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Arborescences of covering graphs

Sunita Chepuri, CJ Dowd, Andrew Hardt, Gregory Michel,
Sylvester W. Zhang & Valerie Zhang

Abstract An arborescence of a directed graph Γ is a spanning tree directed toward a particu-
lar vertex v. The arborescences of a graph rooted at a particular vertex may be encoded as a
polynomial Av(Γ) representing the sum of the weights of all such arborescences. The arbores-
cences of a graph and the arborescences of a covering graph Γ̃ are closely related. Using voltage
graphs to construct arbitrary regular covers, we derive a novel explicit formula for the ratio of
Av(Γ) to the sum of arborescences in the lift Aṽ(Γ̃) in terms of the determinant of Chaiken’s
voltage Laplacian matrix, a generalization of the Laplacian matrix. Chaiken’s results on the
relationship between the voltage Laplacian and vector fields on Γ are reviewed, and we provide
a new proof of Chaiken’s results via a deletion-contraction argument.

1. Introduction
In this paper, we examine the relationship between arborescences of a graph and the
arborescences of its covering graph. An arborescence rooted at a vertex v in a directed
graph Γ is a weighted spanning tree of Γ that is directed towards v. We define Av(Γ)
to be the sum of the weights of all arborescences in Γ rooted at v. Using the Matrix
Tree Theorem [10, Theorem 5.6.8], we can compute Av(Γ) as a minor of the Laplacian
matrix of Γ.

It is natural to ask to what extent the arborescences of a graph Γ characterize
the arborescences of a covering graph Γ̃. Every arborescence of Γ lifts to a partial
arborescence of Γ̃, and this lift is unique if the root of the arborescence in Γ̃ is fixed.
Conversely, every arborescence of Γ̃ descends to a subgraph of Γ containing an ar-
borescence. These properties lead us to ask whether there is a meaningful relationship
between Av(Γ) and Aṽ(Γ̃), where ṽ is a lift of v. We show that Av(Γ) always divides
Aṽ(Γ̃), meaning that each arborescence of Γ corresponds to a set of arborescences of
Γ̃. The primary goals of this paper are to derive an explicit formula for the ratio Aṽ(Γ̃)

Av(Γ)
and to examine cases where this ratio is especially computationally nice.

The ratio Aṽ(Γ̃)
Av(Γ) first arose in Galashin and Pylyavskyy’s study of R-systems [3].

The R-system is a discrete dynamical system on a edge-weighted strongly connected
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simple directed graph Γ = (V,E,wt) whose state vector X = (Xv)v∈V evolves to its
next state X ′ = (X ′v)v∈V according to the following relation:∑

(u,v)∈E

wt(u, v)Xv

X ′u
=

∑
(v,w)∈E

wt(v, w)Xw

X ′v
.(1)

In (1), the vertex v is fixed, and the vertices u and w range over the start and
endpoints of the ingoing and outgoing edges of v, respectively. This system is homo-
geneous in both X and X ′, so we consider solutions in projective space. Galashin and
Pylyavskyy determined all solutions X ′ of this equation as a function of X:

Theorem 1.1 ([3]). The system given by equation (1) has solution

X ′v = Xv

Av(Γ) .

This solution is unique up to scalar multiplication, yielding a unique solution to the
R-system in P|V |.

However, we can see the value of X ′v in equation (1) depends only on the neigh-
borhood of the vertex v. Thus, in the case of a covering graph Γ̃, we may find two
solutions to the R-system: one by applying the previous theorem directly, and one by
treating each vertex of Γ̃ locally like a vertex of Γ, and then applying the theorem.
The two respective solutions are

X ′ṽ = Xṽ

Aṽ(Γ̃)
and X ′ṽ = Xṽ

Av(Γ) .

Therefore, uniqueness of the solution implies that the vectors(
Xṽ

Aṽ(Γ̃)

)
ṽ∈Ṽ

and
(

Xṽ

Av(Γ)

)
ṽ∈Ṽ

are scalar multiples of each other, where ṽ is any lift of v. Equivalently:

Corollary 1.2. When Γ is strongly connected and simple, the ratio Aṽ(Γ̃)
Av(Γ) is inde-

pendent of the choice of vertex v and of the choice of lift ṽ.

The existence of this invariance motivates finding an explicit formula for this ratio.
The following is the main theorem of this paper.

Theorem 1.3. Let Γ = (V,E,wt) be an edge-weighted multigraph, and let Γ̃ be a k-
fold cover of Γ such that each lifted edge is assigned the same weight as its base edge.
Denote by L (Γ) the voltage Laplacian of Γ. Then for any vertex v of Γ and any lift
ṽ of v in Γ̃ of Γ, we have

Aṽ(Γ̃)
Av(Γ) = 1

k
det[L (Γ)]Z[E].

If Γ̃ is a regular cover, it is a derived cover by a group G with |G| = k. In this
case, in the above formula det[L (Γ)]Z[E] is the determinant of L (Γ) as a Z[E]-
linear transformation. We may evaluate this determinant by restriction of scalars (see
Section 3 for details). For an arbitrary cover (including non-regular ones), the matrix
[L (Γ)]Z[E] can be determined concretely from the covering graph (Definition 3.4), so
the determinant can be explicitly computed.

