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A Note on Free Quantum Groups

TEODOR BANICA

Abstract

We study the free complexification operation for compact quantum groups,
G — G°. We prove that, with suitable definitions, this induces a one-to-one cor-
respondence between free orthogonal quantum groups of infinite level, and free
unitary quantum groups satisfying G = G°.

Une Note sur les Groupes Quantiques Libres

Résumé
On étudie l'opération de complexification libre pour les groupes quantiques
compacts, G — G°. On montre qu’avec des définitions convenables, cette opération
induit une bijection entre groupes quantiques orthogonaux libres de niveau infini,
et groupes quantiques unitaires libres satisfaisant G = G°.

Introduction

In this paper we present some advances on the notion of free quantum
group, introduced in [3]. We first discuss in detail a result mentioned
there, namely that the free complexification operation G — G¢ studied
in [2] produces free unitary quantum groups out of free orthogonal ones.
Then we work out the injectivity and surjectivity properties of G — G¢,
and this leads to the correspondence announced in the abstract. This
correspondence should be regarded as being a first general ingredient for
the classification of free quantum groups.

We include in our study a number of general facts regarding the oper-
ation G — G¢, by improving some previous work in [2]. The point is that
now we can use general diagrammatic techniques from [4], new examples,
and the notion of free quantum group [3], none of them available at the
time of writing [2].

Work supported by the CNRS and by the Fields Institute.
Keywords: Free quantum group.
Math. classification: 16W30.
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T. BANICA

The paper is organized as follows: 1 contains some basic facts about the
operation G — G, and in 2-5 we discuss the applications to free quantum
groups.

1. Free complexification

A fundamental result of Voiculescu [6] states if (s1,. .., S,) is a semicircular
system, and z is a Haar unitary free from it, then (zs1, ..., zsy) is a circular
system. This makes appear the notion of free multiplication by a Haar
unitary, a — za, that we call here free complexification. This operation
has been intensively studied since then. See Nica and Speicher [5].

This operation appears as well in the context of Wang’s free quantum
groups [7], [8]. The main result in [1] is that the universal free biuni-
tary matrix is the free complexification of the free orthogonal matrix. In
other words, the passage O,;F — U,T is nothing but a free complexification:
U = O;f¢. Moreover, some generalizations of this fact are obtained, in
an abstract setting, in [2].

In this section we discuss the basic properties of A — A, the functional
analytic version of G — G°. We use an adaptation of Woronowicz’s axioms
in [9].

Definition 1.1. A finitely generated Hopf algebra is a pair (A, u), where
A is a C*-algebra and u € M, (A) is a unitary whose entries generate A,
such that

Aluij) = Z Uik & Uk
e(uij) = 0ij

Sui;) = uj
define morphisms of C*-algebras (called comultiplication, counit and an-
tipode).

In other words, given (A, u), the morphisms A e, S can exist or not. If
they exist, they are uniquely determined, and we say that we have a Hopf
algebra.

The basic examples are as follows:

(1) The algebra of functions A = C(G), with the matrix v = (u;;)
given by g = (u;(g)), where G C Uy, is a compact group.
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A NOTE ON FREE QUANTUM GROUPS

(2) The group algebra A = C*(I'), with the diagonal matrix u =
diag(g1,...,9n), where I' =< ¢1,..., g, > is a finitely generated
group.

Let T be the unit circle, and let z : T — C be the identity function,
z(x) = x. Observe that (C(T),z) is a finitely generated Hopf algebra,
corresponding to the compact group T C Uy, or, via the Fourier transform,
to the group Z =< 1 >.

Definition 1.2. Associated to (A4, u) is the pair (A, @), where A ¢ C(T)*
A is the C*-algebra generated by the entries of the matrix o = zu.

It follows from the general results of Wang in [7] that (A, @) is indeed a
finitely generated Hopf algebra. Moreover, « is the free complexification of
u in the free probabilistic sense, i.e. with respect to the Haar functional.
See [2].

A morphism between two finitely generated Hopf algebras f : (A,u) —
(B,v) is by definition a morphism of x-algebras A, — Bs mapping u;; —
v;j, where A, C A and B, C B are the dense x-subalgebras generated
by the elements wu;;, respectively v;;. Observe that in order for a such
a morphism to exist, u,v must have the same size, and that if such a
morphism exists, it is unique. See [2].

