |.

Proof. First prove the result for a multiindex of length one, that is to say, for a single
scalar product 𝜑𝑏 : 𝑥 ↦→ 〈𝑥, 𝑏〉. Let (𝐸 𝑗 ) 𝑗 be an increasing sequence of F (𝐻) such that⋃
𝐸 𝑗 = 𝐻. Using 𝜑𝑏 ◦ 𝜋𝐸 𝑗

= ℓ𝜋𝐸𝑗
(𝑏) and (2.5), one obtains that, for a finite 𝑝

‖𝜑𝑏 ◦ 𝜋𝐸 𝑗
− ℓ𝑏 ‖ 𝑝 = ‖ℓ𝜋𝐸𝑗

(𝑏)−𝑏 ‖ 𝑝 = 𝐾 (𝑝)ℎ1/2 |𝜋𝐸 𝑗
(𝑏) − 𝑏 |.

The result is thus valid for 𝑥 ↦→ 〈𝑥, 𝑏〉.
For a general multiindex 𝛼, one starts by applying Lemma 3.15 stated in the appendix

to the |𝛼 | functions appearing in the products 𝑎𝛼 ◦ 𝜋̃𝐸 and
∏𝑛

𝑖=1 ℓ
𝛼𝑖
𝑎𝑖 . One then notices that

‖ℓ𝜋𝐸 (𝑎𝑖) ‖ 𝑝 |𝛼 | = 𝐾 (𝑝 |𝛼 |)ℎ1/2 |𝜋𝐸 (𝑎𝑖) | ≤ 𝐾 (𝑝 |𝛼 |)ℎ1/2 |𝑎𝑖 |.

It remains to replace 𝐸 by the sequence (𝐸 𝑗 ) 𝑗 to obtain the stochastic extension. �

Besides, one can define a pseudodifferential operator whose symbol is a product of
ℓ𝑎 functions. This operator is defined as a quadratic form, as in the end of Section 2.
For example, if |𝛼 | = 1, we recover the Segal fields for symbols of the kind (𝑥, 𝜉) ↦→
ℓ𝑎 (𝑥) + ℓ𝑏 (𝜉) defined on 𝐵2 ([1, Proposition 8.10]). This relies on the following result:

Proposition 3.18. Let 𝑎1, . . . , 𝑎𝑛, 𝑏1, . . . , 𝑏𝑝 belong to 𝐻, let 𝛼1, . . . , 𝛼𝑛, 𝛽1, . . . , 𝛽𝑝 be
positive integers, set𝑚 = max( |𝛼 |, |𝛽 |). The function𝐹 : (𝑥, 𝜉) ↦→∏𝑛

𝑖=1 ℓ
𝛼𝑖
𝑎𝑖 (𝑥)

∏𝑝

𝑖=1 ℓ
𝛽𝑖
𝑏𝑖
(𝜉)

has a finite norm 𝑁𝑚 defined by (2.12). More precisely,

𝑁𝑚 (𝐹) ≤ max
(
1,

√︂
ℎ

2

) |𝛼 |+ |𝛽 | 𝑛∏
1

|𝑎 𝑗 |𝛼𝑗

𝑝∏
1

|𝑏𝑖 |𝛽𝑖 × · · ·

×
𝑛∏
1

(∫
R
(1 + |𝑣 |)𝑛𝛼𝑗 d𝜇R,1 (𝑣)

) 1
𝑛

𝑝∏
1

(∫
R
(1 + |𝑣 |) 𝑝𝛽𝑖 d𝜇R,1 (𝑣)

) 1
𝑝

Proof. Recall that

𝑁𝑚 (𝐹) = sup
𝑌 ∈𝐻 2

‖𝐹 ( · + 𝑌 )‖𝐿1 (𝐵2 ,𝜇
𝐵2 , ℎ2

)

(1 + |𝑌 |)𝑚 .

By the change of variables formula (2.9) one obtains∫
𝐵2

|𝐹 (𝑋 + 𝑌 ) | d𝜇𝐵2 , ℎ2 (𝑋) ≤ 𝐴 × 𝐵,
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with

𝐴 = 𝑒−
1
ℎ
|𝑦 |2

∫
𝐵

𝑛∏
𝑗=1

|ℓ𝑎 𝑗
(𝑥) |𝛼𝑗 𝑒

2
ℎ
ℓ𝑦 (𝑥) d𝜇𝐵, ℎ2 (𝑥),

𝐵 = 𝑒−
1
ℎ
|𝜂 |2

∫
𝐵

𝑝∏
𝑗=1

|ℓ𝑏 𝑗
(𝜉) |𝛽 𝑗 𝑒

2
ℎ
ℓ𝜂 ( 𝜉 ) d𝜇𝐵, ℎ2 (𝜉).

Hölder’s inequality yields

𝐴 ≤ 𝑒−
1
ℎ
|𝑦 |2

𝑛∏
𝑗=1

(∫
𝐵

|ℓ𝑎 𝑗
(𝑥) |𝑛𝛼𝑗 𝑒

2
ℎ
ℓ𝑦 (𝑥) d𝜇𝐵, ℎ2 (𝑥)

)1/𝑛
.

According to (2.7),

𝐴 ≤ 𝑒−
1
ℎ
|𝑦 |2

𝑛∏
𝑗=1

(
𝑒 |𝑦 |

2/ℎ
∫
R
|
√︂
ℎ

2
|𝑎 𝑗 |𝑣+ < 𝑦, 𝑎 𝑗 > |𝑛𝛼𝑗 d𝜇R,1 (𝑣)

)1/𝑛
.

One can factor |𝑎 𝑗 | and, since
√︃

ℎ
2 |𝑣 | + |𝑦 | is smaller than max

(
1,

√︃
ℎ
2

)
(1+ |𝑣 |) (1+ |𝑦 |),

one gets

𝐴 ≤ max
(
1,

√︂
ℎ

2

) |𝛼 | 𝑛∏
1

|𝑎 𝑗 |𝛼𝑗 (1 + |𝑦 |) |𝛼 |
𝑛∏
1

(∫
R
(1 + |𝑣 |)𝑛𝛼𝑗 d𝜇R,1 (𝑣)

)1/𝑛
.

One treats the factor 𝐵 similarly, which gives the desired result. �

3.4. Stochastic extension in an integral

This section is devoted to integrals of symbols of the Calderón–Vaillancourt type
(Definition 2.3).
By differentiating, one sees that the function defined by the integral below belongs to

the same class as the integrand. This implies the existence of a stochastic extension by
Proposition 3.1, but does not give a precise form:

Proposition 3.19. Let 𝐺 ∈ 𝑆𝑚 (B, 𝜀), 𝑓 ∈ 𝐿1 ( [0, 1],R) and 𝑋 ∈ 𝐻2. For all 𝑌 ∈ 𝐻2, set
𝑇𝑋𝐺 (𝑌 ) =

∫ 1
0 𝑓 (𝑠)𝐺 (𝑋 + 𝑠𝑌 ) d𝑠. Then 𝑇𝑋𝐺 ∈ 𝑆𝑚 (B, 𝜀) and

‖𝑇𝑋𝐺‖𝑚,𝜀 ≤
∫ 1

0
| 𝑓 (𝑠) | d𝑠 ‖𝐺‖𝑚,𝜀 .

A precise form for the stochastic extension is given by the following result, which uses
the existence of extensions which do not depend on ℎ, provided it remains bounded:
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Proposition 3.20. Let 𝑓 : [0, 1] → R be a continuous function, let𝐺 be in 𝑆1 (B, 𝜀), with
𝜀 summable and let us fix 𝑋 ∈ 𝐻2. For all 𝑞 ∈ [1, +∞[ and all ℎ ∈ ]0, 1], the function

𝑌 ↦→
∫ 1

0
𝑓 (𝑠)𝐺 (𝑋 + 𝑠𝑌 ) d𝑠,

defined on 𝐻2, admits, as a stochastic extension in 𝐿𝑞 (𝐵2, 𝜇𝐵2 ,ℎ), the function

𝑌 ↦→
∫ 1

0
𝑓 (𝑠)𝐺 (𝑋 + 𝑠𝑌 ) d𝑠,

defined on 𝐵2, where 𝐺 is the stochastic extension of 𝐺 for all 𝐿𝑟 (𝐵2, 𝜇𝐵2 ,ℎ), (𝑟, ℎ) ∈
[1, +∞[ × ]0, 1].

Moreover, if 𝐸 ∈ F (𝐻2), one has the inequality



∫ 1

0
𝑓 (𝑠)

(
𝐺 (𝑋 + 𝑠𝜋𝐸 ( · )) − 𝐺 (𝑋 + 𝑠 · )

)
d𝑠






𝐿𝑞

≤ ‖𝐺‖1, 𝜀
∫ 1

0
| 𝑓 (𝑠) | d𝑠 ©­«

√︄
2
∑︁
Γ

𝜀2
𝑗
|𝑋 − 𝜋𝐸 (𝑋) |

+
√︁
2ℎ(𝑞 + 2)𝐶𝑒

|𝑋 |2
2ℎ

∞∑︁
0
𝜀 𝑗 ( |𝑢 𝑗 − 𝜋𝐸 (𝑢 𝑗 ) | + |𝑣 𝑗 − 𝜋𝐸 (𝑣 𝑗 ) |)

ª®¬ ,
where the constant 𝐶 does not depend on the parameters.

Proof. One checks that the functions (𝑠,𝑌 ) ↦→ 𝑋 + 𝑠𝑌 and (𝑠,𝑌 ) ↦→ 𝑋 + 𝑠𝜋̃𝐸 (𝑌 ) are
measurable. Define a function 𝑈𝐸 on 𝐵2 by setting 𝑈𝐸 (𝑌 ) =

∫ 1
0 𝑓 (𝑠)𝑔(𝑠,𝑌 ), with

𝑔(𝑠,𝑌 ) = (𝐺 (𝑋 + 𝑠𝜋𝐸 (𝑌 )) − 𝐺 (𝑋 + 𝑠𝑌 )) d𝑠.
One notices that∫ 1

0
| 𝑓 (𝑠) |

(∫
𝐵2

|𝑔(𝑠,𝑌 ) |𝑞 d𝜇𝐵2 ,ℎ (𝑌 )
)1/𝑞

d𝑠 < ∞.

This implies that𝑈𝐸 ∈ 𝐿𝑞 (𝐵2, 𝜇𝐵2 ,ℎ) and that

‖𝑈𝐸 ‖𝐿𝑞 (𝐵2 ,𝜇
𝐵2 ,ℎ) ≤

∫ 1

0
| 𝑓 (𝑠) |

(∫
𝐵2

|𝑔(𝑠,𝑌 ) |𝑞 d𝜇𝐵2 ,ℎ (𝑌 )
)1/𝑞

d𝑠.

Indeed, this is straightforward if 𝑞 = 1. If 𝑞 > 1, one introduces a function of
𝐿𝑞

′ (𝐵2, 𝜇𝐵2 ,ℎ) (with 𝑞−1 + 𝑞′−1 = 1) to prove that 𝑈𝐸 belongs to the dual space
of 𝐿𝑞′ .
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This proves that

‖𝑈𝐸 ‖𝐿𝑞 (𝐵2 ,𝜇
𝐵2 ,ℎ) ≤

∫ 1

0
| 𝑓 (𝑠) | ‖𝐺 (𝑋 + 𝑠𝜋𝐸 ( · )) − 𝐺 (𝜋𝐸 (𝑋 + 𝑠 · ))‖𝐿𝑞 d𝑠

+
∫ 1

0
| 𝑓 (𝑠) | ‖𝐺 (𝜋𝐸 (𝑋 + 𝑠 · )) − 𝐺 (𝑋 + 𝑠 · )‖𝐿𝑞 d𝑠.

Formula (2.11) proves that the first term is smaller than∫
𝐵2

|𝐺 (𝑋 + 𝑠𝜋𝐸 (𝑌 )) − 𝐺 (𝜋𝐸 (𝑋 + 𝑠𝑌 )) |𝑞 d𝜇𝐵2 ,ℎ

≤
∫
𝐵2

(
‖𝐺‖1, 𝜀

√︃
2
∑︁

𝜀2
𝑗
|𝑋 − 𝜋𝐸 (𝑋) |

)𝑞
d𝜇𝐵2 ,ℎ .

