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Quantum isometry group of dual of finitely
generated discrete groups - II

Arnab Mandal

Abstract

As a continuation of the programme of [13], we carry out explicit computations
of Q(Γ, S), the quantum isometry group of the canonical spectral triple on C∗r (Γ)
coming from the word length function corresponding to a finite generating set S,
for several interesting examples of Γ not covered by the previous work [13]. These
include the braid group of 3 generators, Z∗n4 etc. Moreover, we give an alternative
description of the quantum groups H+

s (n, 0) and K+
n (studied in [3], [4]) in terms

of free wreath product. In the last section we give several new examples of groups
for which Q(Γ) turns out to be a doubling of C∗(Γ).

1. Introduction

It is a very important and interesting problem in the theory of quantum
groups and noncommutative geometry to study ‘quantum symmetries’ of
various classical and quantum structures. S.Wang pioneered this by defin-
ing quantum permutation groups of finite sets and quantum automor-
phism groups of finite dimensional matrix algebras. Later on, a number of
mathematicians including Wang, Banica, Bichon and others ([1], [8], [20])
developed a theory of quantum automorphism groups of finite dimensional
C∗-algebras as well as quantum isometry groups of finite metric spaces and
finite graphs. In [11] Goswami extended such constructions to the set-up
of possibly infinite dimensional C∗-algebras, and more interestingly, that
of spectral triples a la Connes [10], by defining and studying quantum
isometry groups of spectral triples. This led to the study of such quan-
tum isometry groups by many authors including Goswami, Bhowmick,
Skalski, Banica, Bichon, Soltan, Das, Joardar and others. In the present
paper, we are focusing on a particular class of spectral triples, namely
those coming from the word-length metric of finitely generated discrete

Keywords: Compact quantum group, Quantum isometry group, Spectral triple.
Math. classification: 58B34, 46L87, 46L89.
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groups with respect to some given symmetric generating set. There have
been several articles already on computations and study of the quantum
isometry groups of such spectral triples, e.g. [3], [4], [7], [14], [18] and refer-
ences therein. In [13] together with Goswami we also studied the quantum
isometry groups of such spectral triples in a systematic and unified way.
Here we compute Q(Γ, S) for more examples of groups including braid
groups, Z4 ∗ Z4 · · · ∗ Z4︸ ︷︷ ︸

n copies

etc.

The paper is organized as follows. In Section 2 we recall some defini-
tions and facts related to compact quantum groups, free wreath product
by quantum permutation group and quantum isometry group of spectral
triples defined by Bhowmick and Goswami in [6]. This section also con-
tains the doubling procedure of a compact quantum group, say Q, with
respect to an order 2 CQG automorphism θ. The doubling is denoted
by Dθ(Q). In Section 3 we compute Q(Γ, S) for braid group with 3 gen-
erators. Its underlying C∗-algebra turns out to be four direct copies of
the group C∗-algebra. In fact, it is precisely a doubling of doubling of
the group C∗-algebra. Section 4 contains an interesting description of the
quantum groups H+

s (n, 0) and K+
n (studied in [3], [4]) in terms of free

wreath product. Moreover, Q(Γ, S) is computed for Γ = Z4 ∗ Z4 · · · ∗ Z4︸ ︷︷ ︸
n copies

.

In the last section we present more examples of groups as in [14], [18],
Section 5 of [13] where Q(Γ, S) turns out to be a doubling of C∗(Γ).

2. Preliminaries

First of all, we fix some notational conventions which will be useful for
the rest of the paper. Throughout the paper, the algebraic tensor product
and the spatial (minimal) C∗-tensor product will be denoted by ⊗ and
⊗̂ respectively. We’ll use the leg-numbering notation. Let Q be a unital
C∗-algebra. Consider the multiplier algebraM(K(H)⊗̂Q) which has two
natural embeddings into M(K(H)⊗̂Q⊗̂Q). The first one is obtained by
extending the map x 7→ x⊗1 and the second one is obtained by composing
this map with the flip on the last two factors. We will write ω12 and ω13

for the images of an element ω ∈ M(K(H)⊗̂Q) under these two maps
respectively. We’ll denote the Hilbert C∗-module by H⊗̄Q obtained by the
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completion of H ⊗Q with respect to the norm induced by the Q valued
inner product�ξ⊗ q, ξ′⊗ q′� := <ξ, ξ′>q∗q′, where ξ, ξ′ ∈ H, q, q′ ∈ Q.

2.1. Compact quantum groups and free wreath product
Let us recall the basic notions of compact quantum groups, then actions
on C∗-algebra and free wreath product by quantum permutation groups.

Definition 2.1. A compact quantum group (CQG for short) is a pair
(Q,∆), where Q is a unital C∗-algebra and ∆ : Q → Q⊗̂Q is a unital
C∗-homomorphism satisfying two conditions:

(1) (∆⊗ id)∆ = (id⊗∆)∆ (co-associativity ).
(2) Each of the linear spans of ∆(Q)(1⊗Q) and that of ∆(Q)(Q⊗ 1)

is norm dense in Q⊗̂Q.

A CQG morphism from (Q1,∆1) to another (Q2,∆2) is a unital C∗-
homomorphism π : Q1 7→ Q2 such that (π ⊗ π)∆1 = ∆2π.

Definition 2.2. (Q1,∆1) is called a quantum subgroup of (Q2,∆2) if
there exists a surjective C∗-morphism η from Q2 to Q1 such that (η ⊗
η)∆2 = ∆1η holds.

Sometimes we may denote the CQG (Q,∆) simply as Q, if ∆ is under-
stood from the context.

Definition 2.3. A unitary (co) representation of a CQG (Q,∆) on a
Hilbert space H is a C-linear map from H to the Hilbert module H⊗̄Q
such that

(1) �U(ξ), U(η)� = <ξ, η>1Q where ξ, η ∈ H.
(2) (U ⊗ id)U = (id⊗∆)U.
(3) Span {U(ξ)b : ξ ∈ H, b ∈ Q} is dense in H⊗̄Q.

Given such a unitary representation we have a unitary element Ũ be-
longing to M(K(H)⊗̂Q) given by Ũ(ξ ⊗ b) = U(ξ)b, (ξ ∈ H, b ∈ Q)
satisfying (id⊗∆)(Ũ) = Ũ12Ũ13.

Here we state Proposition 6.2 of [15] which will be useful for us.

Proposition 2.4. If a unitary representation of a CQG leaves a finite
dimensional subspace of H, then it’ll also leave its orthogonal complement
invariant.
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Remark 2.5. It is known from [21] that the linear span of matrix elements
of a finite dimensional unitary representation form a dense Hopf*-algebra
Q0 of (Q,∆), on which an antipode κ and co-unit ε are defined.
Definition 2.6. We say that a CQG (Q,∆) acts on a unital C∗-algebra
B if there is a unital C∗-homomorphism (called action) α : B → B⊗̂Q
satisfying the following :

(1) (α⊗ id)α = (id⊗∆)α.
(2) Linear span of α(B)(1⊗Q) is norm dense in B⊗̂Q.

Definition 2.7. The action is said to be faithful if the ∗-algebra generated
by the set {(f ⊗ id)α(b) ∀ f ∈ B∗, ∀ b ∈ B} is norm dense in Q, where
B∗ is the Banach space dual of B.
Remark 2.8. Given an action α of a CQG Q on a unital C∗-algebra B,
we can always find a norm-dense, unital ∗-subalgebra B0 ⊆ B such that
α|B0 : B0 7→ B0⊗Q0 is a Hopf-algebraic co-action. Moreover, α is faithful
if and only if the ∗-algebra generated by {(f⊗id)α(b) ∀f ∈ B∗0 , ∀ b ∈ B0}
is the whole of Q0.

