ANNALES MATHEMATIQUES

‘An"lb\
-’6, & /4
897 V1)
017 w.
SEEGL 21
8901 2° 3= 1N
' 2345¢ 7890
WI8S N[ 486, I3
19017 145 (£ g2
235/ (400 . orf K4
£ 234 i 67
171../5678% 0
157 /7119012° Y
"€ V0 2145, 878
23.765 (390" 290" D3
»¢'RY01234 /T 4567\
< TA5)5789( Ve 01
3459 /Y901 2"45678)v 1 2434567 .
0789V 1 2345 4567890\
201 23567890 19123456.

BLAISE PASCAL

ARNAB MANDAL
Quantum isometry group of dual of finitely generated
discrete groups - II

Volume 23, n°2 (2016), p. 219-247.
<http://ambp.cedram.org/item?id=AMBP_2016__23_2_219_0>

© Annales mathématiques Blaise Pascal, 2016, tous droits réservés.

L’acces aux articles de la revue « Annales mathématiques Blaise Pas-
cal » (http://ambp.cedram.org/), implique I’accord avec les condi-
tions générales d’utilisation (http://ambp.cedram.org/legal/). Toute
utilisation commerciale ou impression systématique est constitutive
d’une infraction pénale. Toute copie ou impression de ce fichier doit
contenir la présente mention de copyright.

Publication éditée par le laboratoire de mathématiques
de luniversité Blaise-Pascal, UMR 6620 du CNRS
Clermont-Ferrand — France

cedram
Article mis en ligne dans le cadre du
Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/


http://ambp.cedram.org/item?id=AMBP_2016__23_2_219_0
http://ambp.cedram.org/
http://ambp.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/

ANNALES MATHEMATIQUES BLAISE PAsCAL 23, 219-247 (2016)

Quantum isometry group of dual of finitely
generated discrete groups - 11

ARNAB MANDAL

Abstract

As a continuation of the programme of [13], we carry out explicit computations
of Q(T', S), the quantum isometry group of the canonical spectral triple on C;:(T")
coming from the word length function corresponding to a finite generating set S,
for several interesting examples of I' not covered by the previous work [13]. These
include the braid group of 3 generators, Z;" etc. Moreover, we give an alternative
description of the quantum groups Hy (n,0) and K, (studied in [3], [4]) in terms
of free wreath product. In the last section we give several new examples of groups
for which Q(T") turns out to be a doubling of C*(T").

1. Introduction

It is a very important and interesting problem in the theory of quantum
groups and noncommutative geometry to study ‘quantum symmetries’ of
various classical and quantum structures. S.Wang pioneered this by defin-
ing quantum permutation groups of finite sets and quantum automor-
phism groups of finite dimensional matrix algebras. Later on, a number of
mathematicians including Wang, Banica, Bichon and others ([1], [8], [20])
developed a theory of quantum automorphism groups of finite dimensional
C*-algebras as well as quantum isometry groups of finite metric spaces and
finite graphs. In [11] Goswami extended such constructions to the set-up
of possibly infinite dimensional C*-algebras, and more interestingly, that
of spectral triples a la Connes [10], by defining and studying quantum
isometry groups of spectral triples. This led to the study of such quan-
tum isometry groups by many authors including Goswami, Bhowmick,
Skalski, Banica, Bichon, Soltan, Das, Joardar and others. In the present
paper, we are focusing on a particular class of spectral triples, namely
those coming from the word-length metric of finitely generated discrete

Keywords: Compact quantum group, Quantum isometry group, Spectral triple.
Math. classification: 58B34, 46L.87, 461.89.
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A. MANDAL

groups with respect to some given symmetric generating set. There have
been several articles already on computations and study of the quantum
isometry groups of such spectral triples, e.g. [3], [4], [7], [14], [18] and refer-
ences therein. In [13] together with Goswami we also studied the quantum
isometry groups of such spectral triples in a systematic and unified way.
Here we compute Q(I',S) for more examples of groups including braid
groups, Zy x Zy - - - x 2y etc.
n copies

The paper is organized as follows. In Section 2 we recall some defini-
tions and facts related to compact quantum groups, free wreath product
by quantum permutation group and quantum isometry group of spectral
triples defined by Bhowmick and Goswami in [6]. This section also con-
tains the doubling procedure of a compact quantum group, say Q, with
respect to an order 2 CQG automorphism 6. The doubling is denoted
by Dg(Q). In Section 3 we compute Q(I',.S) for braid group with 3 gen-
erators. Its underlying C*-algebra turns out to be four direct copies of
the group C*-algebra. In fact, it is precisely a doubling of doubling of
the group C*-algebra. Section 4 contains an interesting description of the
quantum groups H; (n,0) and K" (studied in [3], [4]) in terms of free
wreath product. Moreover, Q(T',S) is computed for I' = Zy x Zy - - - % Zy4.

n copies

In the last section we present more examples of groups as in [14], [18],
Section 5 of [13] where Q(T', .S) turns out to be a doubling of C*(T).

2. Preliminaries

First of all, we fix some notational conventions which will be useful for
the rest of the paper. Throughout the paper, the algebraic tensor product
and the spatial (minimal) C*-tensor product will be denoted by ® and
® respectively. We’ll use the leg-numbering notation. Let Q be a unital
C*-algebra. Consider the multiplier algebra M (K(H)®Q) which has two
natural embeddings into M(K(H)©Q&Q). The first one is obtained by
extending the map z — x®1 and the second one is obtained by composing
this map with the flip on the last two factors. We will write w!'? and w!3
for the images of an element w € M(K(H)®Q) under these two maps
respectively. We’ll denote the Hilbert C*-module by H®Q obtained by the
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QUANTUM ISOMETRY GROUP

completion of H ® Q with respect to the norm induced by the Q valued
inner product <€®q,{' ®q¢™> = <, {'>q"q, where {,§' € H, ¢,q' € Q.

2.1. Compact quantum groups and free wreath product

Let us recall the basic notions of compact quantum groups, then actions
on C*-algebra and free wreath product by quantum permutation groups.

Definition 2.1. A compact quantum group (CQG for short) is a pair
(Q,A), where Q is a unital C*-algebra and A : Q — O&®Q is a unital
C*-homomorphism satisfying two conditions:

(1) (A®id)A = (id ® A)A (co-associativity ).
(2) Each of the linear spans of A(Q)(1® Q) and that of A(Q)(Q® 1)
is norm dense in Q0.

A CQG morphism from (Q1,A;) to another (Qz, Ag) is a unital C*-
homomorphism 7 : Q1 — Qg such that (7 ® m)A; = Agr.

Definition 2.2. (Q;,4) is called a quantum subgroup of (Qg, Ag) if
there exists a surjective C*-morphism 7 from Qs to Q; such that (n ®
1)Ag = A1n holds.