For the second term, successive change of variables give∫
𝐵2

|𝐺 (𝜋𝐸 (𝑋 + 𝑠𝑌 )) − 𝐺 (𝑋 + 𝑠𝑌 ) |𝑞 d𝜇𝐵2 ,ℎ (𝑌 )

=

∫
𝐵2

|𝐺 (𝜋𝐸 (𝑋 + 𝑍)) − 𝐺 (𝑋 + 𝑍) |𝑞 d𝜇𝐵2 ,𝑠2ℎ (𝑍)

=

∫
𝐵2

|𝐺 (𝜋𝐸 (𝑍)) − 𝐺 (𝑍) |𝑞𝑒−
|𝑋 |2
2𝑠2ℎ 𝑒

1
𝑠2ℎ

ℓ𝑋 (𝑍 ) d𝜇𝐵2 ,𝑠2ℎ (𝑍).

One then applies Hölder’s inequality to the last term, raising |𝐺 (𝜋𝐸 (𝑍)) −𝐺 (𝑍) |𝑞 to the
power 𝑞′/𝑞 with 𝑞′ = 𝑞 + 1

𝑠2
. This gives

‖𝐺 (𝜋𝐸 (𝑋 + 𝑠 · )) − 𝐺 (𝑋 + 𝑠 · )‖𝐿𝑞 (𝜇
𝐵2 ,ℎ) ≤ 𝑒

|𝑋 |2
2ℎ ‖𝐺 ◦ 𝜋𝐸 − 𝐺‖

𝐿
𝑞+ 1

𝑠2 (𝜇
𝐵2 ,𝑠2ℎ)

.

Using (3.1), one obtains∫ 1

0
| 𝑓 (𝑠) |‖𝐺 (𝜋𝐸 (𝑋 + 𝑠 · )) − 𝐺 (𝑋 + 𝑠 · )‖𝐿𝑞 (𝐵2 ,𝜇

𝐵2 ,ℎ) d𝑠

≤
∫ 1

0
| 𝑓 (𝑠) |𝑒

|𝑋 |2
2ℎ ‖𝐺‖1, 𝜀

√︁
2ℎ𝑠2

(
𝜋−1/2Γ

(
𝑞 + 𝑠−2 + 1

2

)) 1
𝑞+𝑠−2

×
∞∑︁
0
𝜀 𝑗 ( |𝑢 𝑗 − 𝜋𝐸 (𝑢 𝑗 ) | + |𝑣 𝑗 − 𝜋𝐸 (𝑣 𝑗 ) |) d𝑠.

For large values of |𝑧 | and | arg(𝑧) | < 𝜋, one has, by Stirling’s formula,

Γ(𝑧) = 𝑧−1/2𝑒𝑧 (ln(𝑧)−1)
√
2𝜋 (1 +𝑂 (𝑧−1)).
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It follows that, for a constant 𝐶 which is independent of the parameters,(
𝜋−1/2Γ

(
𝑞 + 𝑠−2 + 1

2

)) 1
𝑞+𝑠−2

≤ 𝐶 (𝑞 + 𝑠−2 + 1)1/2,

which gives the estimate for the second term. �

The following result is useful in the following Section 4 to treat the remainder in a
Taylor formula.

Corollary 3.21. Let 𝑓 be continuous on [0, 1]. Let 𝐺 ∈ 𝑆1 (B, 𝜀), with 𝜀 summable. Let
(𝑎1, . . . , 𝑎𝑛, 𝑋) ∈ 𝐻2 and let (𝑝, ℎ) be in [1, +∞[ × R+∗. The function

𝑌 ∈ 𝐻2 ↦→
(

𝑘∏
𝑖=1

〈𝑎𝑖 , 𝑌〉
) ∫ 1

0
𝑓 (𝑠)𝐺 (𝑋 + 𝑠𝑌 ) d𝑠

admits, as a stochastic extension in 𝐿 𝑝 (𝐵2, 𝜇𝐵2 ,ℎ), the function

𝑌 ∈ 𝐵2 ↦→
(

𝑘∏
𝑖=1

ℓ𝑎𝑖 (𝑌 )
) ∫ 1

0
𝑓 (𝑠)𝐺 (𝑋 + 𝑠𝑌 ) d𝑠,

where 𝐺 is the stochastic extension of 𝐺 valid for all ℎ′ ∈]0, +∞[ and all finite 𝑝.
Moreover, there exists a constant 𝐾 depending on 𝑝, 𝑘, ℎ but not on the 𝑎𝑖 , 𝐺, 𝑋, 𝑓 , 𝐸 or
𝜀 such that, for all 𝐸 ∈ F (𝐻2),




 𝑘∏

𝑖=1
〈𝑎𝑖 , 𝜋̃𝐸 (𝑌 )〉

∫ 1

0
𝑓 (𝑠)𝐺 (𝑋 + 𝑠𝜋̃𝐸 (𝑌 )) d𝑠 −

𝑘∏
𝑖=1

ℓ𝑎𝑖 (𝑌 )
∫ 1

0
𝑓 (𝑠)𝐺 (𝑋 + 𝑠𝑌 ) d𝑠







𝑝

≤ 𝐾

∫ 1

0
| 𝑓 (𝑠) | d𝑠‖𝐺‖1, 𝜀𝐴𝑘−1 ×

(
𝑘∑︁
𝑖=1

|𝜋𝐸 (𝑎𝑖) − 𝑎𝑖 | + 𝐴‖𝜀‖2 |𝜋𝐸 (𝑋) − 𝑋 |

+ 𝐴𝑒
|𝑋 |2
2ℎ

∞∑︁
𝑗=0
𝜀 𝑗 ( |𝜋𝐸 (𝑢 𝑗 ) − 𝑢 𝑗 | + |𝜋𝐸 (𝑣 𝑗 ) − 𝑣 𝑗 |)

ª®¬
where 𝐴 = max1≤𝑖≤𝑘 ( |𝑎𝑖 |) and the norm is in 𝐿 𝑝 (𝐵2, 𝜇𝐵2 ,ℎ).

Proof. The existence of the stochastic extension for the product is a consequence of
Corollary 3.16. To prove the inequality, one uses (3.7) to establish that the left hand side

177



L. Jager

is smaller than

𝑘∏
𝑖=1

‖ℓ𝑎𝑖 ‖ ×




∫ 1

0
𝑓 (𝑠)𝐺 (𝑋 + 𝑠𝜋̃𝐸 (𝑌 )) d𝑠 −

∫ 1

0
𝑓 (𝑠)𝐺 (𝑋 + 𝑠𝑌 ) d𝑠






+

𝑘∑︁
𝑖=1

©­«
𝑖−1∏
𝑗=1

‖ℓ𝜋𝐸 (𝑎 𝑗 ) ‖
𝑘∏

𝑗=𝑖+1
‖ℓ𝑎 𝑗

‖ª®¬ ‖ℓ𝜋𝐸 (𝑎𝑖) − ℓ𝑎𝑖 ‖ ×




∫ 1

0
𝑓 (𝑠)𝐺 (𝑋 + 𝑠𝜋̃𝐸 (𝑌 )) d𝑠





 ,
the norm in the second term being the 𝐿 𝑝 (𝑘+1) (𝐵2, 𝜇𝐵2 ,ℎ)-norm. But ‖ℓ𝑎‖ =

𝐾 (𝑝(𝑘 + 1))ℎ1/2 |𝑎 |, according to (2.5) and (2.6). An upper bound is, consequently,
(𝐾 (𝑝(𝑘 + 1))ℎ1/2)𝑘 multiplied by the following expression:(

𝑘∏
𝑖=1

|𝑎 𝑗 |
) 



∫ 1

0
𝑓 (𝑠)𝐺 (𝑋 + 𝑠𝜋̃𝐸 (𝑌 )) d𝑠 −

∫ 1

0
𝑓 (𝑠)𝐺 (𝑋 + 𝑠𝑌 ) d𝑠






+

𝑘∑︁
𝑖=1

|𝜋𝐸 (𝑎𝑖) − 𝑎𝑖 |
©­«

∏
1≤ 𝑗≤𝑘, 𝑗≠𝑖

|𝑎 𝑗 |
ª®¬ ×





∫ 1

0
𝑓 (𝑠)𝐺 (𝑋 + 𝑠𝜋̃𝐸 (𝑌 )) d𝑠






One concludes by noticing that |𝐺 | is smaller than ‖𝐺‖1, 𝜀 , (thanks to Proposition 3.20)
and that the |𝑎𝑖 | are smaller than 𝐴. �

4. Taylor expansions

4.1. Differentiability of the symbols in 𝑆𝑚(B, 𝜀)

By definition, the symbols in the Calderón–Vaillancourt classes admit partial derivatives,
but no differentiability assumption is made. This section gives results about the Fréchet
differentiablity of such symbols. Notice that one loses an order of differentiability
(Remark 4.3)
As a consequence, Proposition 4.6 states that one may also work with another, more

suitable Wiener extension of 𝐻, in which one can use continuity results from the general
theory.
In this subsection, the sequence 𝜀 is supposed to be square summable when orthogo-

nality can be used. Summability is needed in the other cases, for example for the existence
of stochastic extensions.
The following straightforward lemma lists useful properties of the 𝑆𝑚 classes:
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Lemma 4.1. Let 𝐹 ∈ 𝑆𝑚 (B, 𝜀), with 𝜀 square summable.

• If𝑚≥ 𝑘 ≥1 and if𝛼, 𝛽 are two multiindices of depth 𝑘 (such thatmax 𝑗∈Γ (𝛼 𝑗 , 𝛽 𝑗 ) ≤
𝑘), then 𝜕𝛼

𝑢 𝜕
𝛽
𝑣 𝐹 ∈ 𝑆𝑚−𝑘 (B, 𝜀) and

‖𝜕𝛼
𝑢 𝜕

𝛽
𝑣 𝐹‖𝑚−𝑘,𝜀 ≤ ‖𝐹‖𝑚,𝜀

∏
𝑗∈Γ

𝜀
𝛼𝑗+𝛽 𝑗

𝑗
.

• If 𝑚 ≥ 2, one defines ΔB by

ΔB𝐹 =

(∑︁
𝑗∈Γ

(
𝜕

𝜕𝑢 𝑗

)2
+

(
𝜕

𝜕𝑣 𝑗

)2)
𝐹.

It satisfies ΔB𝐹 ∈ 𝑆𝑚−2 (B, 𝜀), with ‖ΔB𝐹‖𝑚−2, 𝜀 ≤ 2∑ 𝑗 𝜀
2
𝑗
‖𝐹‖𝑚,𝜀 .

• If 𝐺 ∈ 𝑆𝑚 (B, 𝛿) with 𝛿 square summable too, then 𝐹𝐺 ∈ 𝑆𝑚 (B, 𝜀 + 𝛿) with
‖𝐹𝐺‖𝑚,𝜀+𝛿 ≤ ‖𝐹‖𝑚,𝜀 ‖𝐺‖𝑚,𝛿 .

One can prove that, under certain conditions, the Laplace operator does not depend on
the chosen basis (see Remark 4.7 below).

Proposition 4.2. If 𝐹 ∈ 𝑆𝑚 (B, 𝜀) with 𝑚 ≥ 2 and 𝜀 square summable, then 𝐹 is Fréchet
differentiable on 𝐻2 and

𝐷𝐹 (𝑋) · 𝑌 =
∑︁
𝑗∈Γ

〈𝑌, 𝑢 𝑗〉
𝜕𝐹

𝜕𝑢 𝑗

(𝑋) + 〈𝑌, 𝑣 𝑗〉
𝜕𝐹

𝜕𝑣 𝑗
(𝑋).

Moreover, for all 𝑋 and 𝑌 in 𝐻2,

|𝐹 (𝑋 + 𝑌 ) − 𝐹 (𝑋) − 𝐷𝐹 (𝑋) · 𝑌 | ≤ ‖𝐹‖𝑚,𝜀

∑︁
𝑗∈Γ

𝜀2𝑗 (1 + 2
√
2) |𝑌 |2.