Given two CQG’s Q1, Q2 the free product Q1 ?Q2 admits the natural
CQG structure equipped with the following universal property (for more
details see [19]):
Proposition 2.9.

(i) The canonical injections, say i1, i2, from Q1 and Q2 to Q1 ? Q2
are CQG morphisms.

(ii) Given any CQG C and morphisms π1 : Q1 7→ C and π2 : Q2 7→ C
there always exists a unique morphism denoted by π := π1 ∗ π2
from Q1 ?Q2 to C satisfying π ◦ ik = πk for k = 1, 2.

Definition 2.10. The C∗-algebra underlying the quantum permutation
group, denoted by C(S+

N ) is the universal C∗-algebra generated by N2

elements tij such that the matrix ((tij)) is unitary with
tij = t∗ij = t2ij ∀ i, j ,∑

i

tij = 1 ∀ j,
∑
j

tij = 1 ∀ i ,

tijtik = 0, tjitki = 0 ∀ i, j, k with j 6= k .

It has a coproduct ∆ is given by ∆(tij) = ΣN
k=1tik ⊗ tkj , such that

(C(S+
N ),∆) becomes a CQG.
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For further details see [20]. We also recall from [9] the following:

Definition 2.11. Let Q be a compact quantum group and N > 1. The
free wreath product of Q by the quantum permutation group C(S+

N ), is
the quotient of Q?N ? C(S+

N ) by the two sided ideal generated by the
elements

νk(a)tki − tkiνk(a), 1 ≤ i, k ≤ N, a ∈ Q,
where ((tij)) is the matrix coefficients of the quantum permutation group
C(S+

N ) and νk(a) denotes the natural image of a ∈ Q in the k-th factor of
Q?N . This is denoted by Q ∗w C(S+

N ).

Furthermore, it admits a CQG structure, where the comultiplication
satisfies

∆(νi(a)) =
N∑
k=1

νi(a(1))tik ⊗ νk(a(2)).

Here we have used the Sweedler convention of writing ∆(a) = a(1) ⊗ a(2).

2.2. Some facts about quantum isometry groups
First of all, we are defining the quantum isometry group of spectral triples
defined by Bhowmick and Goswami in [6].

Definition 2.12. Let (A∞,H,D) be a spectral triple of compact type (a
la Connes). Consider the category Q(D) ≡ Q(A∞,H,D) whose objects
are (Q, U) where (Q,∆) is a CQG having a unitary representation U on
the Hilbert space H satisfying the following:

(1) Ũ commutes with (D ⊗ 1Q).
(2) (id⊗φ) ◦ adŨ (a) ∈ (A∞)′′ for all a ∈ A∞ and φ is any state on Q,

where adŨ (x) := Ũ(x⊗ 1)Ũ∗ for x ∈ B(H).
A morphism between two such objects (Q, U) and (Q′, U ′) is a CQG mor-
phism ψ : Q → Q′ such that U ′ = (id ⊗ ψ)U . If a universal object exists
in Q(D) then we denote it by ˜QISO+(A∞,H,D) and the corresponding
largest Woronowicz subalgebra for which adŨ0

is faithful, where U0 is the
unitary representation of ˜QISO+(A∞,H,D), is called the quantum group
of orientation preserving isometries and denoted by QISO+(A∞,H,D).

Let us state Theorem 2.23 of [6] which gives a sufficient condition for
the existence of QISO+(A∞,H,D).

223



A. Mandal

Theorem 2.13. Let (A∞,H,D) be a spectral triple of compact type. As-
sume that D has one dimensional kernel spanned by a vector ξ ∈ H which
is cyclic and separating for A∞ and each eigenvector of D belongs to A∞ξ.
Then QISO+(A∞,H,D) exists.

Let (A∞,H,D) be a spectral triple satisfying the condition of Theo-
rem 2.13 and A00 = Lin{a ∈ A∞ : aξ is an eigenvector of D}. Moreover,
assume that A00 is norm-dense in A∞. Let D̂ : A00 7→ A00 be defined by
D̂(a)ξ = D(aξ) (a ∈ A00). This is well defined as ξ is cyclic and separating
vector for A∞. Let τ be the vector state corresponding to the vector ξ.

Definition 2.14. Let A be a C∗-algebra and A∞ be a dense *-subalgebra
such that (A∞,H,D) is a spectral triple as above. Let Ĉ(A∞,H,D) be
the category with objects (Q, α) such that Q is a CQG with a C∗-action
α on A such that

(1) α is τ preserving, i.e. (τ ⊗ id)α(a) = τ(a).1 for all a ∈ A.
(2) α maps A00 into A00 ⊗Q.
(3) αD̂ = (D̂ ⊗ I)α.

The morphisms in Ĉ(A∞,H,D) are CQG morphisms intertwining the
respective actions.

Proposition 2.15. It is shown in Corollary 2.27 of [6] that QISO+(A∞,
H,D) is the universal object in Ĉ(A∞, H,D).

2.3. QISO for a spectral triple on C∗r (Γ)
Now we discuss the special case of our interest. Let Γ be a finitely gener-
ated discrete group with generating set S = {a1, a

−1
1 , a2, a

−1
2 , · · · ak, a−1

k }.
We make the convention of choosing the generating set to be symmet-
ric, i.e. ai ∈ S implies a−1

i ∈ S ∀ i. In case some ai has order 2, we
include only ai, i.e. not count it twice. The corresponding word length
function on the group defined by l(g) = min {r ∈ N, g = h1h2 · · ·hr}
where hi ∈ S i.e. for each i, hi = aj or a−1

j for some j. Notice that
S = {g ∈ Γ, l(g) = 1}, using this length function we can define a met-
ric on Γ by d(a, b) = l(a−1b) ∀ a, b ∈ Γ. This is called the word metric
corresponding to the generating set S. Now consider the algebra C∗r (Γ),
which is the C∗-completion of the group ring CΓ viewed as a subalgebra
of B(l2(Γ)) in the natural way via the left regular representation. We de-
fine a Dirac operator DΓ(δg) = l(g)δg. In general, DΓ is an unbounded
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operator.

Dom(DΓ) = {ξ ∈ l2(Γ) :
∑
g∈Γ

l(g)2|ξ(g)|2 <∞}.

Here, δg is the vector in l2(Γ) which takes value 1 at the point g and 0 at
all other points. Natural generators of the algebra CΓ (images in the left
regular representation ) will be denoted by λg, i.e. λg(δh) = δgh. Let us
define

Γr = {δg | l(g) = r},
Γ≤r = {δg | l(g) ≤ r}.

Moreover, pr and qr be the orthogonal projections onto Sp(Γr) and Sp(Γ≤r)
respectively. Clearly

DΓ =
∑
n∈N0

npn,

where pr = qr−qr−1 and p0 = q0. The canonical trace on C∗r (Γ) is given by
τ(

∑
cgλg) = ce. It is easy to check that (CΓ, l2(Γ), DΓ) is a spectral triple.

Now take A = C∗r (Γ), A∞ = CΓ, H = l2(Γ) and D = DΓ as before. Then
QISO+(CΓ, l2(Γ), DΓ) exists by Theorem 2.13, taking δe as the cyclic
separating vector for CΓ. As the object depends on the generating set of
Γ it is denoted by Q(Γ, S). Most of the times we denote it by Q(Γ) if S
is understood from the context. As in [7] its action α (say) on C∗r (Γ) is
determined by

α(λγ) =
∑
γ′∈S

λγ′ ⊗ qγ,γ′ ,

where the matrix [qγ,γ′ ]γ,γ′∈S is called the fundamental representation in
Mcard(S)(Q (Γ, S)). Note that we have ∆(qγ,γ′) =

∑
β qβ,γ′ ⊗ qγ,β.