Sometimes we may denote the CQG (Q, A) simply as Q, if A is under-
stood from the context.

Definition 2.3. A unitary (co) representation of a CQG (Q,A) on a
Hilbert space H is a C-linear map from H to the Hilbert module H®Q
such that

(1) <U(&),U(n)> = <€¢,n>1g where {,n € H.
(2) (U®id)U = (id @ A)U.
(3) Span {U(&)b: & € H,b e Q} is dense in H®Q.

Given such a unitary representation we have a unitary element U be-
longing to M(K(H)®Q) given by U({ @ b) = U(£)b, (£ € H,b € Q)
satisfying (id @ A)(U) = U2U3.

Here we state Proposition 6.2 of [15] which will be useful for us.

Proposition 2.4. If a unitary representation of a CQG leaves a finite
dimensional subspace of H, then it’ll also leave its orthogonal complement
1nvariant.
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A. MANDAL

Remark 2.5. It is known from [21] that the linear span of matrix elements
of a finite dimensional unitary representation form a dense Hopf*-algebra
Qo of (Q,A), on which an antipode x and co-unit € are defined.

Definition 2.6. We say that a CQG (Q, A) acts on a unital C*-algebra
B if there is a unital C*-homomorphism (called action) a : B — B®Q
satisfying the following :

(1) (a®id)a = (id ® A)a.

(2) Linear span of a(B)(1 ® Q) is norm dense in B&Q.

Definition 2.7. The action is said to be faithful if the x-algebra generated
by the set {(f ® id)a(b) V f € B*, ¥ b € B} is norm dense in Q, where
B* is the Banach space dual of B.

Remark 2.8. Given an action « of a CQG Q on a unital C*-algebra B,
we can always find a norm-dense, unital x-subalgebra By C B such that
alp, : Bo — By ® Qy is a Hopf-algebraic co-action. Moreover, « is faithful
if and only if the x-algebra generated by {(f®id)a(b) Vf € B, Vb € By}
is the whole of Q.

Given two CQG’s Q1, Qs the free product Q1 x Qs admits the natural
CQG structure equipped with the following universal property (for more
details see [19]):

Proposition 2.9.
(i) The canonical injections, say i1,i2, from Q1 and Qg to Q1 x Qo
are CQG morphisms.
(i) Given any CQG C and morphisms 71 : Q1 +— C and my : Qo — C
there always exists a unique morphism denoted by m = m * mo
from Q1 x Qg to C satisfying wo i, =y, fork=1,2.

Definition 2.10. The C*-algebra underlying the quantum permutation
group, denoted by C(S]J(,) is the universal C*-algebra generated by N2
elements t;; such that the matrix ((¢;;)) is unitary with

tiy =t =13 Vi,5,
oty =1VYj, Y ty=1Vi,
( J
tijtik = 0, tjitki =0V i,j,k with ] 75 k.
It has a coproduct A is given by A(t;;) = Xty ® tx;, such that
(C(S%), A) becomes a CQG.
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QUANTUM ISOMETRY GROUP

For further details see [20]. We also recall from [9] the following:

Definition 2.11. Let Q be a compact quantum group and N > 1. The
free wreath product of Q by the quantum permutation group C(Sy), is
the quotient of Q*N x C(Sy) by the two sided ideal generated by the
elements
Vk(a)tkz‘ — tkiljk(a), 1<i,k<N, a€Q,

where ((t;;)) is the matrix coefficients of the quantum permutation group
C(S7;) and vg(a) denotes the natural image of a € Q in the k-th factor of
O*N. This is denoted by Q *,, C(SF).

Furthermore, it admits a CQG structure, where the comultiplication

satisfies
N

A(vi(a)) =Y vilaq)tin ® vilaga))-
k=1
Here we have used the Sweedler convention of writing A(a) = a(1) ® a(g).

2.2. Some facts about quantum isometry groups

First of all, we are defining the quantum isometry group of spectral triples
defined by Bhowmick and Goswami in [6].

Definition 2.12. Let (A>,H, D) be a spectral triple of compact type (a
la Connes). Consider the category Q(D) = Q(A>*, H,D) whose objects
are (Q,U) where (Q,A) is a CQG having a unitary representation U on
the Hilbert space H satisfying the following:

(1) U commutes with (D ® 1g).

(2) (1d®@¢)oady(a) € (A®)" for all a € A and ¢ is any state on Q,

where adg (z) := U(z ® 1)U* for « € B(H).

A morphism between two such objects (Q,U) and (Q',U’) is a CQG mor-
phism ¢ : @ — Q' such that U’ = (id ® ¢)U. If a universal object exists

e

in Q(D) then we denote it by QISOT(A>®, H,D) and the corresponding
largest Woronowicz subalgebra for which ady;, is faithful, where Up is the

unitary representation of QISOT (A, H, D), is called the quantum group
of orientation preserving isometries and denoted by QISO™(A> H, D).

Let us state Theorem 2.23 of [6] which gives a sufficient condition for
the existence of QISOT(A®,H, D).

223



A. MANDAL

Theorem 2.13. Let (A, H, D) be a spectral triple of compact type. As-
sume that D has one dimensional kernel spanned by a vector & € H which
is cyclic and separating for A and each eigenvector of D belongs to A>E.

Then QISO™ (A, H,D) exists.

Let (A*,H,D) be a spectral triple satisfying the condition of Theo-
rem 2.13 and Ay = Lin{a € A : af is an eigenvector of D}. Moreover,
assume that Agg is norm-dense in A®. Let D : Ago — Ago be defined by
D(a)¢ = D(a&) (a € Ago). This is well defined as ¢ is cyclic and separating
vector for A>. Let 7 be the vector state corresponding to the vector £.

Definition 2.14. Let A be a C*-algebra and A be a dense *-subalgebra
such that (A%, H, D) is a spectral triple as above. Let C(A,H, D) be
the category with objects (Q, ) such that Q is a CQG with a C*-action
«a on A such that

(1) «is 7 preserving, i.e. (7 ® id)a(a) = 7(a).1 for all a € A.

(2) a maps Ay into Agy ® Q.

(3) aD = (D®I)a.
The morphisms in C(AOO,H,D) are CQG morphisms intertwining the
respective actions.

Proposition 2.15. It is shown in Corollary 2.27 of [6] that QISO™* (A,
H, D) is the universal object in C(A>*, H, D).