Proof. Let 𝑋,𝑌 ∈ 𝐻2. Since Γ is countable, we may order it and replace it formally by
N. Let 𝑃𝑁 be the orthogonal projection onto Vect(𝑢𝑖 , 𝑣𝑖 , 𝑖 ≤ 𝑁) if 𝑁 ≥ 0, 𝑃−1 = 0 and
𝑃𝑁 ,1/2 the orthogonal projection onto Vect(𝑢𝑖 , 𝑣 𝑗 , 𝑖 ≤ 𝑁 + 1, 𝑗 ≤ 𝑁). By approaching
𝑃(𝑋 + 𝑌 ) by 𝑃(𝑋 + 𝑃𝑁 (𝑌 )) one obtains

𝐹 (𝑋 + 𝑃𝑁 (𝑌 )) − 𝐹 (𝑋) =
𝑁∑︁
𝑗=0

𝐹 (𝑋 + 𝑃 𝑗 (𝑌 )) − 𝐹 (𝑋 + 𝑃 𝑗−1,1/2 (𝑌 ))

+ 𝐹 (𝑋 + 𝑃 𝑗−1,1/2 (𝑌 )) − 𝐹 (𝑋 + 𝑃 𝑗−1 (𝑌 )).
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Taylor’s formula gives, for example for the part of the 𝑗-th term concerned with 𝑣 𝑗 ,

𝐹 (𝑋 + 〈𝑌, 𝑣 𝑗〉𝑣 𝑗 + 𝑃 𝑗−1,1/2 (𝑌 )) − 𝐹 (𝑋 + 𝑃 𝑗−1,1/2 (𝑌 ))

= 〈𝑌, 𝑣 𝑗〉
𝜕𝐹

𝜕𝑣 𝑗
(𝑋 + 𝑃 𝑗−1,1/2 (𝑌 ))

+ 〈𝑌, 𝑣 𝑗〉2
∫ 1

0
(1 − 𝑠) 𝜕

2𝐹

𝜕𝑣2
𝑗

(𝑋 + 𝑃 𝑗−1,1/2 (𝑌 ) + 𝑠〈𝑌, 𝑣 𝑗〉𝑣 𝑗 ) d𝑠

= 〈𝑌, 𝑣 𝑗〉
𝜕𝐹

𝜕𝑣 𝑗
(𝑋) + 〈𝑌, 𝑣 𝑗〉

(
𝜕𝐹

𝜕𝑣 𝑗
(𝑋 + 𝑃 𝑗−1,1/2 (𝑌 )) −

𝜕𝐹

𝜕𝑣 𝑗
(𝑋)

)
+ 〈𝑌, 𝑣 𝑗〉2

∫ 1

0
(1 − 𝑠) 𝜕

2𝐹

𝜕𝑣2
𝑗

(𝑋 + 𝑃 𝑗−1,1/2 (𝑌 ) + 𝑠〈𝑌, 𝑣 𝑗〉𝑣 𝑗 ) d𝑠.

The first term gives the expression of the differential and it is the general term of a
convergent series (apply Cauchy–Schwarz inequality). Since 𝜕𝐹

𝜕𝑣𝑗
is in 𝑆𝑚−1 (B, 𝜀) with

 𝜕𝐹

𝜕𝑣𝑗




𝑚−1, 𝜀 ≤ 𝜀 𝑗 ‖𝐹‖𝑚,𝜀 , one can use (2.11) to treat the second term. It then yields

a convergent series too, its sum being smaller than Cste. |𝑌 |2. The integral term can
be estimated thanks to the estimates on the second derivatives and the sum of the
corresponding terms is of order 2 in |𝑌 |. Since 𝐹 and its derivatives are bounded by
‖𝐹‖𝑚,𝜀 and powers of 𝜀 independently of 𝑋 and 𝑌 , the remainder can be bounded as is
asserted in the theorem, with a constant 𝐶 independent of 𝑋,𝑌 , ‖𝐹‖𝑚,𝜀 and 𝜀. One may
take 𝐶 = (1 + 2

√
2). �

Remark 4.3. Since there are infinitely many terms, we need a precise bound for the
remainder in Taylor’s formula, which explains the loss of one order of differentiability.

Differentiating term by term and using the continuity of the extension operator P
(Corollary 3.2) we get the following results:

Proposition 4.4. Let 𝐹 ∈ 𝑆𝑚 (B, 𝜀) with 𝑚 ≥ 2 and 𝜀 square summable. Then, for
all 𝑌 ∈ 𝐻2, 𝑋 ↦→ 𝐷𝐹 (𝑋) · 𝑌 is in 𝑆𝑚−1 (B, 𝜀), with ‖𝑋 ↦→ 𝐷𝐹 (𝑋) · 𝑌 ‖𝑚−1, 𝜀 ≤
2‖𝐹‖𝑚,𝜀 |𝑌 |

√︃∑
𝑗∈Γ 𝜀

2
𝑗
.

If, moreover, 𝜀 is summable, the application 𝑋 ↦→ 𝐷𝐹 (𝑋) · 𝑌 from 𝐻2 in R admits a
stochastic extension in 𝐿 𝑝 (𝐵2, 𝜇𝐵2 ,𝑡 ), which is the application∑︁

Γ

〈𝑌, 𝑢 𝑗〉P
(
𝜕𝐹

𝜕𝑢 𝑗

)
+ 〈𝑌, 𝑣 𝑗〉P

(
𝜕𝐹

𝜕𝑣 𝑗

)
. (4.1)

The summability of 𝜀 in the second part is needed to ensure the existence of the
stochastic extension.
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Let 𝐹 ∈ 𝑆𝑚 (B, 𝜀) with 𝜀 square summable. For 𝑘 ∈ {1, . . . , 𝑚} and 𝑋 ∈ 𝐻2, let us
denote by Φ𝑘 (𝑋) on (𝐻2)𝑘 the 𝑘-linear symmetric continuous form defined by

Φ𝑘 (𝑋) (𝑌1, . . . , 𝑌𝑘 ) =
∑︁
𝐽 ∈Γ𝑘 ,

𝛿∈{0,1}𝑘

(
𝑘∏

𝑠=1
〈𝑌𝑠 , 𝑤 𝛿𝑠

𝑗𝑠
〉
)

𝜕𝑘𝐹

𝜕𝑤
𝛿1
𝑗1
. . . 𝜕𝑤

𝛿𝑘
𝑗𝑘

(𝑋), (4.2)

for all (𝑋,𝑌1, . . . , 𝑌𝑘 ) ∈ (𝐻2)𝑘+1: with 𝑤0
𝑗
= 𝑢 𝑗 , 𝑤1𝑗 = 𝑣 𝑗 , 𝐽 = ( 𝑗1, . . . , 𝑗𝑘 ), 𝛿 =

(𝛿1, . . . , 𝛿𝑘 ). We notice that

|Φ𝑘 (𝑋) (𝑌1, . . . , 𝑌𝑘 ) | ≤ 2𝑘 ‖𝐹‖𝑚,𝜀 ‖𝜀‖𝑘2
𝑘∏

𝑠=1
|𝑌𝑠 | (4.3)

From now on, for the sake of brevity, we shall write 𝐽, 𝛿 instead of ( 𝑗1, . . . , 𝑗𝑘 ),
(𝛿1, . . . , 𝛿𝑘 ).

Proposition 4.5. Let 𝐹 ∈ 𝑆𝑚 (B, 𝑀, 𝜀) with 𝜀 square summable. Then 𝐹 is 𝐶𝑚−1 on 𝐻2

and, for all 𝑘 ∈ {1, . . . , 𝑚 − 1} and all 𝑋 ∈ 𝐻2,

𝐷𝑘𝐹 (𝑋) = Φ𝑘 (𝑋).

The inequality (4.3) is satisfied. Finally, for 0 ≤ 𝑘 ≤ 𝑚 − 2, one has

‖𝐷𝑘𝐹 (𝑋 + 𝑍) − 𝐷𝑘𝐹 (𝑋) − 𝐷𝑘+1𝐹 (𝑋) ( · , 𝑍)‖ ≤ 2𝑘 ‖𝐹‖𝑚,𝜀 ‖𝜀‖𝑘+22 (1 + 2
√
2) |𝑍 |2,

where the norm is the norm of 𝑘-linear continuous applications on 𝐻2.

Proof. Propositions 4.2 and 4.4 give the result for 𝑚 = 2, except for the fact that 𝐹 is 𝐶1.
This can be proved by applying (2.11) to the partial derivatives of 𝐹. For a general 𝑚, one
uses induction. �

This allows one to state Taylor’s formula to the order 𝑘 for 𝐹 ∈ 𝑆𝑚 (B, 𝜀), with 𝜀
square summable and 𝑚 ≥ 𝑘 + 1. For 𝑋,𝑌 ∈ 𝐻2,

𝐹 (𝑋 + 𝑌 ) = 𝐹 (𝑋) +
𝑘−1∑︁
𝑖=1

1
𝑖!
𝐷𝑖𝐹 (𝑋) · 𝑌 𝑖 +

∫ 1

0

(1 − 𝑠)𝑘−1
(𝑘 − 1)! 𝐷

𝑘𝐹 (𝑋 + 𝑠𝑌 ) · 𝑌 𝑘 d𝑠

= 𝐹 (𝑋) +
𝑘−1∑︁
𝑖=1

1
𝑖!
𝐷𝑖𝐹 (𝑋) · 𝑌 𝑖

+
∑︁
𝐽 ∈Γ𝑘 ,

𝛿∈{0,1}𝑘

(
𝑘∏

𝑟=1
〈𝑤 𝛿𝑟

𝑗𝑟
, 𝑌〉

) ∫ 1

0

(1 − 𝑠)𝑘−1
(𝑘 − 1)!

𝜕𝑘𝐹

𝜕𝑤
𝛿1
𝑗1
. . . 𝜕𝑤

𝛿𝑘
𝑗𝑘

(𝑋 + 𝑠𝑌 ) d𝑠, (4.4)

exchanging the sums to get the last equality.
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In the following Subsection 4.2, one proves the existence of stochastic extensions for
each of the terms appearing here, the polynomial terms as well as the remainder, under
the assumption that 𝜀 is summable. Note that these extensions are series indexed by Γ.
From Taylor’s Formula one deduces the following result, which allows us to construct

another completion 𝐵𝐴 of 𝐻 in the case when 𝜀 is summable.

Proposition 4.6. Let 𝜀 be a summable sequence such that 𝜀 𝑗 > 0 for all 𝑗 ∈ Γ. One
defines a symmetric, definite positive and trace class operator 𝐴 by setting

∀ 𝑋 ∈ 𝐵2, 𝐴𝑋 =
∑︁
𝑗∈Γ

𝜀 𝑗 〈𝑋, 𝑢 𝑗〉𝑢 𝑗 + 𝜀 𝑗 〈𝑋, 𝑣 𝑗〉𝑣 𝑗 .

Set ‖𝑋 ‖𝐴 = 〈𝐴𝑋, 𝑋〉1/2. Then ‖ · ‖𝐴 is a measurable norm on 𝐻, in the sense of [9,
Definition 4.4] or [3]. One denotes by 𝐵𝐴 the completion of 𝐻 for this norm.

If 𝐹 ∈ 𝑆𝑚 (B, 𝜀) for 𝑚 ≥ 2, then 𝐹 is uniformly continuous on 𝐻2 with respect to the
norm ‖ · ‖𝐴. The function 𝐹 admits a uniformly continuous extension 𝐹𝐴 on 𝐵𝐴 and the
stochastic extension 𝐹 of 𝐹 given by Proposition 3.1 is equal to 𝐹𝐴 𝜇𝐵𝐴,ℎ-a.e.

Proof. It follows from Theorem 3 in [3] that ‖ · ‖𝐴 is a measurable norm, since 𝐴 is one to
one. Since 𝑚 ≥ 2, 𝐹 is 𝐶1 on 𝐻, Taylor’s Formula with to the order 1 and Definition 4.2
imply the inequality

|𝐹 (𝑋) − 𝐹 (𝑌 ) | ≤
∫ 1

0

∑︁
𝑗∈{0,1}, 𝛿∈Γ

����� 𝜕𝐹𝜕𝑤 𝛿
𝑗

(𝑋 + 𝑡 (𝑌 − 𝑋))〈𝑌 − 𝑋, 𝑤 𝛿
𝑗 〉

����� d𝑡
≤

∑︁
𝑗∈Γ

‖𝐹‖𝑚,𝜀𝜀 𝑗 ( |〈𝑌 − 𝑋, 𝑢 𝑗〉| + |〈𝑌 − 𝑋, 𝑣 𝑗〉|)

≤ ‖𝐹‖𝑚,𝜀

√
2
(∑︁

𝜀 𝑗

)1/2
‖𝑋 − 𝑌 ‖𝐴,

thanks to the Cauchy–Schwarz Inequality. Then 𝐹 is uniformly continuous on 𝐻2 and
admits a uniformly continuous extension on 𝐵𝐴, 𝐹𝐴. According to Theorem 6.3 in [9,
Chapter 1]), 𝐹𝐴 and 𝐹 coincide almost everywhere. �

Remark 4.7. If 𝐹 ∈ 𝑆𝑚 (B, 𝜀) with 𝑚 ≥ 3 and 𝜀 summable, one can define Δ𝐹 more
intrinsically. Indeed, one can state an inequality more precise than (4.3). For 𝑘 ≤ 3 one
gets, for all 𝑋,𝑌1, . . . , 𝑌𝑘 ∈ (𝐻2)𝑘+1,

|Φ𝑘 (𝑋) (𝑌1, . . . , 𝑌𝑘 ) | ≤ 2𝑘 ‖𝐹‖𝑚,𝜀

(∑︁
Γ

𝜀 𝑗

) 𝑘/2 𝑘∏
𝑠=1

〈𝐴𝑌𝑠 , 𝑌𝑠〉1/2,

reasoning as in the proof of Proposition 4.6. The function 𝐹 is 𝐶2 since 𝑚 ≥ 3 and the
inequality, for 𝑘 = 2, ensures the existence of a self-adjoint, trace class operator 𝑀𝑥
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satisfying
∀ 𝑈,𝑉, 𝑋 ∈ 𝐻2, d2𝐹 (𝑋) · (𝑈,𝑉) = 〈𝑀𝑋𝑈,𝑉〉.