Q(Γ, S) is also the universal object in the category Ĉ(CΓ, l2(Γ), DΓ) by
Proposition 2.15 and observe that all the eigenspaces of D̂Γ, where D̂Γ as
in Definition 2.14, are invariant under the action. The eigenspaces of D̂Γ
are precisely the set Span{λg | l(g) = r} with r ≥ 0.

It can also be identified with the universal object of some other cate-
gories naturally arising in the context. Consider the category Cτ of CQG’s
consisting of the objects (Q, α) such that α is an action of Q on C∗r (Γ)
satisfying the following two properties:

(1) α leaves Sp(Γ1) invariant.
(2) It preserves the canonical trace τ of C∗r (Γ).
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Morphisms in Cτ are CQG morphisms intertwining the respective actions.

Lemma 2.16. The two categories Cτ and Ĉ(CΓ, l2(Γ), DΓ) are isomor-
phic.

Proof. Let (Q, α) ∈ Ĉ(CΓ, l2(Γ), DΓ) then clearly (Q, α) ∈ Cτ . Consider
any (Q, α) ∈ Cτ . Then the action α leaves Sp(Γ≤r) invariant ∀ r ≥ 2 as it
is an algebra homomorphism and it leaves Sp(Γ1) invariant. Consider the
linear map U(x) := α(x) from C∗r (Γ) ⊂ H = l2(Γ) to H⊗̄Q is an isometry
by the invariance of τ . Thus it extends to H and in fact it becomes a
unitary representation. Now, observe that Sp(Γr) is the orthogonal com-
plement of Sp(Γ≤r−1) inside Sp(Γ≤r). By the Proposition 2.4, Sp(Γr) is
invariant under U too, i.e. α leaves Span{λg | l(g) = r} invariant for all
r. Thus (Q, α) ∈ Ĉ(CΓ, l2(Γ), DΓ). Clearly any morphism in the category
Cτ is in the category Ĉ(CΓ, l2(Γ), DΓ) and vice-versa. This completes the
proof. �

Corollary 2.17. It follows from Lemma 2.16 that there is a universal
object, say (Qτ , ατ ) in Cτ and (Qτ , ατ ) ∼= Q(Γ, S).

We now identify Q(Γ, S) as a universal object in yet another category.
Let us recall the quantum free unitary group Au(n) introduced in [19].
It is the universal unital C∗-algebra generated by ((aij)) subject to the
conditions that ((aij)) and ((aji)) are unitaries. Moreover, it admits a
co-product structure with comultiplication ∆(aij) = Σn

l=1alj ⊗ ail. Con-
sider the category C with objects (C, {xij , i, j = 1, · · · , 2k}) where C
is a unital C∗-algebra generated by ((xij)) such that ((xij)) as well as
((xji)) are unitaries and there is a unital C∗- homomorphism αC from
C∗r (Γ) to C∗r (Γ)⊗̂C sending ei to

∑2k
j=1 ej ⊗ xij , where e2i−1 = λai and

e2i = λ−1
ai
∀ i = 1, · · · , k. The morphisms from (C, {xij , i, j = 1, · · · , 2k})

to (P, {pij , i, j = 1, · · · , 2k}) are unital ∗-homomorphisms β : C 7→ P such
that β(xij) = pij .

Moreover, by definition of each object (C, {xij , i, j = 1, · · · , 2k}) we
get a unital ∗-morphism ρC from Au(2k) to C sending aij to xij . Let the
kernel of this map be IC and I be intersection of all such ideals. Then
CU := Au(2k)/I is the universal object generated by xUij in the category
C. Furthermore, we can show, following a line of arguments similar to
those in Theorem 4.8 of [12], that it has a CQG structure with the co-
product ∆(xUij) =

∑
l x
U
lj ⊗ xUil .
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Proposition 2.18. (Qτ , ατ ) and CU are isomorphic as CQG.

For the proof of the above proposition, the reader is referred to Propo-
sition 2.15 of [13]. Now we fix some notational conventions which will be
useful in later sections. Note that the action α is of the form

α(λa1) = λa1 ⊗A11 + λa−1
1
⊗A12 + λa2 ⊗A13 + λa−1

2
⊗A14

+ · · ·+ λak
⊗A1(2k−1) + λa−1

k
⊗A1(2k),

α(λa−1
1

) = λa1 ⊗A∗12 + λa−1
1
⊗A∗11 + λa2 ⊗A∗14 + λa−1

2
⊗A∗13

+ · · ·+ λak
⊗A∗1(2k) + λa−1

k
⊗A∗1(2k−1),

α(λa2) = λa1 ⊗A21 + λa−1
1
⊗A22 + λa2 ⊗A23 + λa−1

2
⊗A24

+ · · ·+ λak
⊗A2(2k−1) + λa−1

k
⊗A2(2k),

α(λa−1
2

) = λa1 ⊗A∗22 + λa−1
1
⊗A∗21 + λa2 ⊗A∗24 + λa−1

2
⊗A∗23

+ · · ·+ λak
⊗A∗2(2k) + λa−1

k
⊗A∗2(2k−1)

...
...

α(λak
) = λa1 ⊗Ak1 + λa−1

1
⊗Ak2 + λa2 ⊗Ak3 + λa−1

2
⊗Ak4

+ · · ·+ λak
⊗Ak(2k−1) + λa−1

k
⊗Ak(2k),

α(λa−1
k

) = λak
⊗A∗k2 + λa−1

1
⊗A∗k1 + λa2 ⊗A∗k4 + λa−1

2
⊗A∗k3

+ · · ·+ λak
⊗A∗k(2k) + λa−1

k
⊗A∗k(2k−1).

From this we get the unitary representation

U ≡ ((uij)) =



A11 A12 A13 A14 · · · A1(2k−1) A1(2k)
A∗12 A∗11 A∗14 A∗13 · · · A∗1(2k) A∗1(2k−1)
A21 A22 A23 A24 · · · A2(2k−1) A2(2k)
A∗22 A∗21 A∗24 A∗23 · · · A∗2(2k) A∗2(2k−1)
...

...
Ak1 Ak2 Ak3 Ak4 · · · Ak(2k−1) Ak(2k)
A∗k2 A∗k1 A∗k4 A∗k3 · · · A∗k(2k) A∗k(2k−1)


.

From now on, we call it as fundamental unitary. The coefficients Aij and
A∗ij ’s generate a norm dense subalgebra of Q(Γ, S). We also note that the
antipode of Q(Γ, S) maps uij to u∗ji.
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Remark 2.19. Using Corollary 2.17 and Proposition 2.18, Q(Γ, S) is the
universal unital C∗-algebra generated by Aij as above subject to the re-
lations that U is a unitary as well as U t and α given above is a C∗-
homomorphism on C∗r (Γ).

2.4. Q(Γ) as a doubling of certain quantum groups
In this subsection we briefly recall from [14], [17] the doubling proce-
dure of a compact quantum group which is just a particular case of a
smash co-product, a well-known construction of Hopf-algebra theory in-
troduced in [16]. Let (Q,∆) be a CQG with a CQG-automorphism θ

such that θ2 = id. The doubling of this CQG, say (Dθ(Q), ∆̃) is given
by Dθ(Q) := Q ⊕ Q (direct sum as a C∗-algebra), and the coproduct
is defined by the following, where we have denoted the injections of Q
onto the first and second coordinate in Dθ(Q) by ξ and η respectively, i.e.
ξ(a) = (a, 0), η(a) = (0, a), (a ∈ Q).