2.3. QISO for a spectral triple on C}(I)

Now we discuss the special case of our interest. Let I' be a finitely gener-
ated discrete group with generating set S = {ay, al_l, as, a2_1, Ay, a;l}.
We make the convention of choosing the generating set to be symmet-
ric, i.e. a; € S implies ai_l € S V i. In case some a; has order 2, we
include only a;, i.e. not count it twice. The corresponding word length
function on the group defined by l(g) = min {r € N,g = hihg---h,}
where h; € S ie. for each i, h; = a; or a;l for some j. Notice that
S ={g € I,l(g) = 1}, using this length function we can define a met-
ric on T' by d(a,b) = I(a"'b) ¥ a,b € T. This is called the word metric
corresponding to the generating set S. Now consider the algebra C ("),
which is the C*-completion of the group ring CI' viewed as a subalgebra
of B(I?(T")) in the natural way via the left regular representation. We de-
fine a Dirac operator Dr(dy) = [(g)dy. In general, Dr is an unbounded
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QUANTUM ISOMETRY GROUP

operator.

Dom(Dr) = {¢ € (T) : 3" 1(g)l¢(9)]? < o0}

gel

Here, &, is the vector in [2(T") which takes value 1 at the point g and 0 at
all other points. Natural generators of the algebra CI' (images in the left
regular representation ) will be denoted by Ay, i.e. A\y(dn) = dgn. Let us
define

Ly ={d4 [U(g) =7},
ey = {6y [ U(g) <1}

Moreover, p, and ¢, be the orthogonal projections onto Sp(I’;,) and Sp(I'<,)
respectively. Clearly
Dr = Z NPn,
neNg
where p, = ¢ —¢,—1 and py = go. The canonical trace on C(T) is given by
7(3 cgAg) = ce. It is easy to check that (CT, 1?(T"), Dr) is a spectral triple.
Now take A = C}(T"), A® = CI', H = [*(T') and D = Dr as before. Then
QISO™(CT, I*(T'), Dr) exists by Theorem 2.13, taking &, as the cyclic
separating vector for CI'. As the object depends on the generating set of
I' it is denoted by Q(T', S). Most of the times we denote it by Q(I") if S
is understood from the context. As in [7] its action « (say) on C}(I') is
determined by
a(hy) = Z Ayt @ Gy
y'es
where the matrix [g,/],y¢cs is called the fundamental representation in
Mearq(s)(Q (', S)). Note that we have A(gy ) = 3545~ @ ¢y,5-

Q(T, S) is also the universal object in the category C(CT', I2(T'), Dr) by
Proposition 2.15 and observe that all the eigenspaces of DAF, where Dr as
in Definition 2.14, are invariant under the action. The eigenspaces of Dr
are precisely the set Span{\, | [(g) = r} with > 0.

It can also be identified with the universal object of some other cate-
gories naturally arising in the context. Consider the category C;, of CQG’s
consisting of the objects (Q, «) such that « is an action of Q on C}(I")
satisfying the following two properties:

(1) a leaves Sp(I';) invariant.
(2) It preserves the canonical trace 7 of C;(I).
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A. MANDAL

Morphisms in C; are CQG morphisms intertwining the respective actions.

Lemma 2.16. The two categories C, and C(CT, 1%(T'), Dr) are isomor-
phic.

Proof. Let (Q,a) € C(CT, I*(T'), Dr) then clearly (Q,a) € C,. Consider
any (Q,«) € C,. Then the action « leaves Sp(I'<,) invariant V r > 2 as it
is an algebra homomorphism and it leaves Sp(I'1) invariant. Consider the
linear map U(z) := a(z) from C}(I') C H = I3(T) to H®Q is an isometry
by the invariance of 7. Thus it extends to H and in fact it becomes a
unitary representation. Now, observe that Sp(I',) is the orthogonal com-
plement of Sp(I'<,—1) inside Sp(I'<,). By the Proposition 2.4, Sp(T';) is
invariant under U too, i.e. o leaves Span{), | [(g) = r} invariant for all
r. Thus (Q, a) € C(CT, I2(T"), Dr). Clearly any morphism in the category
C, is in the category C(CT, I2(I'), Dr) and vice-versa. This completes the
proof. [l

Corollary 2.17. It follows from Lemma 2.16 that there is a universal
object, say (Qr, ;) in Cr and (Qr, o) = Q(T, S).

We now identify Q(T', S) as a universal object in yet another category.
Let us recall the quantum free unitary group A,(n) introduced in [19].
It is the universal unital C*-algebra generated by ((ai;)) subject to the
conditions that ((a;;)) and ((aj;)) are unitaries. Moreover, it admits a
co-product structure with comultiplication A(a;;) = X} ;a5 ® a;;. Con-
sider the category C with objects (C,{z;;,i,j = 1,---,2k}) where C
is a unital C*-algebra generated by ((z;;)) such that ((x;;)) as well as
((zj;)) are unitaries and there is a unital C*- homomorphism a¢ from
CH(T) to CH(I')&C sending e; to 23221 ej ® x;j, where eg;_1 = A, and
ez; = A\, Vi=1,--- k. The morphisms from (C,{xi;,i,j =1,---,2k})
to (P, {pij,i,j =1,---,2k}) are unital *-homomorphisms 3 : C — P such
that B(zi;) = pij-

Moreover, by definition of each object (C,{xsj,4,j = 1,---,2k}) we
get a unital *-morphism p¢ from A, (2k) to C sending a;; to x;;. Let the
kernel of this map be Z¢ and Z be intersection of all such ideals. Then
CY := A,(2k)/T is the universal object generated by x% in the category
C. Furthermore, we can show, following a line of arguments similar to
those in Theorem 4.8 of [12], that it has a CQG structure with the co-
product A(x%) => x% ® 4.
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QUANTUM ISOMETRY GROUP

Proposition 2.18. (Q,, ;) and C¥ are isomorphic as CQG.

For the proof of the above proposition, the reader is referred to Propo-
sition 2.15 of [13]. Now we fix some notational conventions which will be
useful in later sections. Note that the action « is of the form

a(Aay) = Aa; ® A11 + )\al_l ® A1z + Aay, ® A13 + )\a2—1 ® A4
o gy, © Aqap—1) + )\%1 ® Ai(2x),

a(gr1) = Aoy @ Ay + A0 @ ATy + Aoy @ Aly + A1 @ Al
+o o Aoy @ Af gy + A1 @ Ay,

@(Aaz) = Ay @ Aot + A1 ® Az + Aay @ Azg o+ A1 © Az
+oo o Ay @ g1y + A1 © Ao(ap)s

(A1) = Aoy © Afp + A, o1 ® A5y + gy @ Ay + A1 © Al
e Ay @ Aoy A1 © Ay

a(/\ak) =gy ® Ay + )‘afl ® Apa + Ay @ Aps + Aagl ® Apa
4+ 4 )\ak ® Ak(2k—1) + )\alzl ® Ak(2kz)>