One then sets Δ𝐹 (𝑋) = Tr(𝑀𝑋 ) and the expression as a sum of partial derivatives does
not depend on the chosen orthonormal basis.
One can notice, too, that if 𝜀 is summable, if 𝐹 belongs to 𝑆𝑚 (B, 𝜀) for all 𝑚 and

if there exists a constant 𝑀 such that ‖𝐹‖𝑚,𝜀 ≤ 𝑀 for all 𝑚, then 𝐹 ∈ 𝑆(𝑄𝐵) with 𝐵
defined by 𝐵 = 4(∑Γ 𝜀 𝑗 )𝐴, 𝐴 being as in Proposition 4.6.

4.2. Taylor’s formula and stochastic extensions

In contrast to the preceding subsection, where sums like
∑

Γ 𝜀 𝑗 〈𝑢 𝑗 , 𝑥〉 have been treated by
the Cauchy–Schwarz Inequality, we must suppose here that the sequence 𝜀 is summable.
The sums now have the form

∑
Γ 𝜀 𝑗 ℓ𝑢 𝑗

and, since the functions ℓ𝑢 𝑗
have a 𝐿 𝑝 norm

independent of 𝑗 , one needs stronger assumptions on 𝜀.

Proposition 4.8. Let 𝜀 be summable and let 𝐹 ∈ 𝑆𝑚 (B, 𝜀) with 𝑚 ≥ 2. Let 𝑋 ∈ 𝐻2. For
all 𝑘 ≤ 𝑚 − 1, all ℎ > 0 and 𝑝 ∈ [1, +∞[, one can write, in 𝐿 𝑝 (𝐵2, 𝜇𝐵2 ,ℎ):

𝐹 (𝑋 + 𝑌 ) = 𝐹 (𝑋) +
𝑘−1∑︁
𝑖=1

1
𝑖!

∑︁
𝐽 ∈Γ𝑖 ,

𝛿∈{0,1}𝑖

(
𝑖∏

𝑟=1
ℓ
𝑤

𝛿𝑟
𝑗𝑟

(𝑌 )
)

𝜕𝑖𝐹

𝜕𝑤
𝛿1
𝑗1
. . . 𝜕𝑤

𝛿𝑖
𝑗𝑖

(𝑋)

+
∑︁
𝐽 ∈Γ𝑘 ,

𝛿∈{0,1}𝑘

(
𝑘∏

𝑟=1
ℓ
𝑤

𝛿𝑟
𝑗𝑟

(𝑌 )
) ∫ 1

0

(1 − 𝑠)𝑘−1
(𝑘 − 1)! P

(
𝜕𝑘𝐹

𝜕𝑤
𝛿1
𝑗1
. . . 𝜕𝑤

𝛿𝑘
𝑗𝑘

)
(𝑋 + 𝑠𝑌 ) d𝑠. (4.5)

Proof. Let us denote by Φ̃𝑖 (𝑋) · 𝑌 𝑖 the 𝑖-th term in the first sum and by 𝑅𝑘 (𝑋) the last
one, corresponding to the remainder.
We first prove that the polynomial part of the development in (4.4) has a stochastic

extension in 𝐿 𝑝 (𝐵2, 𝜇𝐵2 ,ℎ). For 𝐸 ∈ F (𝐻) and 𝜋̃𝐸 defined by (2.4), let us study
Φ𝑘 (𝑋) · (𝜋̃𝐸 (𝑌 )𝑘 ) − �Φ𝑘 (𝑋) (𝑌, . . . , 𝑌 ). In order to show that both terms belong to
𝐿 𝑝 (𝐵2, 𝜇𝐵2 ,ℎ), one has to find an upper bound for each term




 𝑘∏

𝑠=1
ℓ𝑎𝑠 (𝑌 )







𝐿𝑝

����� 𝜕𝑘𝐹

𝜕𝑤
𝛿1
𝑗1
. . . 𝜕𝑤

𝛿𝑘
𝑗𝑘

(𝑋)
�����

of the sum, with 𝑎𝑠 = 𝑤 𝛿𝑠
𝑗𝑠
or 𝜋𝐸 (𝑤 𝛿𝑠

𝑗𝑠
). Proposition 3.17 gives that




 𝑘∏

𝑠=1
〈𝜋̃𝐸 (𝑌 ), 𝑤 𝛿𝑠

𝑗𝑠
〉 −

𝑘∏
𝑠=1

ℓ
𝑤

𝛿𝑠
𝑗𝑠







𝐿𝑝

≤ (𝐾 (𝑝𝑘)ℎ1/2)𝑘
𝑘∑︁

𝑠=1
|𝜋𝐸 (𝑤 𝛿𝑠

𝑗𝑠
) − 𝑤 𝛿𝑠

𝑗𝑠
|,
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since the 𝑤 𝛿𝑠
𝑗𝑠
and their projections have norms smaller than 1. Therefore

‖Φ𝑘 (𝑋) · (𝜋̃𝐸 (𝑌 )𝑘 ) − �Φ𝑘 (𝑋) (𝑌, . . . , 𝑌 )‖𝐿𝑝 (𝐵2 ,𝜇
𝐵2 ,ℎ)

≤ ‖𝐹‖𝑚,𝜀 (𝐾 (𝑝𝑘)ℎ1/2)𝑘
∑︁
𝐽 ∈Γ𝑘 ,

𝛿∈{0,1}𝑘

𝑘∏
𝑠=1

𝜀 𝑗𝑠

𝑘∑︁
𝑠=1

|𝜋𝐸 (𝑤 𝛿𝑠
𝑗𝑠
) − 𝑤 𝛿𝑠

𝑗𝑠
|.

One then replaces 𝐸 by 𝐸𝑛, where (𝐸𝑛) is an increasing sequence of F (𝐻2) whose union
is dense in 𝐻2. Since the terms |𝜋𝐸𝑛

(𝑤 𝛿𝑠
𝑗𝑠
) − 𝑤 𝛿𝑠

𝑗𝑠
| converge to 0 and are smaller than

2, the difference converges to 0 thanks to the dominated convergence Theorem. Hence
𝑌 ↦→ Φ𝑘 (𝑋) · 𝑌 𝑘 admits, as a stochastic extension in 𝐿 𝑝 (𝐵2, 𝜇𝐵2 ,ℎ), the application
𝑌 ↦→ �Φ𝑘 (𝑋) · 𝑌 𝑘 .
The remainder is the sum indexed by 𝐽 ∈ Γ𝑘 , 𝛿 ∈ {0, 1}𝑘 . One applies Corollary 3.21,

replacing, in the upper bound,
∫ 1
0

(1−𝑠)𝑘−1
(𝑘−1)! d𝑠 by (𝑘!)

−1, ‖𝐺‖1, 𝜀 by ‖𝐹‖𝑚,𝜀

∏𝑘
1 𝜀 𝑗𝑖 and

𝐴 = max( |𝑤 𝛿𝑖
𝑗𝑖
|), by 1. One finds

∑︁
𝐽 , 𝛿






∫ 1

0

(1 − 𝑠)𝑘−1
(𝑘 − 1)!

(
𝜕𝑘𝐹

𝜕𝑤
𝛿1
𝑗1
. . . 𝜕𝑤

𝛿𝑘
𝑗𝑘

(𝑋 + 𝑠𝜋̃𝐸 (𝑌 ))
𝑘∏
1
〈𝜋̃𝐸 (𝑌 ), 𝑤 𝛿𝑖

𝑗𝑖
〉

−
(
P 𝜕𝑘𝐹

𝜕𝑤
𝛿1
𝑗1
. . . 𝜕𝑤

𝛿𝑘
𝑗𝑘

)
(𝑋 + 𝑠𝑌 )

𝑘∏
1
ℓ
𝑤

𝛿𝑖
𝑗𝑖

(𝑌 )
)
d𝑠







𝐿𝑝 (𝐵2 ,𝜇

𝐵2 ,ℎ)

≤ 1
𝑘!
𝐾 ‖𝐹‖𝑚,𝜀

∑︁
𝐽 ∈Γ𝑘 ,

𝛿∈{0,1}𝑘

(𝜀 𝑗1 . . . 𝜀 𝑗𝑘 )
𝑘∑︁
𝑖=1

|𝜋𝐸 (𝑤 𝛿𝑖
𝑗𝑖
) − 𝑤 𝛿𝑖

𝑗𝑖
|

+ 1
𝑘!
𝐾 ‖𝐹‖𝑚,𝜀

∑︁
𝐽 ∈Γ𝑘 ,

𝛿∈{0,1}𝑘

(𝜀 𝑗1 . . . 𝜀 𝑗𝑘 )

×
(√︃∑︁

𝜀2
𝑗
|𝜋𝐸 (𝑋) − 𝑋 | + 𝑒 |𝑋 |2/2ℎ

∞∑︁
0
𝜀 𝑗 ( |𝜋𝐸 (𝑢 𝑗 ) − 𝑢 𝑗 | + |𝜋𝐸 (𝑣 𝑗 ) − 𝑣 𝑗 |)

)
.

If one replaces 𝐸 by 𝐸𝑛 from an increasing sequence of F (𝐻2) whose union is dense in
𝐻2, this converges to 0 when 𝑛 converges to infinity. �

With each term of the extended Taylor expansion (4.5), one can associate a quadratic
form (see [1, Definition 1.2]) thanks to the following result:
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Proposition 4.9. Let 𝐹 ∈ 𝑆𝑚 (B, 𝜀) with 𝜀 summable and 𝑚 ≥ 𝑘 + 1, where 𝑘 is the order
of differentiation. Each of the terms of (4.5) has a 𝑁𝑠 norm (cf. (2.12)), for a well-chosen
𝑠. Precisely

𝑁𝑖

(
1
𝑖!
Φ̃𝑖 (𝑋) · 𝑌 𝑖

)
≤ 1
𝑖!
‖𝐹‖𝑚,𝜀

(
2max

(
1,

√︂
ℎ

2

) ∑︁
Γ

𝜀 𝑗

) 𝑖 ∫
R
(1 + |𝑣 |)𝑖 d𝜇R,1 (𝑣).

and

𝑁𝑘 (𝑅𝑘 (𝑋)) ≤
1
𝑘!

‖𝐹‖𝑚,𝜀

(
2max

(
1,

√︂
ℎ

2

) ∑︁
Γ

𝜀 𝑗

) 𝑘 ∫
R
(1 + |𝑣 |)𝑘 d𝜇R,1 (𝑣).

Proof. One uses the computations of Proposition 3.18. Then




 𝑖∏
𝑟=1

ℓ
𝑤

𝛿𝑟
𝑗𝑟

( · + 𝑌 )






𝐿1 (𝐵2 ,𝜇

𝐵2 , ℎ2
)

≤ (1 + |𝑌 |)𝑖 max
(
1,

√︂
ℎ

2

) 𝑖 ∫
R
(1 + |𝑣 |)𝑖 d𝜇R,1 (𝑣).