Proposition 1.3. The operation A — A has the following properties:
(1) We have a morphism (A, @) — (A, u).
(2) A morphism (A,u) — (B,v) produces a morphism (A, ) — (B, 7).
(3) We have an isomorphism (A, ) = (A, ).
Proof. All the assertions are clear from definitions, see [2] for details. O
Theorem 1.4. If ' =< g1,...,9n > is a finitely generated group then
C*(T) =~ C*(Z % A), where A =< g g; | i,j=1,...,n>.

Proof. By using the Fourier transform isomorphism C(T) ~ C*(Z) we
obtain C*(I') = C*(I'), with I' C Z x I'. Then, a careful examination of
generators gives the isomorphism I' ~ Z x A. See [2] for details. O

At the dual level, we have the following question: what is the compact
quantum group G¢ defined by C(G¢) = C(G)? There is no simple answer
to this question, unless in the abelian case, where we have the following

result.
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Theorem 1.5. If G C U, is a compact abelian group then C(G) = C*(Zx
L), where L is the image of G in the projective unitary group PU,.

Proof. The embedding G C U,, viewed as a representation, must come

from a generating system G =< g1,...,gn >. It routine to check that the
subgroup A C G constructed in Theorem 1.4 is the dual of L, and this
gives the result. O

2. Free quantum groups

Consider the groups S, C O,, C U,, with the elements of S,, viewed as
permutation matrices. Consider also the following subgroups of U,,:

1) S/ =Zs x Sy, the permutation matrices multiplied by +1.

2) H, =7Z55,, the permutation matrices with + coefficients.

(1)
(2)
(3) P, =T xS, the permutation matrices multiplied by scalars in T.
(4) K, =TS, the permutation matrices with coefficients in T.

Observe that H, is the hyperoctahedral group. It is convenient to collect
the above definitions into a single one, in the following way.

Definition 2.1. We use the diagram of compact groups
U, oD K, DO PF,

U U U

O, D H, D S
where S* denotes at the same time S and S’.

In what follows we describe the free analogues of these 7 groups. For
this purpose, we recall that a square matrix u € M, (A) is called:

(1) Orthogonal, if u = % and u! = u~1.
(2) Cubic, if it is orthogonal, and ab = 0 on rows and columns.

(3) Magic’, if it is cubic, and the sum on rows and columns is the
same.
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A NOTE ON FREE QUANTUM GROUPS

4) Magic, if it is cubic, formed of projections (a? = a = a*).

)
5) Biunitary, if both u and u' are unitaries.
6)

Cubik, if it is biunitary, and ab* = a*b = 0 on rows and columns.

(
(
(
(7) Magik, if it is cubik, and the sum on rows and columns is the same.

Here the equalities of type ab = 0 refer to distinct entries on the same
row, or on the same column. The notions (1, 2, 4, 5) are from [7, 3, 8, 7],
and (3, 6, 7) are new. The terminology is of course temporary: we have
only 7 examples of free quantum groups, so we don’t know exactly what
the names name.

Theorem 2.2. C(Gy) with G = OHS*UKP is the universal commu-
tative C*-algebra generated by the entries of a n X n orthogonal, cubic,
magic*, biunitary, cubik, magik matriz.

Proof. The case G = OHSU is discussed in [7, 3, 8, 7], and the case G =
S’K P follows from it, by identifying the corresponding subgroups. O

We proceed with liberation: definitions will become theorems and vice
versa.

Definition 2.3. A4(n) with ¢ = ohs*ukp is the universal C*-algebra
generated by the entries of a n x n orthogonal, cubic, magic*, biunitary,
cubik, magik matrix.

The g = ohsu algebras are from [7, 3, 8, 7], and the g = s'kp ones are
new.

Theorem 2.4. We have the diagram of Hopf algebras
Au(n) — Ap(n) —  Ap(n)

! ! l

Ao(n) — Ap(n) — As(n)
where s* denotes at the same time s and s'.

Proof. The morphisms in Definition 1.1 can be constructed by using the
universal property of each of the algebras involved. For the algebras A,psy
this is known from [7, 3, 8, 7], and for the algebras Agy, the proof is
similar. O
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3. Diagrams

Let F' =< a,b > be the monoid of words on two letters a, b. For a given
corepresentation u we let u® = u, u® = 4, then we define the tensor powers
u® with a € F arbitrary, according to the rule u®® = v @ uP.