∆̃ ◦ ξ = (ξ ⊗ ξ + η ⊗ [η ◦ θ]) ◦∆,
∆̃ ◦ η = (ξ ⊗ η + η ⊗ [ξ ◦ θ]) ◦∆.

It is known from [17] that, if there exists a non trivial automorphism of
order 2 which preserves the generating set, then Dθ(C∗(Γ)) ([14], [17])
will be always a quantum subgroup of Q(Γ). Below we give some suf-
ficient conditions for the quantum isometry group to be a doubling of
some CQG. For this, it is convenient to use a slightly different nota-
tional convention: let U2i−1,j = Aij for i = 1, . . . , k, j = 1, . . . , 2k and
U2i,2l = A∗i(2l−1), U2i,2l−1 = A∗i(2l) for i = 1, . . . , k, l = 1, . . . , k.

Proposition 2.20. Let Γ be a group with k generators {a1, a2, · · · ak}
and define γ2l−1 := al, γ2l := a−1

l ∀ l = 1, 2, · · · , k. Now σ be an order 2
automorphism on the set {1, 2, · · · , 2k− 1, 2k} and θ be an automorphism
of the group given by θ(γi) = γσ(i) ∀ i = 1, 2, · · · , 2k. We assume the
following:

(1) Bi := Ui,σ(i) 6= 0 ∀ i, and Ui,j = 0 ∀ j 6∈ {σ(i), i},
(2) AiBj =BjAi = 0 ∀ i, j such that σ(i) 6= i, σ(j) 6= j, where Ai = Ui,i,
(3) All Ui,jU∗i,j are central projections,
(4) There are well defined C∗-isomorphisms π1, π2 from C∗(Γ) to

C∗{Ai, i = 1, 2, · · · , 2k} and C∗{Bi, i = 1, 2, · · · , 2k} respectively
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such that
π1(λai) = Ai, π2(λai) = Bi ∀ i.

Then Q(Γ) is doubling of the group algebra (i.e. Q(Γ) ∼= Dθ(C∗(Γ))) corre-
sponding to the given automorphism θ. Moreover, the fundamental unitary
takes the following form

A1 0 0 0 · · · 0 B1
0 A2 0 0 · · · B2 0
0 0 A3 0 · · · 0 0
0 0 0 A4 · · · 0 0
...

...
0 B2k−1 0 0 · · · A2k−1 0
B2k 0 0 0 · · · 0 A2k


.

The proof is presented in Lemma 2.26 of [13], the case σ(i) = i for some
i, is also taken care in the proof. Now we give a sufficient condition for
Q(Γ) to be Dθ′(Dθ(C∗(Γ))), where θ′ is an order 2 CQG automorphism of
Dθ(C∗(Γ)).

Proposition 2.21. Let Γ be a group with k generators {a1, a2, · · · ak} and
define γ2l−1 := al, γ2l := a−1

l ∀ l = 1, 2, · · · , k. Now σ1, σ2, σ3 are three
distinct automorphisms of order 2 on the set {1, 2, · · · , 2k − 1, 2k} and
θ1, θ2, θ3 are automorphisms of the group given by θj(γi) = γσj(i) for all
j = 1, 2, 3 and i = 1, 2, · · · , 2k. We assume the following:

(1) B(s)
i := Ui,σs(i) 6= 0 ∀ i, and s= 1, 2, 3 also Ui,j = 0 ∀ j 6∈ {σs(i), i},

(2) AiB(s)
j = B

(s)
j Ai = 0 ∀ i, j, s such that σt(i) 6= i, σt(j) 6= j ∀ t

where Ai = Ui,i,

(3) B(s)
i B

(k)
j = B

(k)
j B

(s)
i = 0 ∀ i, j, s, k with s 6= k and σt(i) 6= i,

σt(j) 6= j ∀ t,
(4) All Ui,jU∗i,j are central projections,

(5) There are well defined C∗-isomorphisms π1, π
(s)
2 from C∗(Γ) to

C∗{Ai, i = 1, 2, · · · , 2k} and C∗{B(s)
i , i = 1, 2, · · · , 2k} respectively

where s = 1, 2, 3 such that

π1(λai) = Ai, π
(s)
2 (λai) = B

(s)
i ∀ i.
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Furthermore, assume that using the group automorphisms we have two
CQG automorphisms θ and θ′ of order 2 from C∗(Γ) and Dθ(C∗(Γ)) re-
spectively defined by

θ(λx) = λθ1(x),

θ′(λx, λθ1(y)) = (λθ2(x), λθ3(y)) ∀ x, y ∈ Γ.

Then Q(Γ) will be Dθ′(Dθ(C∗(Γ))) corresponding to the given automor-
phisms. Moreover, the fundamental unitary takes the following form

A1 B
(1)
1 0 0 · · · B

(2)
1 B

(3)
1

B
(1)
2 A2 0 0 · · · B

(3)
2 B

(2)
2

0 0 A3 B
(1)
3 · · · 0 0

0 0 B
(1)
4 A4 · · · 0 0

...
...

B
(2)
2k−1 B

(3)
2k−1 0 0 · · · A2k−1 B

(1)
2k−1

B
(3)
2k B

(2)
2k 0 0 · · · B

(1)
2k A2k


.

The proof is very similar to the Proposition 2.20, thus omitted. We end
the discussion of Section 2 with the following easy observation which will
be useful later.

Proposition 2.22. If UV = 0 for two normal elements in a C∗-algebra
then

U∗V = V U∗ = 0,
V ∗U = UV ∗ = V U = 0.

Its proof is straightforward, hence omitted.

3. QISO computation of the braid group

In this section we will compute the quantum isometry group of the braid
group with 3 generators. The group has a presentation

Γ = <a, b, c | ac = ca, aba = bab, cbc = bcb>.

Here S = {a, b, c, a−1, b−1, c−1}.
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Theorem 3.1. Let Γ be the braid group with above presentation. Then
Q(Γ, S) ∼= Dθ′(Dθ(C∗(Γ))) with the choices of automorphisms as in Propo-
sition 2.21 given by:

θ1(a) = a−1, θ1(b) = b−1, θ1(c) = c−1,

θ2(a) = c, θ2(b) = b, θ2(c) = a,

θ3(a) = c−1, θ3(b) = b−1, θ3(c) = a−1.

Proof. Let the action α of Q(Γ, S) be given by

α(λa) = λa⊗A+λa−1⊗B+λb⊗C +λb−1⊗D+λc⊗E+λc−1⊗F,
α(λa−1) = λa⊗B∗+λa−1⊗A∗+λb⊗D∗+λb−1⊗C∗+λc⊗F ∗+λc−1⊗E∗,
α(λb) = λa⊗G+λa−1⊗H +λb⊗I +λb−1⊗J +λc⊗K +λc−1⊗L,

α(λb−1) = λa⊗H∗+λa−1⊗G∗+λb⊗J∗+λb−1⊗I∗+λc⊗L∗+λc−1⊗K∗,
α(λc) = λa⊗M +λa−1⊗N +λb⊗O+λb−1⊗P +λc⊗Q+λc−1⊗R,

α(λc−1) = λa⊗N∗+λa−1⊗M∗+λb⊗P ∗+λb−1⊗O∗+λc⊗R∗+λc−1⊗Q∗.

Then, the fundamental unitary is of the form

A B C D E F
B∗ A∗ D∗ C∗ F ∗ E∗

G H I J K L
H∗ G∗ J∗ I∗ L∗ K∗

M N O P Q R
N∗ M∗ P ∗ O∗ R∗ Q∗


.