Hence





 ∑︁
𝐽 ∈Γ𝑖 , 𝛿∈{0,1}𝑖

𝑖∏
𝑟=1

ℓ
𝑤

𝛿𝑟
𝑗𝑟

( · + 𝑌 ) 𝜕𝑖𝐹

𝜕𝑤
𝛿1
𝑗1
. . . 𝜕𝑤

𝛿𝑖
𝑗𝑖

(𝑋)








𝐿1 (𝐵2 ,𝜇

𝐵2 , ℎ2
)

≤
∑︁

𝐽 ∈Γ𝑖 , 𝛿∈{0,1}𝑖
‖𝐹‖𝑚,𝜀𝜀 𝑗1 . . . 𝜀 𝑗𝑖 (1 + |𝑌 |)𝑖 max

(
1,

√︂
ℎ

2

) 𝑖 ∫
R
(1 + |𝑣 |)𝑖 d𝜇R,1 (𝑣)

≤ ‖𝐹‖𝑚,𝜀

(
2max

(
1,

√︂
ℎ

2

) ∑︁
Γ

𝜀 𝑗

) 𝑖 ∫
R
(1 + |𝑣 |)𝑖 d𝜇R,1 (𝑣) (1 + |𝑌 |)𝑖 .

It follows that

𝑁𝑖

(
1
𝑖!
Φ̃𝑖 (𝑋) · 𝑌 𝑖

)
≤ 1
𝑖!
‖𝐹‖𝑚,𝜀

(
2max

(
1,

√︂
ℎ

2

) ∑︁
Γ

𝜀 𝑗

) 𝑖 ∫
R
(1 + |𝑣 |)𝑖 d𝜇R,1 (𝑣).

We treat the remainder in the same way: the sum indexed by 𝐽 ∈ Γ𝑘 , 𝛿 ∈ {0, 1}𝑘 contains a
product of 𝑘 terms ℓ and the integral, which is bounded by 1

𝑘! ‖𝐹‖𝑚,𝜀𝜀 𝑗1 . . . 𝜀 𝑗𝑘 . Therefore
the remainder has a 𝑁𝑘 norm bounded like the polynomial terms. �

5. The heat operator on 𝐻

The heat operator defined below associates a function defined on a (real, separable, infinite
dimensional) Hilbert space, with a function defined on the same Hilbert space. We aim
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at extending the notion of the heat operator, which is classical in the finite dimensional
setting.
The results proved here are different from the results obtained by ([5, 9]), inasmuch as

they are concerned with symbols, which are initially defined on 𝐻 (or 𝐻2) and not on 𝐵.
We first present general results and then give the features in each symbol class.

5.1. General definition

Definition 5.1. Let 𝐹 be a function defined on 𝐻, admitting a stochastic extension in
𝐿 𝑝 (𝐵, 𝜇𝐵,𝑡 ) for a given 𝑝 ∈ [1, +∞[. One defines 𝐻𝑡𝐹 on 𝐻 by

(𝐻𝑡𝐹) (𝑋) =
∫
𝐵

𝐹 (𝑋 + 𝑌 ) d𝜇𝐵,𝑡 (𝑌 ) =
∫
𝐵

𝐹 (𝑌 )𝑒−
|𝑋 |2
2𝑡 𝑒ℓ𝑋/𝑡 d𝜇𝐵,𝑡 (𝑌 ), (5.1)

the second identity coming from (2.9). Sometimes, 𝐻𝑡 is denoted by 𝑒
𝑡
2Δ.

If 𝐹 is defined on the product 𝐻2, one replaces 𝐻 by 𝐻2 and 𝐵 by 𝐵2.

Remark 5.2. This definition does not depend on the stochastic extension chosen, nor on
the measurable norm and on the completion of 𝐻 associated with it. Indeed, the fact that a
sequence 𝐹 ◦ 𝜋̃𝐸𝑛

is a Cauchy sequence in 𝐿 𝑝 (𝐵, 𝜇𝐵,ℎ) is expressed by integrals on finite
dimensional subspaces of 𝐻 (using (2.3)) and not at all by integrals on 𝐵. Likewise, the
integral of (5.1) does not depend on the integration space 𝐵, since it is a limit of integrals
on finite dimensional spaces of 𝐻.

Proposition 5.3. Let 𝐹 belong to a class 𝑆(𝑄𝐴) of Definition 3.5 or to a class 𝑆𝑚 (B, 𝜀),
with 𝜀 summable, of Definition 2.4. The semigroup property is verified: for all positive
𝑠, 𝑡 and all 𝑋 in the Hilbert space,

𝐻𝑡 (𝐻𝑠𝐹) (𝑋) = 𝐻𝑡+𝑠𝐹 (𝑋).

Moreover, one has (according to whether 𝐹 ∈ 𝑆(𝑄𝐴) or 𝑆𝑚 (B, 𝜀)),

∀ 𝑋 ∈ 𝐻2, | (𝐻𝑡𝐹) (𝑋) | ≤ ‖𝐹‖𝑚,𝜀 or ∀ 𝑋 ∈ 𝐻, | (𝐻𝑡𝐹) (𝑋) | ≤ ‖𝐹‖𝑄𝐴
. (5.2)

Proof. We give the proof in the case when 𝐹 ∈ 𝑆(𝑄𝐴). Let 𝐵𝐴 be the completion of 𝐻
with respect to the measurable norm ‖ · ‖𝐴 given by Proposition 3.14. The function 𝐹
is uniformly continuous on 𝐻 and extends continuously as a function denoted by 𝐹𝐴,
uniformly continuous and bounded on 𝐵𝐴. By Theorem 6.3 of [9, Chapter 1], every
stochastic extension of 𝐹 in 𝐿 𝑝 (𝐵𝐴, 𝜇𝐵𝐴,ℎ) coincides with 𝐹𝐴 𝜇𝐵𝐴,ℎ-a.e. Considering
that the heat operator is defined by an integral on 𝐵𝐴, one may write that,

∀ 𝑋 ∈ 𝐻, 𝐻𝑡𝐹 (𝑋) =
∫
𝐵𝐴

𝐹𝐴(𝑋 + 𝑌 ) d𝜇𝐵𝐴,𝑡 (𝑌 ).
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This formula allows one to define a function, denoted by 𝐻𝑡𝐹𝐴, on 𝐵𝐴. Since 𝐹𝐴 is
uniformly continuous and bounded on 𝐵𝐴, 𝐻𝑡𝐹𝐴 is uniformly continuous and bounded
on 𝐵𝐴 too, by [9, Theorem 4.1, Chapter 3]. Then 𝐻𝑡𝐹𝐴 is the stochastic extension of its
restriction to 𝐻, 𝐻𝑡𝐹 and, for all 𝑋 ∈ 𝐻,

𝐻𝑠 (𝐻𝑡𝐹) (𝑋) =
∫
𝐵𝐴

𝐻𝑡𝐹𝐴(𝑋 + 𝑌 ) d𝜇𝐵𝐴,𝑠 (𝑌 ) = 𝐻𝑡+𝑠𝐹𝐴(𝑋) = 𝐻𝑡+𝑠𝐹 (𝑋).

The same proof holds on 𝐻2 for 𝐹 ∈ 𝑆𝑚 (B, 𝜀) with 𝜀 summable and ‖ · ‖𝐴, 𝐵𝐴 from
Proposition 4.6.
The inequalities (5.2) come from the fact that 𝐹𝐴 is bounded on 𝐵𝐴 like 𝐹 on 𝐻. �

5.2. The heat operator in the classes 𝑆𝑚(B, 𝜀)

Proposition 5.4. Let 𝐹 ∈ 𝑆𝑚 (B, 𝜀) with 𝑚 ≥ 2, 𝜀 summable. If 𝛼, 𝛽 are depth 1
multiindices (such that max(𝛼 𝑗 , 𝛽 𝑗 ) ≤ 1), then

𝜕𝛼
𝑢 𝜕

𝛽
𝑣 (𝐻𝑡𝐹) (𝑋) = 𝐻𝑡 (𝜕𝛼

𝑢 𝜕
𝛽
𝑣 ) (𝑋).

Moreover, for 𝑚 ≥ 1, 𝐻𝑡𝐹 ∈ 𝑆𝑚−1 (B, 𝜀), with ‖𝐻𝑡𝐹‖𝑚−1, 𝜀 ≤ ‖𝐹‖𝑚,𝜀 . The operator 𝐻𝑡

is continuous from 𝑆𝑚 (B, 𝜀) in 𝑆𝑚−1 (B, 𝜀).

Proof. If 𝑚 = 1, the continuity of 𝐻𝑡 from 𝑆1 (B, 𝜀) in 𝑆0 (B, 𝜀) comes from the
inequalities (5.2). Now suppose that 𝑚 ≥ 2 and prove (first) that

𝜕

𝜕𝑤
(𝐻𝑡𝐹) (𝑋) = 𝐻𝑡

(
𝜕

𝜕𝑤
𝐹

)
(𝑋)

with 𝑤 = 𝑢𝑖 or 𝑣𝑖 and 𝑋 ∈ 𝐻2. By Taylor’s formula

𝐹 (𝑋 + 𝑟𝑤) − 𝐹 (𝑋) = 𝑟 𝜕𝐹
𝜕𝑤

(𝑋) + 𝑟2
∫ 1

0
(1 − 𝑠) 𝜕

2𝐹

𝜕𝑤2
(𝑋 + 𝑟𝑠𝑤) d𝑠. (5.3)

According to Proposition 3.1 and its corollaries, 𝐹 and 𝜕𝐹
𝜕𝑤
together with their translated

of a vector 𝑌 ∈ 𝐻2 admit stochastic extensions in 𝐿 𝑝 (𝐵2, 𝜇𝐵2 ,𝑡 ) and 𝜏𝑌 𝐹 = 𝜏𝑌 𝐹. By
substraction, for all 𝑟 ∈ R∗, the function 𝐺𝑟 : 𝑋 ↦→

∫ 1
0 (1 − 𝑠) 𝜕2𝐹

𝜕𝑤2
(𝑋 + 𝑟𝑠𝑤) d𝑠 admits a

stochastic extension in 𝐿 𝑝 (𝐵2, 𝜇𝐵2 ,𝑡 ), denoted by 𝐺𝑟 .
For all 𝑟 , |𝐺𝑟 | ≤ 1

2 ‖𝐹‖𝑚,𝜀 sup(𝜀𝑖)2. Hence, so does 𝐺𝑟 𝜇𝐵2 ,𝑡 -a.s.
Applying (5.3) in the point 𝜋̃𝐸 𝑗

(𝑋) with 𝑋 ∈ 𝐵2 and taking a limit in 𝐿 𝑝 (𝐵2, 𝜇𝐵2 ,𝑡 ),
one obtains

𝜏𝑟𝑤𝐹 − 𝐹 = 𝑟P
(
𝜕𝐹

𝜕𝑤

)
+ 𝑟2𝐺𝑟 in 𝐿 𝑝 (𝐵2, 𝜇𝐵2 ,𝑡 ) (5.4)
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By (5.1) one gets that, for all 𝑋 of 𝐻2,
𝐻𝑡𝐹 (𝑋 + 𝑟𝑤) − 𝐻𝑡𝐹 (𝑋)

𝑟
=

(
𝐻𝑡

𝜕𝐹

𝜕𝑤

)
(𝑋) + 𝑟 (𝐻𝑡𝐺𝑟 ) (𝑋),

and that����𝐻𝑡𝐹 (𝑋 + 𝑟𝑤) − 𝐻𝑡𝐹 (𝑋)
𝑟

−
(
𝐻𝑡

𝜕𝐹

𝜕𝑤

)
(𝑋)

���� ≤ |𝑟 |
∫
𝐵2

|𝐺𝑟 | (𝑋 + 𝑌 ) d𝜇𝐵2 ,𝑡 (𝑌 ).

The bound on 𝐺𝑟 shows that

lim
𝑟→0

(𝐻𝑡𝐹) (𝑋 + 𝑟𝑤) − (𝐻𝑡𝐹) (𝑋)
𝑟

=

(
𝐻𝑡

𝜕𝐹

𝜕𝑤

)
(𝑋),

which means that 𝐻𝑡𝐹 admits order 1 partial derivatives in the (canonical) directions
𝑢𝑖 , 𝑣𝑖 .
Let 𝛼, 𝛽 be two depth 1 multiindices. Let 𝑤 = 𝑢𝑖 (or 𝑣𝑖) be a coordinate, with respect

to which one has not yet differentiated (that is, such that 𝛼𝑖 = 0 or 𝛽𝑖 = 0). Applying the
preceding reasoning to 𝜕𝛼

𝑢 𝜕
𝛽
𝑣 𝐹, we get that

𝜕

𝜕𝑤
𝐻𝑡 (𝜕𝛼

𝑢 𝜕
𝛽
𝑣 𝐹) (𝑋) = 𝐻𝑡

(
𝜕

𝜕𝑤
𝜕𝛼
𝑢 𝜕

𝛽
𝑣 𝐹

)
(𝑋)

and an induction on |𝛼 | + |𝛽 | allows us to exchange 𝐻𝑡 and differentiations. By (5.2), one
gets that

|𝜕𝛼
𝑢 𝜕

𝛽
𝑣 𝐻𝑡 (𝐹) (𝑋) | = |𝐻𝑡 (𝜕𝛼

𝑢 𝜕
𝛽
𝑣 𝐹) (𝑋) | ≤ ‖𝜕𝛼

𝑢 𝜕
𝛽
𝑣 𝐹‖𝑚−1, 𝜀 ≤ 𝜀𝛼+𝛽 ‖𝐹‖𝑚,𝜀 .