Definition 3.1. Let (A, u) be a finitely generated Hopf algebra.
(1) CA is the collection of linear spaces {Hom(u®,u”)|o, 3 € F}.
(2) In the case u = % we identify CA with {Hom(u*,u')|k,l € N}.

A morphism (A,u) — (B,v) produces inclusions

Hom(u®,u”) ¢ Hom(v®,v?)

for any «a, 8 € F', so we have the following diagram:
CAu(n) C CAg(n) C CAy(n)

N N N

CAy,(n) C CAp(n) C CAg(n)

We recall that C'As(n) is the category of Temperley-Lieb diagrams.
That is, H om(uk , ul) is isomorphic to the abstract vector space spanned
by the diagrams between an upper row of 2k points, and a lower row of
2] points. See [3].

In order to distinguish between various meanings of the same dia-
gram, we attach words to it. For instance {,;, ), are respectively in
Dy (0, ab), Ds(0,ba).

Lemma 3.2. The categories for Ag(n) with g = ohsukp are as follows:
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A NOTE ON FREE QUANTUM GROUPS

(6) CAk(n) =< Hab’ Nlba,» | N ab’ ‘ N ‘

b
(7) CAp(n) =< Aups Poas | R 1%, TR 12, Ry B >

Proof. The case g = ohs is discussed in [3], and the case g = u is discussed
in [4]. In the case g = s'kp we can use the following formulae:

- -
A= D€
ij
= E €ii @ €
i

The commutation conditions | 5| € End(u® @) and | 5| € End(u ® u)
correspond to the cubik condition, and the extra relations 5 € End(u)
and R € End(u) correspond to the magik condition. Together with the
fact that orthogonal plus magik means magic’, this gives all the g = s’kp
assertions. O

We can color the diagrams in several ways: either by putting the se-
quence ryyrxyyx ... on both rows of points, or by putting «, 3 on both
rows, then by replacing a — zy,b — yx. We say that the diagram is col-
ored if all the strings match, and half-colored, if there is an even number
of unmatches.

Theorem 3.3. For g = ohs*ukp we have CAg4(n) = span(Dy), where:

(1) Ds(k,l) is the set of all diagrams between 2k points and 2l points.
(2) Dy(k,l) = Ds(k,l) for k —1 even, and Dy (k,1) =0 for k —1 odd.
(3) Dp(k,1) consists of diagrams which are colorable ryyrxyyx .

(4) Dy(k,l) is the image of Ds(k/2,1/2) by the doubling map.

(5) Dp(a, B) consists of diagrams half-colorable a — zy,b — yz.

(6) Dr(cv, B) consists of diagrams colorable a — zy,b — yx.

(7) Dy(a, B) consists of double diagrams, colorable a — xy,b — yz.

Proof. This is clear from the above lemma, by composing diagrams. The
case g = ohsu is discussed in [3, 4], and the case g = s'kp is similar. [
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Theorem 3.4. We have the following isomorphisms:

(2) Ap(n) = Ag(n).
(3) Ap(n) = Ag(n).

Proof. Tt follows from definitions that we have arrows from left to right.
Now since by Theorem 3.3 the spaces End(u @ 4 ® u ® ...) are the same
at right and at left, Theorem 5.1 in [2] applies, and gives the arrows from
right to left. (I

Observe that the assertion (1), known since [1], is nothing but the iso-
morphism U,” = O, mentioned in the beginning of the first section.

4. Freeness, level, doubling

We use the notion of free Hopf algebra, introduced in [3]. Recall that a mor-

phism (A, u) — (B,v) induces inclusions Hom (u®,u?) C Hom(v®,v?).

Definition 4.1. A finitely generated Hopf algebra (A, u) is called free if:
(1) The canonical map A,(n) — As(n) factorizes through A.

(2) The spaces Hom(u®,u”) C span(Ds(a, 3)) are spanned by dia-
grams.

It follows from Theorem 3.3 that the algebras A,pecyrp are free.
In the orthogonal case u = @ we say that A is free orthogonal, and in
the general case, we also say that A is free unitary.

Theorem 4.2. If A is free orthogonal then A is free unitary.