We need a few lemmas to prove the theorem.

Lemma 3.2. All the entries of the above matrix are normal.

Proof. First, using the condition α(λac) = α(λca) comparing the coeffi-
cients of λa2 , λa−2 , λb2 , λb−2 , λc2 , λc−2 on both sides we have

AM =MA, BN =NB, CO =OC, DP = PD, EQ=QE, FR=RF.
(3.1)

Applying the antipode we get

AE = EA, BF = FB, GK =KG, HL= LH, MQ=QM, NR=RN.
(3.2)
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Similarly, from the relation α(λac−1) = α(λc−1a) following the same argu-
ment as above, one can deduce the following

AF = FA, BE = EB, GL= LG, HK =KH, NQ=QN, MR=RM.
(3.3)

We observe AE∗ + FB∗ = 0 by comparing the coefficient of λac−1 in the
expression of α(λa)α(λa−1). This shows that AE∗A∗ = 0 as B∗A∗ = 0.
Thus, (AE)(AE)∗ = AEE∗A∗ = E(AE∗A∗) = 0. Similarly, all the terms
of the equations (3.1), (3.2) and (3.3) are zero.

Further, using the condition α(λa)α(λa−1) = α(λa−1)α(λa) = λe ⊗ 1Q
one can deduce

AC∗ = AD∗ = CA∗ = C∗A = DA∗ = D∗A = 0,
A∗C = A∗D = BD∗ = D∗B = BC∗ = B∗C = C∗B = 0.

Applying the antipode we have

AG∗ = G∗A = AH = HA = BG = BH∗ = H∗B = GB = 0.

Similarly from α(λb)α(λb−1) = α(λb−1)α(λb) = λe ⊗ 1Q one obtains

CJ = JC = CI∗ = I∗C = C∗I = IC∗ = J∗C∗ = C∗J∗ = 0,
DI = ID = DJ∗ = J∗D = 0.

Again using α(λc)α(λc−1) = α(λc−1)α(λc) = λe ⊗ 1Q we have,

EL = LE = EK∗ = K∗E = 0,
FK = KF = FL∗ = L∗F = 0.

Moreover, using the relation α(λaba) = α(λbab) we obtain α(λab) =
α(λbaba−1). From α(λab) = α(λbaba−1) comparing the coefficients of λb2

and λb−2 on both sides we obtain CI = DJ = 0. Now applying the an-
tipode we get I∗G∗ = JH = 0. This implies GI = JH = 0. Again from
α(λab−1) = α(λb−1a−1ba) and applying previous arguments we can deduce
CJ∗ = DI∗ = 0. Applying antipode we get GJ = IH = 0. Now from the
unitarity condition we know GG∗+HH∗+ II∗+ JJ∗+KK∗+LL∗ = 1.
This shows that G2G∗ = G as we have already got GH = GI = GJ =
GK = GL = 0. In a similar way, it follows that G∗G2 = G. Thus we
can conclude that G is normal. Using the same argument as before we
can show that H, I, J,K,L are normal, i.e. all the elements of 3rd row are
normal. Using the antipode the normality of C,D,O, P follows.
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Now we are going to show that A,B,E, F,M,N,Q,R are normal too.
Using AA∗ +BB∗ + CC∗ +DD∗ + EE∗ + FF ∗ = 1 we can write

A = A(AA∗ +BB∗ + CC∗ +DD∗ + EE∗ + FF ∗)
= A2A∗ +ACC∗ +ADD∗ (as AB = AE = AF = 0)
= A2A∗ + (AC∗)C + (AD∗)D (as C,D are normal)
= A2A∗ (as AC∗ = AD∗ = 0).

Similarly A∗A2 = A, hence A is normal. Following exactly a similar line
of arguments one can show the normality of the remaining elements. �

Lemma 3.3. C = D = G = H = K = L = O = P = 0.

Proof. From the relation α(λac) = α(λca) equating the coefficients of
λba, λab, λab−1 , λb−1a on both sides we get AO = MC,CM = OA,AP =
MD,CN = OB. This implies that CMM∗ = OAM∗ = 0, CNN∗ =
OBN∗ = 0 as AM∗ = BN∗ = 0. Similarly one can obtain CQQ∗ =
CRR∗ = 0. Now using (AA∗ +BB∗ +GG∗ +HH∗ +MM∗ +NN∗) = 1
we have

C = C(AA∗ +BB∗ +GG∗ +HH∗ +MM∗ +NN∗)
= C(AA∗ +BB∗ +GG∗ +HH∗) (as CMM∗ = CNN∗ = 0)
= C(GG∗ +HH∗) (as CAA∗ = CA∗A = 0, CBB∗ = CB∗B = 0).

Moreover, we have

C = C(EE∗ + FF ∗ +KK∗ + LL∗ +QQ∗ +RR∗)
= C(KK∗ + LL∗ +QQ∗ +RR∗) (as CE∗ = CF ∗ = 0)
= C(KK∗ + LL∗) (as CQQ∗ = CRR∗ = 0).

Using the above equations we get that C(KK∗ + LL∗)(GG∗ + HH∗) =
C(GG∗ + HH∗) = C = 0 (as KG = KH = LG = LH = 0). Simi-
larly, we can find D = 0. Then we have G = H = 0 by using the an-
tipode. Moreover, AO = MC = 0, AP = OB = BO = 0. This gives us
O = (A∗A + B∗B + M∗M + N∗N)O = 0. Similarly, we get P = 0, K =
L = 0. �
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Applying the above lemma, the fundamental unitary is reduced to the
form 

A B 0 0 E F
B∗ A∗ 0 0 F ∗ E∗

0 0 I J 0 0
0 0 J∗ I∗ 0 0
M N 0 0 Q R
N∗ M∗ 0 0 R∗ Q∗


.

Lemma 3.4.

AIA = IAI,BJB = JBJ,AQ = QA,

QIQ = IQI,RJR = JRJ,BR = RB,

AJ = BI = AR = BQ = IR = JQ = 0,
EIE = IEI, FJF = JFJ,EM = ME,

MIM = IMI,NJN = JNJ, FN = NF,

EJ = FI = EN = FM = IN = JM = 0.

Proof. First of all we deduce the following relations among the generators,

aba = bab, a−1b−1a−1 = b−1a−1b−1, ab−1a−1 = b−1a−1b,

a−1ba = bab−1, ba−1b−1 = a−1b−1a, b−1ab = aba−1.

We also get same relations replacing a by c. Using the condition α(λaba) =
α(λbab) and comparing on both sides the coefficients of λaba, λa−1b−1a−1 ,
λab−1a−1 , λa−1ba, λba−1b−1 , λb−1ab one can get

AIA = IAI,BJB = JBJ,AJB = JBI,

BIA = IAJ, IBJ = BJA, JAI = AIB.

Moreover, comparing the coefficients of λab−1a, λa−1ba−1 , λba−1b, λb−1ab−1

on both sides we have

AJA = BIB = IBI = JAJ = 0.

Similarly, equating the coefficients of λcbc, λc−1b−1c−1 , λcb−1c−1 , λc−1bc,
λbc−1b−1 , λb−1cb we also find

EIE = IEI, FJF = JFJ,EJF = JFI,

FIE = IEJ, IFJ = FJE, JEI = EIF.
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Furthermore, comparing the coefficients of λcb−1c, λc−1bc−1 , λbc−1b, λb−1cb−1

on both sides we have
EJE = FIF = IFI = JEJ = 0.