If 𝑚 = 2, the proposition is proved. Otherwise one completes the proof by induction. �

The Heat operator commutes with the Laplace operator:

Proposition 5.5. Let 𝜀 be summable. The operator ΔB is continuous from 𝑆𝑚 (B, 𝜀) to
𝑆𝑚−2 (B, 𝜀), for 𝑚 ≥ 2. Moreover, for 𝑚 ≥ 3,

∀ 𝐹 ∈ 𝑆𝑚 (B, 𝜀), ΔB𝐻𝑡𝐹 = 𝐻𝑡ΔB𝐹 ∈ 𝑆𝑚−3 (𝜀).

Proof. The continuity of ΔB comes from Lemma 4.1, since

‖ΔB𝐹‖𝑚−2, 𝜀 ≤ 2
∑︁
𝑗∈Γ

𝜀2𝑗 ‖𝐹‖𝑚,𝜀 .

Consider that Γ is ordered and, for 𝑛 ∈ N, set Δ𝑛 =
∑

𝑗≤𝑛
𝜕2

𝜕𝑢2
𝑗

+ 𝜕2

𝜕𝑣2
𝑗

. One can see that Δ𝑛𝐹

converges to ΔB𝐹 in 𝑆𝑚−2 (B, 𝜀). Moreover, one can exchange 𝐻𝑡 and the differentiations
with respect to 𝑢 𝑗 , 𝑣 𝑗 . This fact and the continuity of the operators allow us to write

𝐻𝑡ΔB𝐹 = 𝐻𝑡 lim
𝑛→∞

Δ𝑛𝐹 = lim
𝑛→∞

𝐻𝑡Δ𝑛𝐹 = lim
𝑛→∞

Δ𝑛𝐻𝑡𝐹 = ΔB𝐻𝑡𝐹,

which completes the proof. �
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Let us state a result about commutators. For 𝑍 ∈ 𝐻2 and 𝐹 a function defined on 𝐻2,
denote by 𝑀𝑍𝐹 the function defined by (𝑀𝑍𝐹) (𝑋) = 〈𝑍, 𝑋〉𝐹 (𝑋).

Proposition 5.6. Consider 𝑆𝑚 (B, 𝜀) with 𝑚 ≥ 2 and 𝜀 square summable. For all 𝑖 ∈ N,
one has

1
𝑡

[
𝐻𝑡 , 𝑀𝑢𝑖

]
= 𝐻𝑡

𝜕

𝜕𝑢𝑖
and

1
𝑡

[
𝐻𝑡 , 𝑀𝑣𝑖

]
= 𝐻𝑡

𝜕

𝜕𝑣𝑖
on 𝑆𝑚 (B, 𝜀).

Proof. Let 𝐹 ∈ 𝑆𝑚 (B, 𝜀). Notice that ℓ𝑍𝐹 is a stochastic extension of 𝑀𝑍𝐹 in
𝐿 𝑝 (𝐵2, 𝜇𝐵2 ,𝑡 ) for all 𝑝 in [1, +∞[, by Corollary 3.16. According to Theorem 6.2 (Chap.
2, par. 6) of [9], for all 𝑋 ∈ 𝐻2,

𝜕𝐻𝑡𝐹

𝜕𝑢𝑖
(𝑋) = 1

𝑡

∫
𝐵2
𝐹 (𝑋 + 𝑌 )ℓ𝑢𝑖 (𝑌 ) d𝜇𝐵2 ,𝑡 (𝑌 ).

But ℓ𝑢𝑖 (𝑌 ) = ℓ𝑢𝑖 (𝑌 + 𝑋) − 〈𝑢𝑖 , 𝑋〉, since 𝑋 ∈ 𝐻2. Then

𝜕𝐻𝑡𝐹

𝜕𝑢𝑖
(𝑋) = 1

𝑡

∫
𝐵2
𝐹 (𝑋 + 𝑌 )ℓ𝑢𝑖 (𝑌 + 𝑋) d𝜇𝐵2 ,𝑡 (𝑌 )

− 〈𝑢𝑖 , 𝑋〉
1
𝑡

∫
𝐵2
𝐹 (𝑋 + 𝑌 ) d𝜇𝐵2 ,𝑡 (𝑌 ).

This is the desired result. �

We shall use the Taylor expansions and their stochastic extensions to prove a preliminary
result before stating the main result of this subsection, Theorem 5.8.

Proposition 5.7.

(1) Let 𝑚 ≥ 3. There exists 𝐶𝑚 ∈ R+ such that, for all 𝐹 ∈ 𝑆𝑚 (B, 𝜀),

‖𝐻𝑡𝐹 − 𝐹‖𝑚−3, 𝜀 ≤ 𝐶𝑚‖𝐹‖𝑚,𝜀𝑡.

if 𝑚 ≥ 5, ∀ 𝑠 > 0, ‖𝐻𝑡+𝑠𝐹 − 𝐻𝑠𝐹‖𝑚−4, 𝜀 ≤ 𝐶𝑚‖𝐹‖𝑚,𝜀𝑡.
(5.5)

(2) Let 𝑚 ≥ 4. There exists 𝐶𝑚 ∈ R+ such that, for all 𝐹 ∈ 𝑆𝑚 (B, 𝜀),



𝐻𝑡𝐹 − 𝐹
𝑡

− 1
2
Δ𝐹






𝑚−4, 𝜀

≤ 𝐶𝑚‖𝐹‖𝑚,𝜀𝑡
1/2.

if 𝑚 ≥ 5, ∀ 𝑠 > 0,




𝐻𝑡+𝑠𝐹 − 𝐻𝑠𝐹

𝑡
− 1
2
Δ𝐻𝑠𝐹






𝑚−5, 𝜀

≤ 𝐶𝑚‖𝐹‖𝑚,𝜀𝑡
1/2.

(5.6)
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Proof. Formula (4.5), integrated with respect to 𝑌 on 𝐵2, gives, for 𝑘 ≤ 𝑚 − 1:∫
𝐵2
𝐹 (𝑋 + 𝑌 ) d𝜇𝐵2 ,𝑡 (𝑌 )

= 𝐹 (𝑋) +
𝑘−1∑︁
𝑖=1

1
𝑖!

∑︁
𝐽 ∈Γ𝑖 ,

𝛿∈{0,1}𝑖

∫
𝐵2

𝑖∏
𝑟=1

ℓ
𝑤

𝛿𝑟
𝑗𝑟

d𝜇𝐵2 ,𝑡 (𝑌 )
𝜕𝑖𝐹

𝜕𝑤
𝛿1
𝑗1
. . . 𝜕𝑤

𝛿𝑖
𝑗𝑖

(𝑋)

+
∑︁
𝐽 , 𝛿

∫
𝐵2

𝑘∏
𝑟=1

ℓ
𝑤

𝛿𝑟
𝑗𝑟

∫ 1

0

(1 − 𝑠)𝑘−1
(𝑘 − 1)! P

(
𝜕𝑘𝐹

𝜕𝑤
𝛿1
𝑗1
. . . 𝜕𝑤

𝛿𝑘
𝑗𝑘

)
(𝑋 + 𝑠𝑌 ) d𝑠 d𝜇𝐵2 ,𝑡 (𝑌 ).

We denote by 𝑅𝑘 the last term in the preceding formula. We have seen in Subsection 4.2
that these functions admit 𝐿1 norms, which allows us to exchange sums and integrals on
𝐵2. Using Wick’s formula, we see that odd order terms are equal to 0.
The remainder is bounded as follows:

∀ 𝑋 ∈ 𝐻2, ∀ 𝑘 ≤ 𝑚 − 1, |𝑅𝑘 (𝑋) | ≤
1

√
𝜋𝑘!

‖𝐹‖𝑚,𝜀2
3𝑘
2 𝑡

𝑘
2 Γ

(
𝑘 + 1
2

) (∑︁
Γ

𝜀 𝑗

) 𝑘
.

Indeed, P
(

𝜕𝑘𝐹

𝜕𝑤
𝛿1
𝑗1

...𝜕𝑤
𝛿𝑘
𝑗𝑘

)
is bounded by ‖𝐹‖𝑚,𝜀𝜀 𝑗1 . . . 𝜀 𝑗𝑘 . One applies Hölder’s formula

to the product of ℓ functions and one sums over 𝑗1, . . . , 𝑗𝑘 .
Thanks to Wick’s Theorem, even order terms give the successive powers of the Laplace

operator. Hence:

𝐻𝑡𝐹 (𝑋) =
∫
𝐵2
𝐹 (𝑋 + 𝑌 ) d𝜇𝐵2 ,𝑡 (𝑌 ) = 𝐹 (𝑋) +

∑︁
0<2𝑝≤𝑘−1

1
𝑝!
𝑡 𝑝

2𝑝
Δ𝑝𝐹 (𝑋) + 𝑅𝑘 .

Let us prove the point about continuity. For 𝑘 = 2 and 𝑚 = 3, since the remainder is of
order 𝑡, one has:

∀ 𝑋 ∈ 𝐻2, |𝐻𝑡𝐹 (𝑋) − 𝐹 (𝑋) | ≤ 𝐶2‖𝐹‖3, 𝜀𝑡,

with 𝐶2 = 2(
∑
𝜀 𝑗 )2. This yields the first part of (5.5) when 𝑚 = 3. To treat the general

case one uses induction, working with 𝜕𝛼
𝑢 𝜕

𝛽
𝑣 𝐹, where 𝛼 and 𝛽 have depth 1 at most

and using Proposition 5.4. To obtain the second formula of (5.5) one applies 𝐻𝑠 to the
first one (and loses one order of differentiability) and applies the semigroup property
(Proposition 5.3).
Let us prove the point about differentiability. For 𝑘 = 3 and 𝑚 = 4, one has the

following result since the remainder is of order 𝑡3/2:

∀ 𝑋 ∈ 𝐻2,
����𝐻𝑡𝐹 (𝑋) − 𝐹 (𝑋)

𝑡
− 1
2
Δ𝐹 (𝑋)

���� ≤ 𝐶3‖𝐹‖4, 𝜀𝑡1/2,
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with 𝐶3 = 1√
𝜋3!2

9/2Γ(2) (∑ 𝜀 𝑗 )3. This gives the first part of (5.6) when 𝑚 = 4. In the
general case one uses induction and Proposition 5.4 as above. To get the second formula
one applies 𝐻𝑠 to the first one, losing one order of differentiability and uses the semigroup
property. This completes the proof of Proposition 5.7 �

We now state the main result about the heat operator in 𝑆𝑚 classes. For the sake of
clarity, the two first points repeat former results of this subsection.

Theorem 5.8. Let 𝜀 be summable.

(1) If 𝑚 ≥ 1, the operator 𝐻𝑡 is continuous from 𝑆𝑚 (B, 𝜀) to 𝑆𝑚−1 (B, 𝜀) and for
𝑚 ≥ 2, the operator Δ is continuous from 𝑆𝑚 (B, 𝜀) to 𝑆𝑚−2 (B, 𝜀).

(2) For 𝑚 ≥ 3, 𝐻𝑡 and Δ commute: for all 𝐹 ∈ 𝑆𝑚 (B, 𝜀), Δ𝐻𝑡𝐹 = 𝐻𝑡Δ𝐹 ∈
𝑆𝑚−3 (B, 𝜀).

(3) Let 𝑚 ≥ 6 and 𝐹 ∈ 𝑆𝑚 (B, 𝜀). The application 𝑡 ↦→ 𝐻𝑡𝐹 is 𝐶1 from [0, +∞[ in
𝑆𝑚−6 (B, 𝜀) and its derivative is 𝑡 ↦→ 1

2𝐻𝑡Δ𝐹.