Proof. Tt is shown in [2] that the tensor category of A is generated by the
tensor category of A, embedded via alternating words, and this gives the
result. O

Definition 4.3. The level of a free orthogonal Hopf algebra (A, ) is the
smallest number [ € {0,1,...,00} such that 1 € u®?+1,

As the level of examples, for As(n) we have [ = 0, and for A,y (n) we
have [ = oo. This follows indeed from Theorem 3.3.
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A NOTE ON FREE QUANTUM GROUPS

Theorem 4.4. If | < oo then A= C(T) * A.

Proof. Let < r > be the algebra generated by the coefficients of r. From
1l e<u > we get z €< zu;; >, hence < zu;; >=< z,u;; >, and we are
done. 0

Corollary 4.5. A,(n) = C(T) * As(n).
Proof. For Ag(n) we have 1 € u, hence = 0, and Theorem 4.4 applies. [

We can define a “doubling” operation A — Ay for free orthogonal
algebras, by using Tannakian duality, in the following way: the spaces
Hom(u*,u') with k — [ even remain by definition the same, and those
with k£ — [ odd become by definition empty. The interest in this operation
is that As has infinite level.

At the level of examples, the doublings are A,ps+(n) — Agns ().

Proposition 4.6. For a free orthogonal algebra A, the following are equiv-
alent:

(1) A has infinite level.
(2) The canonical map As — A is an isomorphism.
(3) The quotient map A — Ag(n) factorizes through Ag(n).
Proof. The equivalence between (1) and (2) is clear from definitions, and

the equivalence with (3) follows from Tannakian duality. O

5. The main result

We know from Theorem 3.4 that the two rows of the diagram formed by
the algebras A,ps<ukp are related by the operation A — A. Moreover, the
results in the previous section suggest that the correct choice in the lower
row is s* = s’. The following general result shows that this is indeed the
case.

Theorem 5.1. The operation A — A induces a one-to-one correspon-
dence between the following objects:

(1) Free orthogonal algebras of infinite level.

(2) Free unitary algebras satisfying A = A.
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Proof. We use the notations vy = abab... and 6 = baba ... (k terms
each).

We know from Theorem 4.2 that the operation A — Ais well-defined,
between the algebras in the statement. Moreover, since by Tannakian du-
ality an orthogonal algebra of infinite level is determined by the spaces
Hom(u*,u') with k—1 even, we get that A — A is injective, because these
spaces are:

Hom(u*,u') = Hom((zu)", (zu)")
It remains to prove surjectivity. So, let A be free unitary satisfying
A = A. We have CA = span(D) for certain sets of diagrams D(«, ) C

Dy (a, 3), so we can define a collection of sets Da(k,l) C Dg(k,l) in the
following way:

(1) For k — [ even we let Dy(k,l) = D(vk, Vi)
(2) For k — 1 odd we let Do(k,1) = 0.

It follows from definitions that Co = span(D3) is a category, with du-
ality and involution. We claim that C5 is stable under ®. Indeed, for k!
even we have:

Dy (k,1) ® Da(p,q) = D(vk, ) ® D(vp,7q)
C D MYq)
(
2

-

= D(Vktp> Vi+q)
= Do(k+p,l+q)

For k,l odd and p, g even, we can use the canonical antilinear isomor-
phisms Hom(u<,u") ~ Hom(u’s,u’t), with K, L odd. At the level of
diagrams we get equalities D(~x,vr) = D(dk, 01 ), that can be used in the
following way:

DQ(k7l)®D2(p7 Q) D((Sk?&l)@D(prvfy(])
D(5k7p7 5Z'Yq)
D(0k4p; O1+4)

= Do(k+p,l+q)

N
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A NOTE ON FREE QUANTUM GROUPS

Finally, for k,l odd and p, g odd, we can proceed as follows:

Do(k,1) ® Da(p,q) = D(yk:m) @ D(6p, )
C  D(vkdp,710q)

= D(Yktp» Vitq)

Thus we have a Tannakian category, and by Woronowicz’s results in
[10] we get an algebra As. This algebra is free orthogonal, of infinite level.
Moreover, the spaces End(u ® 4 ® u ® ...) being the same for A and As,
Theorem 5.1 in [2] applies, and gives /[2 — A. Now since we have A = fl,

we are done. O
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