Now our aim is to show JA = IB = 0. We have JAI2 = AIBI as
JAI = AIB, this implies JAI2 = 0 because of IBI = 0. This shows that
JAI = 0 as we proved before I2I∗ = I. Thus we can deduce

JA = JA(II∗ + JJ∗)
= (JAI)I∗ + (JAJ)J∗ (as JAI = JAJ = 0)
= 0.

Similarly, it follows that IB = 0. Now using Proposition 2.22 we get
JA = AJ = IB = BI = 0. In a similar way one can prove that EJ =
JE = IF = FI = 0, and MJ = IN = IR = JQ = 0 as well. Now

AR = A(II∗ + JJ∗)R
= (AI∗)(IR) + (AJ)(J∗R)
= 0 (as IR = AJ = 0).

We get BQ = EN = FM = 0 applying similar arguments as above.
The only remaining part of the lemma is to prove AQ = QA,BR =
RB,EM = ME,FN = NF . Using Lemma 4.5 of [13] we can get the
desired equality. �

The proof of Theorem 3.1 follows by combining Lemmas 3.2, 3.3, 3.4
and Proposition 2.21. �

We can also prove the obvious analogue of Theorem 3.1 for the braid
group with 2 generators.

Theorem 3.5. Let Γ be the braid group with 2 generators. It has a pre-
sentation

Γ = <a, b | aba = bab>

where, S = {a, b, a−1, b−1}. Then Q(Γ, S) ∼= Dθ′(Dθ(C∗(Γ))) with the
choices of automorphisms as in Proposition 2.21 given by

θ1(a) = a−1, θ1(b) = b−1,

θ2(a) = b, θ2(b) = a,

θ3(a) = b−1, θ3(b) = a−1.

235



A. Mandal

The proof is omitted because it involves very similar computations and
arguments as in Theorem 3.1.

4. Alternative description of the quantum groups H+
s (n,0),K+

n

and computing the QISO of free copies of Z4

We recall the quantum groups H+
s (n, 0),K+

n which are discussed in [3], [4]
and [2]. K+

n is the universal C∗-algebra generated by the unitary matrix
((uij)) which is described in Subsection 2.3 subject to the conditions given
below.

(1) Each uij is normal, partial isometry.
(2) uijuik = 0, ujiuki = 0 ∀ i, j, k with j 6= k.

H+
s (n, 0) is the universal C∗-algebra satisfying the above conditions and

moreover, u∗ij = us−1
ij . In this section we are giving another description

of these objects in terms of free wreath product motivated from the fact
H+
n
∼= C∗(Z2) ∗w C(S+

n ) (see [5]). First of all, we compute the quantum
isometry group of n free copies of Z4.

Theorem 4.1. Let Γ be Z4 ∗ Z4 · · · ∗ Z4︸ ︷︷ ︸
n copies

, then Q(Γ) will be Q(Z4) ∗w

C(S+
n ).

Proof. The group is presented as follows:

Γ = <a1, a2, · · · an | o(ai) = 4 ∀ i>

Now the fundamental unitary is of the form

U =



A11 A12 A13 A14 · · · A1(2n−1) A1(2n)
A∗12 A∗11 A∗14 A∗13 · · · A∗1(2n) A∗1(2n−1)
A21 A22 A23 A24 · · · A2(2n−1) A2(2n)
A∗22 A∗21 A∗24 A∗23 · · · A∗2(2n) A∗2(2n−1)
...

...
An1 An2 An3 An4 · · · An(2n−1) An(2n)
A∗n2 A∗n1 A∗n4 A∗n3 · · · A∗n(2n) A∗n(2n−1)


(4.1)
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Assuming the unitarity of (4.1) we have
n∑
j=1

Ak(2j−1)Ak(2j) +Ak(2j)Ak(2j−1) = 0 ∀ k.

Note that the condition α(λa3
k
) = α(λa−1

k
) ∀ k, is equivalent to the follow-

ing, which are obtained by comparing the coefficients of all terms on both
sides
A∗k(2j−1) = (A2

k(2j−1) +A2
k(2j))Ak(2j−1)

+Ak(2j)

[ j−1∑
t=1

(Ak(2t−1)Ak(2t) +Ak(2t)Ak(2t−1))

+
n∑

t=j+1
(Ak(2t−1)Ak(2t) +Ak(2t)Ak(2t−1))

]
∀ k, j

(4.2)

A∗k(2j) = (A2
k(2j−1) +A2

k(2j))Ak(2j)

+Ak(2j−1)

[ j−1∑
t=1

(Ak(2t−1)Ak(2t) +Ak(2t)Ak(2t−1))

+
n∑

t=j+1
(Ak(2t−1)Ak(2t) +Ak(2t)Ak(2t−1))

]
∀ k, j

(4.3)

(A2
k(2j−1) +A2

k(2j))Ak(2i) = 0 ∀ i, j, k with i 6= j (4.4)

(A2
k(2j−1) +A2

k(2j))Ak(2i−1) = 0 ∀ i, j, k with i 6= j (4.5)

Ak(2i)(A2
k(2j−1) +A2

k(2j)) = 0 ∀ i, j, k with i 6= j (4.6)

Ak(2i−1)(A2
k(2j−1) +A2

k(2j)) = 0 ∀ i, j, k with i 6= j (4.7)
AkpAklAkr = 0 ∀ k, p, l, r (4.8)

except for
p = 2j − 1, l = 2j, p = 2j, l = 2j − 1 ∀ j,
l = 2j − 1, r = 2j, l = 2j, r = 2j − 1 ∀ j,

p = l, l = r, p = l = r.
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Moreover, the condition α(λak
)α(λa−1

k
) = α(λa−1

k
)α(λak

) = α(λe) = λe ⊗
1Q is equivalent to the following, which are obtained by comparing the
coefficients of all terms on both sides

2n∑
j=1

AkjA
∗
kj = 1,

2n∑
j=1

A∗kjAkj = 1 ∀ k (4.9)

Ak(2j−1)A
∗
k(2i−1) = Ak(2j−1)A

∗
k(2i) = 0 ∀ i, j, k with i 6= j (4.10)

Ak(2j)A
∗
k(2i−1) = Ak(2j)A

∗
k(2i) = 0 ∀ i, j, k with i 6= j (4.11)

A∗k(2j−1)Ak(2i−1) = A∗k(2j−1)Ak(2i) = 0 ∀ i, j, k with i 6= j (4.12)
A∗k(2j)Ak(2i−1) = A∗k(2j)Ak(2i) = 0 ∀ i, j, k with i 6= j (4.13)

Ak(2j−1)A
∗
k(2j) +Ak(2j)A

∗
k(2j−1)

= A∗k(2j−1)Ak(2j) +A∗k(2j)Ak(2j−1) = 0 ∀ k, j (4.14)

Then, the underlying C∗-algebra of Q(Z4 ∗ Z4 · · · ∗ Z4)︸ ︷︷ ︸
n copies

is the universal

C∗-algebra generated by Aij ’s satisfying the conditions (4.2) to (4.14) and
U,U t both are unitaries. Now, we will prove the following equations:

2n∑
j=1

AijA
∗
ij = 1,

2n∑
j=1

AjiA
∗
ji = 1, ∀ i, j (4.15)

Ai(2j−1)Ai(2k) = Ai(2j−1)Ai(2k−1) = 0, ∀ i, j, k with j 6= k (4.16)
Ai(2j)Ai(2k) = Ai(2j)Ai(2k−1) = 0, ∀ i, j, k with j 6= k (4.17)

AjiAki = 0, ∀ i, j, k with j 6= k (4.18)
A∗i(2j−1) = (A2

i(2j−1) +A2
i(2j))Ai(2j−1) ∀ i, j (4.19)