Proof. It remains to prove the last point. Set 𝜑(𝑡) = 𝐻𝑡𝐹 ∈ 𝑆𝑚−1 (B, 𝜀). According to the
preceding proposition, 𝜑 is differentiable on [0, +∞[ and 𝜑′(𝑡) = 1

2Δ𝐻𝑡𝐹 = 1
2𝐻𝑡Δ𝐹. But

𝐻𝑡Δ𝐹 ∈ 𝑆𝑚−3 (B, 𝜀) ⊂ 𝑆𝑚−6 (B, 𝜀). Since Δ𝐹 ∈ 𝑆𝑚−2 (B, 𝜀), an application of point 1
(about continuity) proves that 𝑡 ↦→ 𝐻𝑡Δ𝐹 is continuous from [0, +∞[ in 𝑆𝑚−6 (B, 𝜀). �

Remark 5.9. It is not necessary to write ΔB , because of Remark 4.7.

5.3. The heat operator in the classes 𝑆(𝑄𝐴)

This subsection is concerned with the heat operator and the Laplace operator in the frame
of the classes introduced in Definition 3.5. Note, in particular, that the Laplace operator is
bounded in 𝑆(𝑄𝐴). This rather unusual fact allows one, for example, to invert the heat
operator and, in view of pseudodifferential analysis, to recover the Anti-Wick symbol
from the Wick symbol. This is due to the regularity of the classes, which are more than
analytic. A similar fact is valid, in a discrete context, for finite or locally finite graphs.
The first results about 𝐻𝑡 and Δ do not require technicalities and appear very early in

this part (Propositions 5.10 and 5.11). A more complete and slightly more technical result
is stated further (Theorem 5.14).
In this subsection, the operator 𝐴 is self-adjoint, nonnegative and trace class.
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Proposition 5.10. Let 𝑓 ∈ 𝑆(𝑄𝐴). For all 𝑡 > 0, the application 𝐻𝑡 𝑓 belongs to 𝑆(𝑄𝐴)
and ‖𝐻𝑡 𝑓 ‖𝑄𝐴

≤ ‖ 𝑓 ‖𝑄𝐴
.

Let 𝑔𝑚,𝑈 be the application 𝑥 ↦→ d𝑚 𝑓 (𝑥) (𝑈1, . . . ,𝑈𝑚) for 𝑚 ∈ N∗ and 𝑈 =

(𝑈1, . . . ,𝑈𝑚). Then 𝑔𝑚,𝑈 belongs to 𝑆(𝑄𝐴) and one has:

d𝑚 (𝐻𝑡 𝑓 ) (𝑥) · (𝑦1, . . . , 𝑦𝑚) = 𝐻𝑡 (𝑔𝑚,𝑦1 ,...,𝑦𝑚 ) (𝑥).

We denote by Δ 𝑓 (𝑥) = Tr(d2 𝑓 (𝑥)) the trace of the operator 𝑀𝑥 satisfying 〈𝑀𝑥𝑈,𝑉〉 =
d2 𝑓 (𝑥) (𝑈,𝑉) for all vectors𝑈,𝑉 of 𝐻. Its existence is ensured by the inequalities (3.3)
and one can see it, too, as a sum of partial derivatives (with respect to an arbitrary
orthonormal basis of 𝐻). One can state the following proposition:

Proposition 5.11. If 𝑓 ∈ 𝑆(𝑄𝐴), then Δ 𝑓 ∈ 𝑆(𝑄𝐴) with ‖Δ 𝑓 ‖𝑄𝐴
≤ Tr(𝐴)‖ 𝑓 ‖𝑄𝐴

.
Moreover, for all 𝑡 > 0,

Δ(𝐻𝑡 𝑓 ) (𝑥) = 𝐻𝑡 (Δ 𝑓 ) (𝑥).

Proof of Proposition 5.10. One checks that 𝑔𝑚,𝑈 is 𝐶∞ and that, for all integer 𝑘 ≥ 1
and all ℎ1, . . . , ℎ𝑘 ∈ 𝐻,

d𝑘𝑔𝑚,𝑈 (𝑥) · (ℎ1, . . . , ℎ𝑘 ) = d𝑚+𝑘 𝑓 (𝑥) · (ℎ1, . . . , ℎ𝑘 ,𝑈1, . . . ,𝑈𝑚).

This proves that 𝑔𝑚,𝑈 ∈ 𝑆(𝑄𝐴). Moreover, it satisfies

‖𝑔𝑚,𝑈 ‖𝑄𝐴
≤ ‖ 𝑓 ‖𝑄𝐴

𝑚∏
𝑗=1
𝑄(𝑈 𝑗 )1/2.

We now turn to 𝐻𝑡 𝑓 . It is differentiable on 𝐻 and

d(𝐻𝑡 𝑓 ) (𝑥) · 𝑦 =
∫
𝐵

P(𝑢 ↦→ d 𝑓 (𝑢) · 𝑦) (𝑥 + 𝑧) d𝜇𝐵,𝑡 (𝑧) = (𝐻𝑡𝑔1,𝑦) (𝑥).

Moreover
|𝐻𝑡 𝑓 (𝑥 + 𝑦) − 𝐻𝑡 𝑓 (𝑥) − (𝐻𝑡𝑔1,𝑦) (𝑥) | ≤

1
2
‖ 𝑓 ‖𝑄𝐴

𝑄𝐴(𝑦).

By Taylor’s Formula, for all 𝑥, 𝑦 ∈ 𝐻,

𝜏𝑦 𝑓 (𝑥) = 𝑓 (𝑥) + d 𝑓 (𝑥) · 𝑦 +
∫ 1

0
(1 − 𝑠)d2 𝑓 (𝑥 + 𝑠𝑦) · 𝑦2 d𝑠.

Let 𝑅2 (𝑥, 𝑦) be the integral term. Since 𝜏𝑦 𝑓 , 𝑓 and 𝑥 ↦→ d 𝑓 (𝑥) · 𝑦 have stochastic
extensions in 𝐿 𝑝 (𝐵, 𝜇𝐵,𝑡 ), so does 𝑥 ↦→ 𝑅2 (𝑥, 𝑦). Hence

𝐻𝑡 𝑓 (𝑥 + 𝑦) = 𝐻𝑡 𝑓 (𝑥) +
∫
𝐵

(P(d 𝑓 ( · ) · 𝑦) (𝑥 + 𝑧) d𝜇𝐵,𝑡 (𝑧) +
∫
𝐵

𝑅̃2 (𝑥 + 𝑧) d𝜇𝐵,𝑡 (𝑧).

The first integral gives a linear application with respect to 𝑦. The hypotheses on 𝑓 prove its
continuity and the bound on the remainder. Proposition 5.10 then follows by induction. �
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Proof of Proposition 5.11. Let (𝑒 𝑗 ) be an orthonormal basis of 𝐻. One can write

Tr(d2 𝑓 (𝑥)) = lim
𝑛→∞

𝑛∑︁
𝑠=1
d2 𝑓 (𝑥) · (𝑒𝑠 , 𝑒𝑠) = lim

𝑛→∞

𝑛∑︁
𝑠=1

𝑔2,𝑒𝑠 ,𝑒𝑠 (𝑥),

with the notations of Proposition 5.10. Then the series
∑
𝑔2,𝑒𝑠 ,𝑒𝑠 converges in 𝑆(𝑄𝐴)

because ‖𝑔2,𝑒𝑠 ,𝑒𝑠 ‖𝑄𝐴
≤ ‖ 𝑓 ‖𝑄𝐴

〈𝐴𝑒𝑠 , 𝑒𝑠〉 and 𝐴 is trace class. Hence Δ 𝑓 ∈ 𝑆(𝑄𝐴) with
‖Δ 𝑓 ‖𝑄𝐴

≤ Tr(𝐴)‖ 𝑓 ‖𝑄𝐴
. Since 𝐻𝑡 is continuous on 𝑆(𝑄𝐴), one has

Tr(d2𝐻𝑡 𝑓 (𝑥)) = lim
𝑛→∞

𝑛∑︁
𝑠=1
d2𝐻𝑡 𝑓 (𝑥) · (𝑒𝑠 , 𝑒𝑠) = lim

𝑛→∞
𝐻𝑡

(
𝑛∑︁
𝑠=1

𝑔2,𝑒𝑠 ,𝑒𝑠

)
(𝑥)

= 𝐻𝑡

( ∞∑︁
𝑠=1

𝑔2,𝑒𝑠 ,𝑒𝑠

)
(𝑥) = 𝐻𝑡 (Tr(d2 𝑓 )) (𝑥). �

Proposition 5.12. For all 𝑓 ∈ 𝑆(𝑄𝐴), one has

lim
𝑡→0





𝐻𝑡 ( 𝑓 ) − 𝑓

𝑡
− 1
2
Δ 𝑓






𝑄𝐴

= 0.

Moreover, for all 𝑠 > 0, one has

lim
𝑡→0

(𝐻𝑡+𝑠 𝑓 ) − 𝐻𝑠 𝑓

𝑡
=
1
2
Tr(d2𝐻𝑠 𝑓 ) =

1
2
Δ𝐻𝑠 𝑓 =

1
2
𝐻𝑠Δ 𝑓 , (5.7)

the convergence taking place in 𝑆(𝑄𝐴).
For higher orders. Let 𝑥 ∈ 𝐻, let (𝑒𝑛) be an arbitrary orthonormal basis of 𝐻. Let

𝜕
𝜕𝑥 𝑗

be the differentiation in the direction of 𝑒 𝑗 . For all integer 𝑗 set:

(Δ 𝑗 ) 𝑓 (𝑥) = lim
𝑛→∞

(
𝑛∑︁
𝑖=1

𝜕2

𝜕𝑥2
𝑖

) 𝑗

𝑓 (𝑥).

One has for all 𝑡 > 0,

𝐻𝑡 𝑓 (𝑥) = 𝑓 (𝑥) +
𝑁∑︁
𝑗=1

1
𝑗!

( 𝑡
2

) 𝑗
Δ 𝑗 𝑓 (𝑥) +

∫
𝐵

𝑅2𝑁+1 (𝑦) d𝜇𝐵,𝑡 (𝑦),

Proof. Let 𝑥 ∈ 𝐻. First prove (5.7) for 𝑠 = 0. For 𝑦 ∈ 𝐻, Taylor’s formula gives

𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) +
𝑘∑︁
𝑗=1

1
𝑗!
d 𝑗 𝑓 (𝑥) · 𝑦 𝑗 +

∫ 1

0

(1 − 𝑠)𝑘
𝑘!

d𝑘+1 𝑓 (𝑥 + 𝑠𝑦) · 𝑦𝑘+1 d𝑠.

Denote by 𝑅𝑘 (𝑦) the last term of the sum just above. According to Lemma 3.3, 𝜏𝑥 𝑓
has a stochastic extension 𝜏𝑥 𝑓̃ in 𝐿 𝑝 (𝐵, 𝜇𝐵,ℎ), with respect to the variable 𝑦. Indeed,
𝑓 admits a stochastic extension for all 𝑝 and Definition 3.5 implies that it is Lipschitz
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continuous. By substraction, the remainder 𝑅𝑘 also admits a stochastic extension 𝑅𝑘 . Let
us prove that this extension is bounded as follows: ∀ 𝑡 > 0, ∀ 𝑝 ∈ [1, +∞[, ∀ 𝑘 ∈ N∗,

‖𝑅𝑘 ‖𝐿𝑝 (𝐵,𝜇𝐵,𝑡 ) ≤
1

(𝑘 + 1)! ‖ 𝑓 ‖𝑄𝐴
𝐶 (𝑝(𝑘 + 1))𝑘+1

(∑︁
𝑗

𝜆 𝑗

) 𝑘+1
𝛼(𝑝 (𝑘+1) )

𝑡
𝑘+1
2 , (5.8)

with 𝐶 (𝑝) from Lemma 3.7. Let (𝐸𝑛)𝑛 be an increasing sequence of F (𝐻), whose union
is dense in 𝐻. Then, the norm being taken in 𝐿 𝑝 (𝐵, 𝜇𝐵,𝑡 ),

‖𝑅𝑘 ‖𝐿𝑝 ≤ ‖𝑅𝑘 − 𝑅𝑘 ◦ 𝜋̃𝐸𝑛
‖𝐿𝑝 + ‖𝑅𝑘 ◦ 𝜋̃𝐸𝑛

‖𝐿𝑝

≤ ‖𝑅𝑘 − 𝑅𝑘 ◦ 𝜋̃𝐸𝑛
‖𝐿𝑝 + ‖ 𝑓 ‖𝑄𝐴

‖𝑄
𝑘+1
2

𝐴
◦ 𝜋̃𝐸𝑛

‖𝐿𝑝

by definition of 𝑅𝑘 . Remark 3.8 enables us to give an upper bound independent of 𝑛 for
the second term and to let 𝑛 converge to infinity. This concludes the treatment of the
remainder.
One can then write, extending in 𝐿1 (𝐵, 𝜇𝐵,𝑡 ), according to Proposition 3.11 :∫
𝐵