O[(Aa;l) — )\ak ® AZQ + )\al_l X Azl + )\a2 (%9 AZ4 + )\a2—1 &® A]>23
+---+ )\ak ® AZ(QIC) + Aalzl ® AZ(ﬂf—l)'

From this we get the unitary representation

An A Az Ao Ayaey Aiew

12 Al 14 3o A Alek-n
A1 Asx Az Ax 0 Agpr—1y Agan

U= ((uy) = |42 An Ay 53 0 Adory ASeko)
Apt Are Arz Agps o Agar—) Aree)

A22 AZﬂ AZ4 AZ:& T AZ(%) AZ(%—I)

From now on, we call it as fundamental unitary. The coefficients A;; and
Aj;’s generate a norm dense subalgebra of Q(I', ). We also note that the
antipode of Q(T', S) maps u;; to uj;.
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Remark 2.19. Using Corollary 2.17 and Proposition 2.18, Q(I",S) is the
universal unital C*-algebra generated by A;; as above subject to the re-
lations that U is a unitary as well as U?! and a given above is a C*-
homomorphism on C}(T").

2.4. Q(I') as a doubling of certain quantum groups

In this subsection we briefly recall from [14], [17] the doubling proce-
dure of a compact quantum group which is just a particular case of a
smash co-product, a well-known construction of Hopf-algebra theory in-
troduced in [16]. Let (Q,A) be a CQG with a CQG-automorphism 6
such that 62 = id. The doubling of this CQG, say (Dg(Q),A) is given
by Dg(Q) := Q & Q (direct sum as a C*-algebra), and the coproduct
is defined by the following, where we have denoted the injections of Q
onto the first and second coordinate in Dy(Q) by £ and 7 respectively, i.e.

&(a) = (a,0), n(a) = (0,a), (a € Q).
Aot=(ERE+n®[nob]) oA,
Aon=(E@n+n®[E0b])oA.

It is known from [17] that, if there exists a non trivial automorphism of
order 2 which preserves the generating set, then Dy(C*(T")) ([14], [17])
will be always a quantum subgroup of Q(I"). Below we give some suf-
ficient conditions for the quantum isometry group to be a doubling of
some CQG. For this, it is convenient to use a slightly different nota-
tional convention: let Ug;—q1; = A;j for i = 1,...,k, j = 1,...,2k and
Ugﬁgl = A:(2l—1)7 U2i72l—1 = A;k(Ql) for i = 1, ey ]{3, l= 1, ey k.

Proposition 2.20. Let T' be a group with k generators {aj,as,---ar}
and define yo1_1 = aj, Yo := al_l Vi=1,2,---, k. Now o be an order 2
automorphism on the set {1,2,--- 2k — 1,2k} and 0 be an automorphism
of the group given by 0(vi) = Yo ¥V i = 1,2,---,2k. We assume the
following:

(1) Bi == U o) #0V i, and U;j =0V j ¢ {o(i),i},

(2) AiBj = BjA; =0V1,j such that o(i) #1i,0(j) # j, where A; = Uy,

(8) AlLU; ;U are central projections,

(4) There are well defined C*-isomorphisms m1,m from C*(I') to

C*{A;,i =1,2,--- ,2k} and C*{B;,i = 1,2,--- ,2k} respectively
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such that

m1(Aa;) = Ai, m2(Ag;) = Bi Vi

Then Q(I") is doubling of the group algebra (i.e. Q(I') = Dy(C*(I"))) corre-
sponding to the given automorphism 0. Moreover, the fundamental unitary
takes the following form

Aq 0 0 0 0 By
0 Ag 0 0 Bs 0
0 0 Az 0 0 0
0 0 0 Ay 0 0
0  Bop 0 0 Agg—1 0

Boy. 0 0 0 0 Agp

The proof is presented in Lemma 2.26 of [13], the case o (i) = i for some

i, is also taken care in the proof. Now we give a sufficient condition for
Q(T") to be Dy (Dy(C*(T"))), where 0" is an order 2 CQG automorphism of
Dy(C*(T)).

Proposition 2.21. LetT' be a group with k generators {ay,as,---ax} and
define vyoi_1 == aj, 7yg = a;l Vi=12,---,k. Now o1,09,03 are three
distinct automorphisms of order 2 on the set {1,2,---,2k — 1,2k} and

01,02,05 are automorphisms of the group given by 6;(v;) = Yo, (i) for all

j=123andi=1,2,---,2k. We assume the following:

(1) BY := U, gy 0V i, and s = 1,2,3 also U; ; = 0V j & {o(i), i},
(2) AiB](-s) ](S)A = 0V i,j,s such that o4(i) # i,0¢(j) # j ¥V t
where A; = U, 4,
(3) BYBY = BWB®) = 0 i,j,s,k with s # k and 0,(6) # i,
oi(4) #J V t,

(4) All U; ;U;; are central projections,

(5) There are well defined C*-isomorphisms 771,772

fmm cHT) t

C*{A;,;i=1,2,---,2k} and C*{Bis),z =1,2,---,2k} respectwely
where s = 1,2,3 such that
m(e,) = Ai, 75 (Ag,) = BY V.
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Furthermore, assume that using the group automorphisms we have two
CQG automorphisms 0 and ¢ of order 2 from C*(T') and Dy(C*(T")) re-
spectively defined by
0()\:1:) = /\91(1)7
0' Ny Moy () = (M) Mosy)) ¥ 2,y €T

Then Q(T') will be Dy (Dy(C*(T'))) corresponding to the given automor-
phisms. Moreover, the fundamental unitary takes the following form

A4 BP0 o ... B®» BY
B A, 0 0 B P
0 0 A; B 0 0
0 o B A 0 0
Béi)—l Béi)_l 0 0 - Ay Bé?—l
B®» B o 0 - BY Ay

The proof is very similar to the Proposition 2.20, thus omitted. We end
the discussion of Section 2 with the following easy observation which will
be useful later.

Proposition 2.22. If UV = 0 for two normal elements in a C*-algebra
then

U'v =vU* =0,
VU =UV*=VU=0.

Its proof is straightforward, hence omitted.

3. QISO computation of the braid group

In this section we will compute the quantum isometry group of the braid
group with 3 generators. The group has a presentation

I' =<a,b,c| ac = ca,aba = bab, cbc = bcb>.
Here S = {a,b,c,a b1, ¢t}
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Theorem 3.1. Let I' be the braid group with above presentation. Then
Q(T, S) = Dy (Dg(C*(I"))) with the choices of automorphisms as in Propo-

sition 2.21 given by:
01(a) =a=1,60,(b) =b"1,0:(c) =,
O2(a) = ¢, 02(b) = b,02(c) = a,
O3(a) = ¢, 03(b) = b~ ', 03(c) = a .