A∗i(2j) = (A2
i(2j−1) +A2

i(2j))Ai(2j) ∀ i, j (4.20)
Ai(2j−1)Ai(2j) +Ai(2j)Ai(2j−1) = 0 ∀ i, j (4.21)

Multiplying A∗k(2j) and A∗k(2j−1) on the right side of the equations (4.2)
and (4.3) respectively we can find

A∗k(2j−1)A
∗
k(2j) = (A2

k(2j−1) +A2
k(2j))Ak(2j−1)A

∗
k(2j) ∀ k, j (4.22)

A∗k(2j)A
∗
k(2j−1) = (A2

k(2j−1) +A2
k(2j))Ak(2j)A

∗
k(2j−1) ∀ k, j (4.23)

238



Quantum isometry group

by using (4.10) and (4.11). Now adding the equations (4.22) and (4.23)
we get

A∗k(2j−1)A
∗
k(2j) +A∗k(2j)A

∗
k(2j−1)

= (A2
k(2j−1) +A2

k(2j))(Ak(2j−1)A
∗
k(2j) +Ak(2j)A

∗
k(2j−1))

= 0 (by using (4.14)).

Taking the adjoint we have Ak(2j−1) Ak(2j) + Ak(2j)Ak(2j−1) = 0 ∀ k, j,
which means (4.21) is satisfied.

Thus, from (4.2) and (4.3) we get (4.19) and (4.20). From (4.21), one can
easily getA2

i(2j−1)Ai(2j) =Ai(2j)A
2
i(2j−1) andA

2
i(2j)Ai(2j−1) =Ai(2j−1)A

2
i(2j).

Then, we can conclude that all Aij ’s are normal from the equations (4.19)
and (4.20). Hence, the equations (4.16), (4.17) are obtained from (4.10)
to (4.13) by Proposition 2.22. Applying antipode on (4.16) and (4.17),
using Proposition 2.22 we obtain (4.18). Moreover, (4.15) follows by (4.9),
unitarity of U t and normality of Aij ’s.

Now consider the universal C∗-algebra B generated by Bij ’s satisfying
the equations (4.15) to (4.21) replacing Aij ’s by Bij ’s. Thus by universal
property of B we always get a surjective C∗-morphism from B to the
underlying C∗-algebra of Q(Z4 ∗ Z4 · · · ∗ Z4)︸ ︷︷ ︸

n copies

sending Bij to Aij .

On the other hand, we want a surjective C∗-morphism from the asso-
ciated C∗-algebra of Q(Z4 ∗ Z4 · · · ∗ Z4)︸ ︷︷ ︸

n copies

to B sending Aij to Bij , which

will give an isomorphism between B and the underlying C∗-algebra of
Q(Z4 ∗ Z4 · · · ∗ Z4)︸ ︷︷ ︸

n copies

. Now, we have equations (4.15) to (4.21) with Aij ’s re-

placed by Bij ’s. We input Bij , B∗ij in the matrix (4.1) instead of Aij , A∗ij ,
call it Ũ . Observe that each Bij is normal from (4.19) to (4.21). Using the
equations (4.15) to (4.21) and normality of Bij ’s we get the unitarity of
Ũ and Ũ t, hence (4.9) holds. Equations (4.4) to (4.8), (4.10) to (4.13) are
obtained from (4.16) to (4.18) by Proposition 2.22 and (4.2), (4.3), (4.14)
are also satisfied using the equations (4.19), (4.20) and (4.21).

Then, by the universal property of the associated C∗-algebra of
Q(Z4∗Z4 · · ·∗Z4)︸ ︷︷ ︸

n copies

, we get a surjective C∗-morphism from Q(Z4∗Z4 · · ·∗Z4)︸ ︷︷ ︸
n copies
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to B sending Aij to Bij , completing the proof of the claim that the underly-
ing C∗-algebra of Q(Z4 ∗ Z4 · · · ∗ Z4)︸ ︷︷ ︸

n copies

is the universal C∗-algebra generated

by Aij ’s satisfying the equations (4.15) to (4.21).

Now, consider the transpose of the matrix (4.1). We denote the entries
by vij . From the co-associativity condition we can easily deduce the co-
product given by ∆(vij) = Σ2n

k=1vik ⊗ vkj .
Recall the quantum group Q(Z4) from [7]. The underlying C∗-algebra

associated to Q(Z4) is the universal C∗-algebra generated by two elements
u and v satisfying the following relations:

uu∗ + vv∗ = 1, uv + vu = 0,
u∗ = (u2 + v2)u, v∗ = (u2 + v2)v.

Moreover, Q(Z4) ∗w C(S+
n ) is the universal C∗-algebra C∗{U2i−1, U2i, tij |

i = 1, · · ·n and j = 1, · · · (n− 1), n} satisfying the following conditions:

U2i−1U
∗
2i−1 + U2iU

∗
2i = 1, U2i−1U2i + U2iU2i−1 = 0, ∀ i

U∗2i−1 = (U2
2i−1 + U2

2i)U2i−1, U
∗
2i = (U2

2i−1 + U2
2i)U2i, ∀ i

tij = t2ij = t∗ij ,
∑
i

tij =
∑
j

tji = 1,

tijtik = 0, tjitki = 0 ∀ i, j, k with j 6= k,

U2i−1tij = tijU2i−1, U2itij = tijU2i ∀ i, j.

Its coproduct is given by

∆′(U2i−1) = U2i−1 ⊗ U2i−1 + U∗2i ⊗ U2i,

∆′(U2i) = U2i ⊗ U2i−1 + U∗2i−1 ⊗ U2i,

∆′(tij) =
n∑
l=1

til ⊗ tlj .

It is clear from the description of Q(Z4 ∗ Z4 · · · ∗ Z4)︸ ︷︷ ︸
n copies

as the universal C∗-

algebra generated by Aij ’s subject to (4.15)-(4.21) that we can define a
C∗-morphism η from (C∗{Aij | i = 1, · · ·n and j = 1, · · · (2n− 1), 2n},∆)
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to (C∗{U2i−1, U2i, tij | i = 1, · · ·n and j = 1, · · · (n− 1), n},∆′) given by

Aj(2i−1) 7→ U2i−1tij ,

Aj(2i) 7→ U2itij ∀ i, j.

Conversely, we can define a C∗-morphism η′ from (C∗{U2i−1, U2i, tij |
i = 1, · · ·n and j = 1, · · · (n− 1), n},∆′) to (C∗{Aij | i = 1, · · ·n and j =
1, · · · (2n− 1), 2n},∆) given by

U2i−1 7→ Σn
j=1Aj(2i−1),

U2i 7→ Σn
j=1Aj(2i),

tij 7→ Aj(2i−1)A
∗
j(2i−1) +Aj(2i)A

∗
j(2i).

It is easy to see that η′◦η = idQ(Z4 ∗ Z4 · · · ∗ Z4)︸ ︷︷ ︸
n copies

, η◦η′ = idQ(Z4)∗wC(S+
n ).

In fact, η and η′ are CQG isomorphisms. This completes the proof. �

Remark 4.2. The quantum groups H+
s (n, 0),K+

n can be described in a
similar way. For finite s > 2

H+
s (n, 0) ∼= [C∗(Zs)⊕ C∗(Zs)] ∗w C(S+

n ),

and
K+
n
∼= [C∗(Z)⊕ C∗(Z)] ∗w C(S+

n ),

where [C∗(Zs)⊕C∗(Zs)] and [C∗(Z)⊕C∗(Z)] admit a CQG structure as
in [7]. These facts can be proved by essentially the same arguments of
Theorem 4.1.