𝑓̃ (𝑥 + 𝑦) d𝜇𝐵,𝑡 (𝑦) = 𝑓 (𝑥) +
∫
𝐵

𝑘∑︁
𝑗=1

P
(
𝑦 ↦→ 1

𝑗!
d 𝑗 𝑓 (𝑥) · 𝑦 𝑗

)
+ 𝑅𝑘 (𝑦) d𝜇𝐵,𝑡 (𝑦)

where P represents the passage to the stochastic extension. For 𝑗 ≤ 𝑘 one uses the 𝐿1

convergence and formula (2.3) to obtain∫
𝐵

P(𝑦 ↦→ d 𝑗 𝑓 (𝑥) · 𝑦 𝑗 ) d𝜇𝐵,𝑡 (𝑦) = lim
𝑛→∞

∫
𝐵

d 𝑗 𝑓 (𝑥) · 𝜋̃𝐸𝑛
(𝑦) 𝑗 d𝜇𝐵,𝑡 (𝑦)

= lim
𝑛→∞

∫
𝐸𝑛

d 𝑗 𝑓 (𝑥) · 𝑧 𝑗 d𝜇𝐸𝑛 ,𝑡 (𝑧),

where (𝐸𝑛)𝑛 is an increasing sequence of F (𝐻), whose union is dense in 𝐻. For odd
𝑗 , the terms are equal to 0. For even 𝑗 , one takes an arbitrary orthonormal basis of 𝐸𝑛,
(𝑒𝑠)1≤𝑠≤dim(𝐸𝑛) , and one checks that∫

𝐸𝑛

d2 𝑓 (𝑥) · 𝑧2 d𝜇𝐸𝑛 ,𝑡 (𝑧) =
dim(𝐸𝑛)∑︁

𝑠=1
𝑡
𝜕2 𝑓

𝜕𝑒2𝑠
(𝑥).

One then gets that, for any orthonormal basis of 𝐻,∫
𝐵

P
(
𝑦 ↦→ d2 𝑓 (𝑥) · 𝑦2

)
d𝜇𝐵,𝑡 (𝑦) = 𝑡

∑︁
𝑗∈N

𝜕2 𝑓

𝜕𝑒2𝑠
(𝑥) = 𝑡 Tr(d2 𝑓 (𝑥)).

Applying the former reasoning to 𝑘 = 3 and using the upper bound of 𝑅̃3 in 𝐿1 yield���� (𝐻𝑡 ( 𝑓 ) (𝑥) − 𝑓 (𝑥))
𝑡

− 1
2
Tr(d2 𝑓 (𝑥))

���� ≤ ‖ 𝑓 ‖𝑄𝐴

1
4!
𝐶 (4)4𝑆

4
𝛼(4) 𝑡,
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which holds for all 𝑥 ∈ 𝐻. This proves Formula (5.7). Replacing 𝑓 by 𝑔𝑚,𝑦1 ,...,𝑦𝑚 in this
inequality, we obtain, thanks to Proposition 5.10,���� (d𝑚𝐻𝑡 ( 𝑓 ) (𝑥) · 𝑌 − d𝑚 𝑓 (𝑥) · 𝑌 )

𝑡
− 1
2
d𝑚 Tr(d2 𝑓 (𝑥)) · 𝑌

����
≤ ‖𝑔𝑚,𝑦1 ,...,𝑦𝑚 ‖𝑄𝐴

1
4!
𝐶 (4)4𝑆

4
𝛼(4) 𝑡

≤ ‖ 𝑓 ‖𝑄𝐴

∏
𝑄𝐴(𝑦𝑖)1/2

1
4!
𝐶 (4)4𝑆

4
𝛼(4) 𝑡.

with 𝑌 = (𝑦1, . . . , 𝑦𝑚). One then has



𝐻𝑡 𝑓 − 𝑓

𝑡
− 1
2
Δ 𝑓






𝑄𝐴

≤ 1
4!
𝐶 (4)4𝑆

4
𝛼(4) 𝑡‖ 𝑓 ‖𝑄𝐴

,

which gives the convergence in 𝑆(𝑄𝐴).
According to Proposition 5.10, 𝐻𝑠 is continuous on 𝑆(𝑄𝐴) and its norm is smaller

than 1. The semigroup property (Proposition 5.3) gives



𝐻𝑡+𝑠 𝑓 − 𝐻𝑠 𝑓

𝑡
− 1
2
𝐻𝑠Δ 𝑓






𝑄𝐴

≤ 1
4!
𝐶 (4)4𝑆

4
𝛼(4) 𝑡‖ 𝑓 ‖𝑄𝐴

,

Since 𝐻𝑠 and Δ commute, the first point is proved.
The proof of the second point is similar but one considers 𝑘 = 2𝑁 + 1 instead of

stopping at 𝑘 = 3. For even 𝑗 one has∫
𝐸𝑛

d 𝑗 𝑓 (𝑥) · 𝑧 𝑗 d𝜇𝐸𝑛 ,𝑡 (𝑧) =
∫
𝐸𝑛

𝑗!
∑︁

𝛼∈Ndim(𝐸𝑛 ) , |𝛼 |= 𝑗

1
𝛼!
𝜕 𝑗 𝑓

𝜕𝑧𝛼
𝑧𝛼 d𝜇𝐸𝑛 ,𝑡 (𝑧)

and the terms where a coordinate of themultiindex 𝛼 is odd are equal to 0. The computation
of the other terms gives the result, thanks to classical equalities giving the moments of
the normal law. This achieves the proof of Proposition 5.12. �

As a corollary of Propositions 5.11 and 5.12, one can state the following commutation
result, which may be used, in view of pseudodifferential analysis, to prove a covariance
result.

Proposition 5.13. Let 𝜑 be linear, continuous on 𝐻 and such that 𝜑∗𝜑 = 𝜑𝜑∗ = Id𝐻 . Let
𝐴 be a linear application satisfying the hypotheses of Definition 3.5. For all 𝑓 ∈ 𝑆(𝑄𝐴),
one can write

∀ 𝑡 ≥ 0, (𝐻𝑡 𝑓 ) ◦ 𝜑 = 𝐻𝑡 ( 𝑓 ◦ 𝜑). (5.9)

Proof. One verifies that 𝑓 ◦ 𝜑 (denoted by 𝑓𝜑) is in 𝑆(𝑄𝜑∗𝐴𝜑), with

d2 𝑓𝜑 (𝑥) · (𝑈,𝑉) = d2 𝑓 (𝜑(𝑥)) · (𝜑(𝑈), 𝜑(𝑉)) = 〈𝜑∗𝑀𝜑 (𝑥) ( 𝑓 )𝜑𝑈,𝑉〉
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and ‖ 𝑓𝜑 ‖𝑄𝜑∗𝐴𝜑
= ‖ 𝑓 ‖𝑄𝐴

. (We still denote here by Δ 𝑓 (𝑥) = Tr(d2 𝑓 (𝑥)) the trace of the
operator 𝑀𝑥 satisfying 〈𝑀𝑥𝑈,𝑉〉 = d2 𝑓 (𝑥) (𝑈,𝑉) for all vectors𝑈,𝑉 in 𝐻.) Moreover,
the operator 𝜑∗𝑀𝜑 (𝑥) ( 𝑓 )𝜑 is trace class and has the same trace as 𝑀𝜑 (𝑥) ( 𝑓 ). Thus

Δ( 𝑓𝜑 (𝑥)) = Tr(d2 𝑓𝜑 (𝑥)) = Tr(𝜑∗𝑀𝜑 (𝑥) ( 𝑓 )𝜑)

= Tr(𝑀𝜑 (𝑥) ( 𝑓 )) = Tr(d2 𝑓 (𝜑(𝑥))) = (Δ 𝑓 ) (𝜑(𝑥)).

Applying 5.12 and the above remark to 𝑓 ◦ 𝜑, one gets that

lim
𝑡→0

𝐻𝑡 ( 𝑓𝜑) − 𝑓𝜑

𝑡
=
1
2
Δ( 𝑓𝜑) =

1
2
(Δ 𝑓 ) ◦ 𝜑 in 𝑆(𝑄𝜑∗𝐴𝜑).

Composing with 𝜑∗, one obtains that

lim
𝑡→0

(
𝐻𝑡 ( 𝑓𝜑) − 𝑓𝜑

𝑡

)
◦ 𝜑∗ = 1

2
(Δ 𝑓 ) = lim

𝑡→0

(
𝐻𝑡 ( 𝑓 − 𝑓

𝑡

)
in 𝑆(𝑄𝐴).

If one denotes by 𝑇𝑡 the operator defined on 𝑆(𝑄𝐴) by 𝑇𝑡 𝑓 = 𝐻𝑡 ( 𝑓 ◦ 𝜑) ◦ 𝜑∗, one can
verify that (𝑇𝑡 ) is a semigroup on 𝑆(𝑄𝐴). Since both semigroups (𝑇𝑡 ) and (𝐻𝑡 ) have
the same infinitesimal generator 12Δ, which is continuous on 𝑆(𝑄𝐴) (Proposition 5.11),
they are uniformly continuous and equal ([10, Theorems 1.2 and 1.3, Chapter 1]). This
achieves the proof. �

We now can state the main result of this part. For the sake of clarity, the first points
repeat former results of the same part.

Theorem 5.14. Let 𝐴 be a linear application on 𝐻 satisfying the hypotheses of Defini-
tion 3.5. Let 𝑓 ∈ 𝑆(𝑄𝐴).

(1) The function Δ 𝑓 belongs to 𝑆(𝑄𝐴) with ‖Δ 𝑓 ‖𝑄𝐴
≤ Tr(𝐴)‖ 𝑓 ‖𝑄𝐴

.

(2) For all 𝑡 ∈ ]0,∞[, the application 𝐻𝑡 𝑓 belongs to 𝑆(𝑄𝐴) and ‖𝐻𝑡 𝑓 ‖𝑄𝐴
≤

‖ 𝑓 ‖𝑄𝐴
. Moreover, Δ(𝐻𝑡 𝑓 ) (𝑥) = 𝐻𝑡 (Δ 𝑓 ) (𝑥).

(3) The function 𝑡 ↦→ 𝐻𝑡 𝑓 is 𝐶∞ on ]0,∞[ with values in 𝑆(𝑄𝐴), with

d𝑚

d𝑡𝑚
𝐻𝑡 𝑓 =

(
1
2
Δ

)𝑚
𝐻𝑡 𝑓 .

(4) For all 𝑁 ∈ N∗, one has

𝐻𝑡 𝑓 = 𝑓 +
𝑁∑︁
𝑘=1

𝑡𝑘

𝑘!

(
1
2
Δ

) 𝑘
𝑓 + 𝑡𝑁+1𝑅𝑁 (𝑡),

where 𝑅𝑁 ∈ 𝑆(𝑄𝐴) is bounded independently of 𝑡 ∈ [0, 1].
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(5) As a bounded operator on 𝑆(𝑄𝐴),

𝐻𝑡 =

∞∑︁
𝑛=0

1
𝑛!

(
𝑡Δ

2

)𝑛
.

(6) Consequently, the definition of 𝐻𝑡 can be extended for negative values of 𝑡,
implying that points 2, 3 and 5 are valid for 𝑡 ∈ R. In point 4, the condition can
be replaced by “where 𝑅𝑁 ∈ 𝑆(𝑄𝐴) is bounded independently of 𝑡 ∈ [−𝑀, 𝑀]
for an arbitrary 𝑀 > 0”.

Proof. The first two points come from Propositions 5.10 and 5.11. For the differentiability,
according to Proposition 5.12, the result holds for 𝑚 = 1. But then, since Δ commutes
with 𝐻𝑡 (Proposition 5.11), one concludes by induction on 𝑚.
For the fourth point, one applies one of Taylor’s formulae to 𝑡 ↦→ 𝐻𝑡 𝑓 , which gives

‖𝑅𝑁 (𝑡)‖𝑄𝐴
≤ 1

(𝑁 + 1)! sup𝑠∈[0,𝑡 ]






𝐻𝑠

((
Δ

2

)𝑁+1
𝑓

)





𝑄𝐴

≤ 1
(𝑁 + 1)!






(Δ2 )𝑁+1
𝑓







𝑄𝐴

according to Proposition 5.10. Point 5 is a consequence of [10], since the infinitesimal
generator of the semigroup is a bounded operator. The last point is a consequence of 5
and of the properties of series in a Banach space. �
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