Proof. Let the action « of Q(I", S) be given by
(M) = M®@A+ X 1@B+XM00 + N 1@D + A®F + A\ 1 ®F,
a(Xg-1) = A@B* + A m1 QA+ M@ D* + A1 @C* + A @ F* + A1 Q B,
a(Ap) = A®@G+ A1 QH + XNy RI +X)-10J + ARK + A -1 ®L,
a(Ny-1) = M@ H* + X1 @G* + X @J* + N1 @I + A @ L* + A1 @ K™,
a(Ae) = X@M + 2, 1N + @0 + Xy 1@P +A.2Q + A\, 1®R,
(A1) = A@N* + X 1 @M* + M@ P* + Xy 1 R0* + A\ QO R* + A1 0Q*.

Then, the fundamental unitary is of the form

A B C D FE F
B* A* D* C* F* FE*
G H I J K L
H G* J* I* L* K*
M N O P @ R
We need a few lemmas to prove the theorem.

Lemma 3.2. All the entries of the above matrix are normal.

Proof. First, using the condition a(Age) = a(Ae) comparing the coeffi-
cients of A2, A\g—2, Ap2, \p—2, A2, A.—2 on both sides we have

AM =MA, BN=NB, CO=0C, DP=PD, EQ=QF, FR=RF.
(3.1)

Applying the antipode we get
AE=FA, BF=FB, GK=KG, HL=LH, MQ=QM, NR=RN.
(3.2)
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Similarly, from the relation a(A,.-1) = a(A.-1,) following the same argu-
ment as above, one can deduce the following

AF=FA, BE=EB, GL=1LG, HK = KH, NQ=QN, MR = RM.
(3.3)
We observe AE* 4+ FB* = 0 by comparing the coefficient of A\ ,.-1 in the
expression of a(A;)a(A,-1). This shows that AE*A* = 0 as B*A* = 0.
Thus, (AE)(AE)* = AEE*A* = E(AE*A*) = 0. Similarly, all the terms
of the equations (3.1), (3.2) and (3.3) are zero.
Further, using the condition a(Ag)a(A,-1) = a(A;-1)a(Ag) = Ae @ 1g
one can deduce

AC* =AD" =CA*=C*A=DA*=D*A =0,
A*C = A*D = BD*=D*B=BC*=B*"C=C*B =0.

Applying the antipode we have

AG*=G"A=AH=HA=BG=BH"=H*"B=GB=0.

Similarly from a(Ap)a(Ay-1) = a(Ay-1)(Ny) = Ae ® 1 one obtains

CJ=JC=CI'=rc=c'r=I1C*=JC*=Cc*"J" =0,
DI=ID=DJ"=J"D=0.

Again using a(Ac)a(A-1) = a(A-1)a(Ae) = Ae ® 1g we have,
EL=LE=FEK*"=K'E =0,
FK=KF=FL"=L"F=0.

Moreover, using the relation a(Agpe) = @(Apap) We obtain a(Agp) =

a(Apapa-1)- From a(Agp) = a(Apgpe-1) comparing the coefficients of A2

and Ay-2 on both sides we obtain CI = DJ = 0. Now applying the an-
tipode we get I*G* = JH = 0. This implies GI = JH = 0. Again from
a(Agy-1) = a(Ap-1,-1p,) and applying previous arguments we can deduce

CJ* = DI* = 0. Applying antipode we get GJ = IH = 0. Now from the

unitarity condition we know GG*+ HH*+ 11"+ JJ*+ KK*+ LL* = 1.

This shows that G?G* = G as we have already got GH = GI = GJ =

GK = GL = 0. In a similar way, it follows that G*G? = G. Thus we

can conclude that G is normal. Using the same argument as before we

can show that H, I, J, K, L are normal, i.e. all the elements of 3rd row are
normal. Using the antipode the normality of C, D, O, P follows.
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Now we are going to show that A, B, E, F, M, N, (Q, R are normal too.
Using AA*+ BB*+ CC*+ DD* + EE* + FF* = 1 we can write

A=A(AA*+ BB*+CC*+DD*+ EE* + FF™)
= A2A* + ACC* + ADD* (as AB = AE = AF =0)
= A%2A* + (AC*)C + (AD*)D (as C, D are normal)
= A%2A* (as AC* = AD* =0).

Similarly A*A? = A, hence A is normal. Following exactly a similar line
of arguments one can show the normality of the remaining elements. [J

Lemma 3.3. C=D=G=H=K=L=0=P=0.

Proof. From the relation a(Ase) = a(Aea) equating the coefficients of
Abas Aabs Agh—15 Ap—1, On both sides we get AO = MC,CM = OA, AP =
MD,CN = OB. This implies that CMM* = OAM* = 0,CNN* =
OBN* = 0 as AM* = BN* = 0. Similarly one can obtain CQQ* =
CRR* = 0. Now using (AA* + BB* + GG* + HH* + MM* + NN*) = 1
we have

C=C(AA"+BB*+GG*+HH*+ MM*+ NN*)
=C(AA"+BB*+GG*+ HH*) (asCMM*=CNN* =0)
=C(GG*+ HH*) (as CAA*=CA*A=0, CBB*=CB*B =0).

Moreover, we have

C=C(EE*+FF'+ KK"+ LL" 4+ QQ"+ RR")
=C(KK*+ LL* +QQ* + RR*) (as CE* = CF* =0)
=C(KK*+ LL*) (as CQR*=CRR*=0).

Using the above equations we get that C(KK* + LL*)(GG* + HH*) =
C(GG*+ HH*) = C =0 (as KG = KH = LG = LH = 0). Simi-
larly, we can find D = 0. Then we have G = H = 0 by using the an-
tipode. Moreover, AO = MC = 0,AP = OB = BO = 0. This gives us
O=(A*"A+B*B+ M*M + N*N)O = 0. Similarly, we get P =0, K =
L =0. O
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Applying the above lemma, the fundamental unitary is reduced to the
form

A B 0 0 E F
B* A* 0 0 F* E*
0o 0 I J 0 0
0 0 J°I* 0 0
M N 0 0 Q R
N* M* 0 0 R* Q

Lemma 3.4.
AIA=TAI,BJB = JBJ, AQ = QA,
QIQ=I1IQI,RJR=JRJ,BR =RB,
AJ=BI=AR=BQ=1IR=JQ =0,
EIE=IFEI.FJF =JFJ EM =ME,
MIM =IMI,NJN =JNJ,FN = NF,
EJ=FI=EN=FM=IN=JM =0.

Proof. First of all we deduce the following relations among the generators,
aba = bab, a vl = b7 a0, ab e = b e,
atba =bab™t, ba bt =a b ta, b lab = abal.