Corollary 4.3. Using the Theorem 4.1, Remark 4.2 and the result of [5]
we can conclude that for every finite s,

Q(Zs ∗ Zs · · · ∗ Zs)︸ ︷︷ ︸
n copies

∼= Q(Zs) ∗w C(S+
n ).

Remark 4.4. If we consider Γ = Zn ∗ Zn where n is finite, then Q(Γ) is
doubling of the quantum group Q(Zn) ? Q(Zn). In particular for n = 2,
Q(Γ) becomes doubling of the group algebra as Q(Z2) ∼= (C∗(Z2),∆Z2)
and C∗(Z2) ? C∗(Z2) ∼= C∗(Z2 ∗ Z2).
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5. Examples of (Γ, S) for which Q(Γ) ∼= Dθ(C∗(Γ))

We already mentioned in Subsection 2.4 that, if there exists a non triv-
ial automorphism of order 2 which preserves the generating set, then
Dθ(C∗(Γ)) ([17], [14]) will be always a quantum subgroup of Q(Γ). In [7],
[14], [18] the authors could show that Q(Γ) coincides with doubled group
algebra for some examples. In Section 5 of [13] together with Goswami
we also gave few examples of groups where this happens. Our aim in this
section is to give more examples of such groups.

5.1. Z9 o Z3

The above group has a presentation Γ = <h, g | o(g) = 9, o(h) = 3, h−1gh=
g4>. Using Lemma 5.3 of [13] its fundamental unitary is of the form

A B 0 0
B∗ A∗ 0 0
0 0 G H
0 0 H∗ G∗

 .

Now the action is defined as

α(λh) = λh ⊗A+ λh−1 ⊗B,
α(λh−1) = λh ⊗B∗ + λh−1 ⊗A∗,
α(λg) = λg ⊗G+ λg−1 ⊗H,

α(λg−1) = λg ⊗H∗ + λg−1 ⊗G∗.

First we are going to show that B = 0.
We have α(λgh) = α(λhg4), α(λg4) = λg4 ⊗ G4 + λh4 ⊗ H4 as GH =

HG = 0. Equating all the terms of α(λgh) = α(λhg4) on both sides we
deduce

GA = AG4, HA = AH4, GB = HB = BG4 = BH4 = 0.

Thus, B = (G∗G + H∗H)B = 0 as (G∗G + H∗H) = 1, GB = HB = 0.
This gives the following reduction:

A 0 0 0
0 A∗ 0 0
0 0 G H
0 0 H∗ G∗

 .
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Moreover, using the relations between the generators one can find
A∗GA = G4, A∗HA = H4, A∗G = G4A∗, A∗H = H4A∗.

Now using the above relations we can easily show that G∗G,H∗H are
central projections of the desired algebra, hence Q(Γ, S) is isomorphic to
Dθ(C∗(Γ)) by Proposition 2.20, with the automorphism g 7→ g−1, h 7→ h.

5.2. (Z2 ∗ Z2)× Z2

The group is presented as Γ = <a, b, c | ba= ab, bc= cb, a2 = b2 = c2 = e>.
Here S = {a, b, c}. The action is given by

α(λa) = λa ⊗A+ λb ⊗B + λc ⊗ C,
α(λb) = λa ⊗D + λb ⊗ E + λc ⊗ F,
α(λc) = λa ⊗G+ λb ⊗H + λc ⊗K.

Write the fundamental unitary asA B C
D E F
G H K

 .

Our aim is to show D = B = F = H = 0.
Applying α(λa2) = λe ⊗ 1Q and comparing the coefficients of λac, λca

on both sides we have AC = CA = 0. Using the antipode one can get
AG = GA = 0.

Applying the same process with b, c we can deduce
DF = FD = BH = HB = 0,
GK = KG = CK = KC = 0.

Further, using the condition α(λab) = α(λba) comparing the coefficients
of λac, λca on both sides we can get AF = DC,CD = FA. Applying
κ we have HA = GB,AH = BG. Proceeding the same argument with
α(λcb) = α(λbc) one can find

DK = GF,KD = FG,

KB = HC,BK = CH.

Again we have, GH + HG = 0 from α(λa2) = λe ⊗ 1Q comparing the
coefficient of λab on both sides. Now AHG = BG2 as we know AH = BG.
Further we have −AGH = BG2 as GH = −HG. Thus we get BG2 = 0
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as AG = 0. Similarly it can be shown that BK2 = 0, obviously BH2 = 0
as BH = 0. Hence, B = B(G2 + H2 + K2) = 0 as (G2 + H2 + K2) = 1.
This gives D = 0 by using the antipode.

Now HA = 0, HC = 0 as we get before HA = GB,HC = KB. This
implies H = H(A2 +C2) = 0, and applying the antipode F = 0. Thus the
fundamental unitary is reduced to the formA 0 C

0 E 0
G 0 K

 (5.1)

It now follows from Proposition 2.20 that Q(Γ) ∼= Dθ(C∗(Γ)) with respect
to the automorphism a 7→ c, c 7→ a, b 7→ b.

Remark 5.1. The above CQG can be identified with Q(Z2 ∗ Z2)⊗̂Q(Z2),
which is clear from the form of fundamental unitary (5.1) after reduction.

5.3. Lamplighter Group
The group is presented as Γ = <a, t | a2 = [tmat−m, tnat−n] = e> where
m,n ∈ Z.

Fundamental unitary is of the form A B C
D E F
D∗ F ∗ E∗

 .

Now the aim is to show B = C = D = 0.
Using the condition α(λa2) = α(λe) = λe ⊗ 1Q we deduce D2 = 0, this

implies B2 = C2 = 0 applying the antipode. Further, we know DD∗ +
EE∗ + FF ∗ = 1, which gives us DEE∗ + DFF ∗ = D as D2 = 0. If we
can show DE = DF = 0 then we will be able to prove our first claim i.e,
D = 0.

Using group relations we deduce t(m−n)at−(m−n)a = at(m−n)at−(m−n)

[where m,n ∈ Z]. In particular, t−1ata = atat−1, tat−1a = atat−1, which
gives us at = tat−1ata. Now using the condition α(λat) = α(λtat−1ata)
comparing the coefficient of λt2 on both sides we have BE = 0 because
there are no terms with coefficient λt2 on the right hand side as D2 =
BF = BE∗ = FB = E∗B = 0. Applying the antipode one can get
DE = 0. Similarly, using the relation α(λat−1) = α(λt−1atat−1a) following
the same argument we can deduce BF ∗ = 0, DF = 0. Hence, we get D =
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0. This gives us B = C = 0 using the antipode. Thus, the fundamental
unitary is reduced to the formA 0 0

0 E F
0 F ∗ E∗

 .

From the relation of the group one can easily get,

AE = EAE∗AEA,E∗A = AE∗AEAE∗, AE∗ = E∗AEAE∗A.

Thus we have,

AEE∗ = EAE∗AEAE∗ = E(AE∗AEAE∗) = EE∗A,

hence EE∗ is a central projection. Similarly, FF ∗ is a central projection.
Now we can define the map from C∗{A,E, F} to C∗(Γ) ⊕ C∗(Γ) such as
A 7→ (λa⊕ λa), E 7→ (λt⊕ 0), F 7→ (0⊕ λt−1). This gives the isomorphism
between these two algebras, which is also a CQG isomorphism and by
Proposition 2.20 corresponding to the automorphism a 7→ a, t 7→ t−1 we
can conclude that Q(Γ) ∼= Dθ(C∗(Γ)) .
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