We also get same relations replacing a by c. Using the condition a(Agpa) =
a(Apep) and comparing on both sides the coefficients of Agpa, Ag—1p-14-1,
Aab—1a-15 Aa—1bas Mba—1p—15 A\p—1gp ONE CaN get

AIA=TAI,BJB=JBJ,AJB = JBI,

BIA=TAJ IBJ = BJA,JAI = AIB.
Moreover, comparing the coefficients of A p-14, Ag=1pa-15 Apa—18s Ap—1gb-1
on both sides we have

AJA=BIB=IBI=JAJ =0.

Similarly, equating the coefficients of Agpe, Ap-1p-10-1, Agp—1o-1, Ap—1pe,
Abe—1p—1, Ap—1. We also find

FEIE=I1FEI,FJF =JFJ, EJF = JFI,

FIE=IFEJ,IFJ=FJE,JEI = EIF.
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Furthermore, comparing the coefficients of A y—1., Ap=1pe—1, Ape—1ps Ap=1p—1
on both sides we have

EJE=FIF=IFI=JEJ=0.

Now our aim is to show JA = IB = 0. We have JAI?> = AIBI as
JAI = AIB, this implies JAI? = 0 because of IBI = 0. This shows that
JAI = 0 as we proved before I2I* = I. Thus we can deduce

JA=JA(II* + JJ)
= (JANI* + (JAJ)J* (as JAI = JAJ =0)
=0.
Similarly, it follows that IB = 0. Now using Proposition 2.22 we get
JA = AJ = IB = BI = 0. In a similar way one can prove that EJ =
JE=1IF=FI=0,and MJ=IN=1IR=J@Q =0 as well. Now
AR=A(II"+ JJ)R
= (AI")(IR) + (AJ)(J*R)
=0 (asIR=AJ=0).
We get BQ = EN = FM = 0 applying similar arguments as above.
The only remaining part of the lemma is to prove AQ = QA,BR =

RB,EM = ME,FN = NF. Using Lemma 4.5 of [13] we can get the
desired equality. O

The proof of Theorem 3.1 follows by combining Lemmas 3.2, 3.3, 3.4
and Proposition 2.21. ([l

We can also prove the obvious analogue of Theorem 3.1 for the braid
group with 2 generators.

Theorem 3.5. Let ' be the braid group with 2 generators. It has a pre-
sentation

I' = <a,b | aba = bab>
where, S = {a,b,a",b"'}. Then Q(T',S) = Dy (De(C*(T))) with the
choices of automorphisms as in Proposition 2.21 given by
01(a) =a™t, O1(b)=b"",
b2(a) =b, 62(b) = a,
03(a) =b7, 63(b)=a"l.
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The proof is omitted because it involves very similar computations and
arguments as in Theorem 3.1.

4. Alternative description of the quantum groups H;(n,0), K,
and computing the QISO of free copies of Z,

We recall the quantum groups H; (n,0), K;" which are discussed in [3], [4]
and [2]. K, is the universal C*-algebra generated by the unitary matrix
((wi;)) which is described in Subsection 2.3 subject to the conditions given
below.

(1) Each wu;; is normal, partial isometry.

(2) Ui Uik, = O,ujiuki =0V i,j, k with ] 7& k.
H (n,0) is the universal C*-algebra satisfying the above conditions and
IMOTEOVeT, U;; = ufj_l. In this section we are giving another description
of these objects in terms of free wreath product motivated from the fact
H" = C*(Zs) *w C(S;T) (see [5]). First of all, we compute the quantum
isometry group of n free copies of Zy.

Theorem 4.1. Let T’ be Zy*Zy---* Ly, then Q(T') will be Q(Zy) *u
—_————

n copies
C(Sy)-
Proof. The group is presented as follows:

I'=<ay,ag, - -ay | ola;)) =4V i>

Now the fundamental unitary is of the form

An A Az A o Ajge—y Az
12 An 14 13 Alen  Alea-n
Aoy Az Asz Ay o Ay Ao
U=|4% 45 54 Azz - A;(Qn) A;(Qn—l) (4.1)
Amp Anz Az Ana o Apon- Anen)
n2 An nd 3 Anen Anea-n
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Assuming the unitarity of (4.1) we have

Z Ak(2j-1)Ak(2j) T Ar2j)Ar(2j—1) =0V k.
j=1
Note that the condition a/(A a? )= a()\a;1) V k, is equivalent to the follow-

ing, which are obtained by comparing the coefficients of all terms on both
sides

Arpjo1) = (A%(ijl) + Ai(Qj))Ak@j—l)
j—1
+ Ak 2j) [ (Ar@i—1)Ar@) + Ak Arei-1))
t=1

n

+ > (Ag@—1) Ak +Ak(2t)Ak(2t1))‘| Vk,j
t=i11
(4.2)

At = (Af i1y + AR 2j) Ak

1
+ Agzj-1) [Z (Apat—1)Ar(2t) + Ar(2n) Ar(2t—1))

n

+ > (Ak(zt1)Ak(2t)+Ak(2t)Ak(2t1))] Vk,j
t=j+1

(Afej_1) + ARj) Ak =0 Vi, j,k with i # j (4
(AF(2j-1) + AR (2 Arai-1) = 0 Vi, j, k with i # j (4
A (AR 1)+ ARj) =0 Vi gk with i # j (4.
Agi-ny(Af iy T Ahpy) =0 Vi gk with i # (4
ApAAgr =0 YV k,p, L7 (4
except for
p=2j—-1,1=2j, p=2j,l=2j—1 Vj
1=2j—1,r=2j, l=2j,r=2j—1 Vj

p=Il, l=r, p=l=r.
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Moreover, the condition a(Ag,)a(A,~1) = a(A,-1)a(Ag,) = a(Xe) = Ae ®
k k

1g is equivalent to the following, which are obtained by comparing the

coeflicients of all terms on both sides

2n 2n
S AGAL =1, Y ALAy =1 Yk (4.9)

j=1 Jj=1
Ap2j-1)Ak@io1) = Arej-1)Ak@) =0 Vig kwithiZj  (4.10)
Aoy Araiot) = Aron Aoy =0 ¥ ivjok with i # j (4.11)
Ay Arioin) = Afyo Ak =0 Vigkwithi#j  (4.12)
Aoy Aoy = Aoy Aoy =0 Vi jok with i # j (4.13)

Ak(2j-1)Arezg) + Ak Akj-1)
= Ao 0 Arei) T AropArei-n =0 Ykj o (4.14)

Then, the underlying C*-algebra of Q(Zy * Zy---* Z4) is the universal

n copies
C*-algebra generated by A;;’s satisfying the conditions (4.2) to (4.14) and
U, U? both are unitaries. Now, we will prove the following equations:

2n 2n
DAGAG =1, > AjAL =1, Vi (4.15)
=i =1
Ajj—nAicr) = Aij—)Aiak—1) =0, Vi, g,k with j #k
AipAicer = Aiej)Aiek-1) =0, Vi, jk with j #k (
Ajid =0, Y i,jk with j #k (4.18
soion = (Afgj 1) + Ao Aij—1) VirJ (
* 2 2 o
Ho) = (Aipj_1) T Aipy))Aisy YV isJ (
Aj2j-1)Ai2g) + Aip)Aij—1) =0 Vi, j (
Multiplying AZ(2j) and AZ(zjq) on the right side of the equations (4.2
and (4.3) respectively we can find
Ak2i—1) Ak = (Ai(Qj—l) + Ai(Zj))Ak(ijl)AZ:(Qj) vk, j (4.22)
A on Ao = (AR + Arei) Arei Ar@i—y Y ki (423)
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by using (4.10) and (4.11). Now adding the equations (4.22) and (4.23)
we get

Ak-1 Ak + Ak Arei-
= (Ai(Zj—l) + Ai(Qj))(Ak(Zj—l)Al:@j) + Ak(2j)A1:(2j—1))
=0 (by using (4.14)).

Taking the adjoint we have Ayg;_1) Arej) + ArejArej-—1) = 0V k. J,
which means (4.21) is satisfied.

Thus, from (4.2) and (4.3) we get (4.19) and (4.20). From (4.21), one can
easily get AZy 1) Ai(aj) = Ai(aj) Afg;_1) and Afp ) Ayaj1) = Ajoj—1)AZ o).
Then, we can conclude that all A;;’s are normal from the equations (4.19)
and (4.20). Hence, the equations (4.16), (4.17) are obtained from (4.10)
to (4.13) by Proposition 2.22. Applying antipode on (4.16) and (4.17),
using Proposition 2.22 we obtain (4.18). Moreover, (4.15) follows by (4.9),

unitarity of U’ and normality of A;;’s.

Now consider the universal C*-algebra B generated by B;;’s satisfying
the equations (4.15) to (4.21) replacing A;;’s by B;j’s. Thus by universal
property of B we always get a surjective C*-morphism from B to the
underlying C*-algebra of Q(Zy * Zy - - - * Z4) sending B;; to A;j.

n copies
On the other hand, we want a surjective C"*-morphism from the asso-
ciated C*-algebra of Q(Zy * Zy - -- x Z4) to B sending A;; to B;j, which

n copies
will give an isomorphism between B and the underlying C*-algebra of
Q(Z4 * Zy - - - ¥ Z4). Now, we have equations (4.15) to (4.21) with A;;’s re-

n coples

placed by Bj;’s. We input Byj, Bj; in the matrix (4.1) instead of A;;, A,
call it U. Observe that each B;; is normal from (4.19) to (4.21). Using the
equations (4.15) to (4.21) and normality of B;;’s we get the unitarity of
U and U, hence (4.9) holds. Equations (4.4) to (4.8), (4.10) to (4.13) are
obtained from (4.16) to (4.18) by Proposition 2.22 and (4.2), (4.3), (4.14)
are also satisfied using the equations (4.19), (4.20) and (4.21).

Then, by the universal property of the associated C*-algebra of

Q(Zy*Zy - - -xZy), we get a surjective C*-morphism from Q(Zy*Zy - - -xZy4)
—_————— —_——

n copies n copies
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to B sending A;; to B;;, completing the proof of the claim that the underly-
ing C*-algebra of Q(Zy * Zy - - - * Z4) is the universal C*-algebra generated

n copies

by A;;’s satisfying the equations (4.15) to (4.21).

Now, consider the transpose of the matrix (4.1). We denote the entries
by v;j. From the co-associativity condition we can easily deduce the co-
product given by A(vi;) = T3 vik & Vg

Recall the quantum group Q(Z4) from [7]. The underlying C*-algebra
associated to Q(Z4) is the universal C*-algebra generated by two elements
u and v satisfying the following relations:

uu® +vv* =1, uv +ovu =0,
uw* = (u? +vHu, v* = (u? +0?).
Moreover, Q(Z4) *,, C(S;}) is the universal C*-algebra C*{Usz;_1, Us;, t;; |
i=1,---nand j=1,---(n—1),n} satisfying the following conditions:
Ugi—1Us;_q + U2iUs; = 1, Ui 1Us; + UgiUz;—1 =0, Vi
Us;_y = (U1 + Us))Usi1, Us; = (Us;_y + U3;)Usi, Vi

tij —t2 =t Ztij = thi =1,
( J

tiitin = O, tiitr: = 0V, j, k with j # k,
Usi—1tij = t;jUsi—1, Uzityj = t;;U2; Vi, j.

Its coproduct is given by

A (Ugi—1) = Ugi—1 @ Ugi—1 + Us; @ Uy,
A (Uy;) = Uz @ Ugj—1 + Uy 1 @ Usy,

tzg thl 02y tl]

It is clear from the description of Q(Zy % Zy - - - x Z4) as the universal C*-

n copies
algebra generated by A;;’s subject to (4.15)-(4.21) that we can define a
C*-morphism 7 from (C*{A4;; |i=1,---nand j=1,---(2n—1),2n},A)
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to (C*{Uzi—1,Uz,tij |i=1,---nand j=1,---(n—1),n}, A’) given by
Aj2i-1) — Uzimatiy,
Aj(%) — Ugitij N Z,]

Conversely, we can define a C*-morphism 7’ from (C*{Ug;i—1, Ua;, tij |
i=1,--nandj=1,---(n—1),n},A") to (C*{A4;; |i=1,---nand j =
1,---(2n—1),2n}, A) given by

Usgi—1 — 271 A 1),
Uni = Ej14;(2i),
tij — Aj(2i—1)A;(2i71) + Aj(%)A;(%)‘

It is easy to see that n'on = idQ(Z4 ¥ T % L)’ non’ = idQ(Z4)*wC(57{)'

n copies

In fact, n and 7’ are CQG isomorphisms. This completes the proof. (Il

Remark 4.2. The quantum groups H; (n,0), K;" can be described in a
similar way. For finite s > 2

HJ (n,0) = [C*(Zs) ® C"(Zs)] *w C(Sy),
and
Ky =2 [CN(Z) & C*(Z)] % C(Sy),

where [C*(Zs) ® C*(Zs)] and [C*(Z) @ C*(Z)] admit a CQG structure as
in [7]. These facts can be proved by essentially the same arguments of
Theorem 4.1.

Corollary 4.3. Using the Theorem 4.1, Remark 4.2 and the result of [5]
we can conclude that for every finite s,

Q(Zg % Zg -+ * Ls) = Q(Zs) %4 C(S;).

n copies

Remark 4.4. If we consider I' = Z,, * Z,, where n is finite, then Q(T") is
doubling of the quantum group Q(Z,) * Q(Z,). In particular for n = 2,
Q(I') becomes doubling of the group algebra as Q(Zz) = (C*(Z2), Az,)
and C*(ZQ) *C*(Zg) = C*(ZQ * ZQ).
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5. Examples of (I',S) for which Q(I") = Dy(C*(T"))

We already mentioned in Subsection 2.4 that, if there exists a non triv-
ial automorphism of order 2 which preserves the generating set, then
Dy(C*(I")) ([17], [14]) will be always a quantum subgroup of Q(T"). In [7],
[14], [18] the authors could show that Q(I') coincides with doubled group
algebra for some examples. In Section 5 of [13] together with Goswami
we also gave few examples of groups where this happens. Our aim in this
section is to give more examples of such groups.

5.1. Zg X Zg

The above group has a presentation I' = <h, g | o(g) =9,0(h) =3,h " 1gh=
g*>. Using Lemma 5.3 of [13] its fundamental unitary is of the form

A B 0 0
B A 0 0
0 0 G H
0o 0 H* G*
Now the action is defined as
Oz(>\h) = )\h QR A+ )\h—l X B,
O[()\h—l) = )\h ® B* + )\h—l & A*,
Oé()\g) = )\g ®R G+ )\9—1 ® H,
a(Ag-1) =A@ H" + X1 @ G™.
First we are going to show that B = 0.

We have a(Agn) = a(Ayg1),a(Ag1) = A @ G* + X\pa @ H* as GH =
HG = 0. Equating all the terms of a(Agn) = a(Apg4) on both sides we
deduce

GA=AG* HA= AH*,GB=HB = BG*=BH*=0.

Thus, B = (G*G+ H*H)B =0as (G*G+ H*H)=1,GB = HB = 0.
This gives the following reduction:

A 0 0 O
0 A 0 0
0 0 G H
0 0 H* G
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Moreover, using the relations between the generators one can find
A*GA =G A"HA = H* A*G = G*A*, A*H = H* A*.
Now using the above relations we can easily show that G*G, H*H are

central projections of the desired algebra, hence Q(T',S) is isomorphic to
Dy(C*(I')) by Proposition 2.20, with the automorphism g + g~', h + h.

5.2. (Zo * Zs) X Lo
The group is presented as I' = <a, b, c | ba = ab, bc = cb, a® = b*> = ¢*> = e>.
Here S = {a, b, c}. The action is given by

M) =X @A+ N @B+ A ®C,

aM) =X D+ NMRE+ A ®F,

a(Ae) =X G+ H+ A ® K.

Write the fundamental unitary as

A B C
D E F].
G H K

Our aim is to show D =B =F = H = 0.

Applying a(A,2) = Ae ® 1g and comparing the coefficients of A4, Acq
on both sides we have AC = C'A = 0. Using the antipode one can get
AG=GA=0.

Applying the same process with b, ¢ we can deduce

DF =FD=BH=HB =0,
GK=KG=CK=KC=0.
Further, using the condition a(A.;) = a(A\p,) comparing the coefficients
of Age, Acq On both sides we can get AF = DC,CD = FA. Applying
k we have HA = GB,AH = BG. Proceeding the same argument with
a(Aep) = a(Mpe) one can find
DK =GF,KD = FG,
KB=HC,BK =CH.
Again we have, GH + HG = 0 from a()\,2) = \¢ ® 1g comparing the
coefficient of A\, on both sides. Now AHG = BG? as we know AH = BG.
Further we have —AGH = BG? as GH = —HG. Thus we get BG? = 0
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as AG = 0. Similarly it can be shown that BK? = 0, obviously BH? = 0
as BH = 0. Hence, B = B(G* + H> + K?) =0 as (G* + H> + K?) = 1.
This gives D = 0 by using the antipode.

Now HA = 0,HC = 0 as we get before HA = GB,HC = K B. This
implies H = H(A%+C?) = 0, and applying the antipode F' = 0. Thus the
fundamental unitary is reduced to the form

A0 C
(OEO) (5.1)
G 0 K

It now follows from Proposition 2.20 that Q(T") = Dy(C*(T")) with respect
to the automorphism a — ¢,c + a, b+ b.

Remark 5.1. The above CQG can be identified with Q(Zz * Z2)®Q(Zz2),
which is clear from the form of fundamental unitary (5.1) after reduction.

5.3. Lamplighter Group

The group is presented as ' = <a,t | a = [t™at™™, t"at "] = e> where
m,n € 7.
Fundamental unitary is of the form

A B C
D E F .
D* F* E*

Now the aim is to show B=C =D = 0.

Using the condition a()\,2) = a(Ae) = A ® 1g we deduce D? = 0, this
implies B2 = C? = 0 applying the antipode. Further, we know DD* +
EE* + FF* = 1, which gives us DEE* + DFF* = D as D? = 0. If we
can show DE = DF = ( then we will be able to prove our first claim i.e,
D =0.

Using group relations we deduce t(m=™qt=(m=n)g = gt(m=n)g—(m=—n)
[where m,n € Z]. In particular, t~'ata = atat™!, tat~'a = atat~!, which
gives us at = tat 'ata. Now using the condition a(Ae) = a(Agr-1ata)
comparing the coefficient of \;2 on both sides we have BE = 0 because
there are no terms with coefficient A2 on the right hand side as D? =
BF = BE* = FB = E*B = 0. Applying the antipode one can get
DE = 0. Similarly, using the relation a(Ag-1) = a(A—144q1-1,) following
the same argument we can deduce BF* = 0, DF = 0. Hence, we get D =

244



QUANTUM ISOMETRY GROUP

0. This gives us B = C' = 0 using the antipode. Thus, the fundamental
unitary is reduced to the form

A 0 O
0 E F|.
0 F* E*

From the relation of the group one can easily get,
AE = FAE*AFEA,E*A = AE*AEAE", AE* = E*AEAE™ A.
Thus we have,
AFEE* = FEAE*AEAE* = E(AE*AEAE™*) = EE*A,

hence EE* is a central projection. Similarly, F'F™* is a central projection.
Now we can define the map from C*{A, E, F'} to C*(I') & C*(I") such as
A= Aa® ), E—~ (M®0), F— (06 A\;—1). This gives the isomorphism
between these two algebras, which is also a CQG isomorphism and by
Proposition 2.20 corresponding to the automorphism a + a,t — t~ we
can conclude that Q(I") = Dy(C*(I")) .
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