When Γ̃ is a regular cover of prime order, we will be able to prove the following
refinement in Section 3.2:
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Corollary 1.4. Let p be a prime, let Γ = (V,E,wt, ν) be an edge-weighted Z/pZ-
voltage directed multigraph, and let L (Γ) be its voltage Laplacian matrix. Then for
any vertex v of Γ and any lift ṽ of v in the derived graph Γ̃ of Γ, we have

Aṽ(Γ̃)
Av(Γ) = 1

|G|
NQ(ζp)/Q (det [L (Γ)])

= 1
|G|

p−1∏
i=1

det[σi(L (Γ))]

where NQ(ζp)/Q (det [L (Γ)]) denotes the field norm of Q(ζp) over Q, naturally ex-
tended to a norm on Q(ζp)[E], and σi is the field automorphism on Q(ζp) mapping
ζp 7→ ζip.

In the case |G| = 2, we obtain a conjecture by Galashin and Pylyavskyy:

Corollary 1.5. Let Γ = (V,E,wt, ν) be an edge-weighted Z/2Z-voltage directed
multigraph, and let L (Γ) be its voltage Laplacian matrix. Then for any vertex v

of Γ and any lift ṽ of v in the derived graph Γ̃ of Γ, we have
Aṽ(Γ̃)
Av(Γ) = 1

2 det [L (Γ)] .

Corollary 1.5 follows directly from Corollary 1.4 by setting p = 2 and noting that
σ1 is the identity.

Theorem 1.3 allows us to easily conclude nice properties about the ratio:

Corollary 1.6. If the edge weights of Γ are indeterminates then the ratio Aṽ(Γ̃)
Av(Γ) is a

homogeneous polynomial in the edge weights with integer coefficients.

Proof. Since det[L (Γ)]Z[E] ∈ Z[E], Theorem 1.3 tells us that Aṽ(Γ̃)
Av(Γ) ∈ Q[E]. Note that

every coefficient of Av(Γ) is 1 since every edge of Γ has a different weight. Therefore,
Av(Γ) is a primitive polynomial over the integers, so by Gauss’ lemma, Aṽ(Γ̃)

Av(Γ) ∈ Z[E].
Homogeneity follows from the fact that every arborescence of a given graph has

the same number of edges. �

We furthermore conjecture the following (see Section 5):

Conjecture 1.7. Let Γ be a directed graph, Γ̃ a k-cover of Γ, v a vertex of Γ and ṽ
a lift of v in Γ̃. If the edge weights of Γ are indeterminates then the polynomial Aṽ(Γ̃)

Av(Γ)
has positive coefficients.

This conjecture suggests there may be a combinatorial interpretation of
det[L (Γ)]Z[E].

Conjecture 1.7 is motivated by the positivity property of cluster algebras. Cluster
algebras, introduced by Fomin and Zelevinsky [2], are rings with a distinguished set
of generators called cluster variables. Algebraically independent subsets of cluster
variables are called clusters. Galashin and Pylyavskyy’s R-systems are intimately
related to cluster algebras (see Section 9 of [3]), so it is reasonable to expect that
the ratio Aṽ(Γ̃)

Av(Γ) that arises in the context of R-systems may also be related to cluster
algebras.

It is obvious from the definition of a cluster algebra that given a cluster, we can
write all cluster variables as a rational function with all positive coefficients in the
variables of that cluster. However, it is also true (and not at all obvious) that this
rational function can always be simplified to a Laurent polynomial with positive
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coefficients. Our situation is similar: it is obvious that both Aṽ(Γ̃) and Av(Γ) have
positive coefficients. By Theorem 1.3, we know the ratio Aṽ(Γ̃)

Av(Γ) is a polynomial and we
believe that, as in the case of cluster algebras, this polynomial has positive coefficients.

It is also useful to explore the consequences of our main result in a graph theory
context, as it describes a relationship between a graph and its covers.

One might be interested in the ratio of the numbers of arborescences of Γ̃ and of Γ.
We can get this number from Theorem 1.3 by specializing the edge weights to 1:

Aṽ(Γ̃)|wt=1

Av(Γ)|wt=1
= 1
k

det[L (Γ)]Z[E]

∣∣∣∣
wt=1

.

It is conceivable that this special case might be easier to prove than the general
result, but we have not found this to be the case. It is worth noting that the positivity
conjecture is trivial in this setting, since the number of arborescences must always be
nonnegative.

Our main theorem is an example of a result relating an invariant of a graph to the
same invariant on its cover. It would be interesting to try to describe similar results
on a larger class of graph invariants.

problem 1.8. For which graph invariants I does the ratio I(Γ̃)
I(Γ) have nice properties?

For example, when can the ratio be expressed as an integer or a polynomial with
integer coefficients? When does the ratio have positivity properties?

One invariant for which our work gives a partial answer is the number of Euler
circuits. An Euler circuit in a directed graph is a cycle that uses each edge of the
graph precisely once. Euler showed that a graph has an Euler circuit precisely when
the graph is connected and every vertex has the same number of edges in and out. In
this case, the so-called “BEST” Theorem [12] gives a formula for the number of Euler
circuits E(G) of a graph G:

E(G) = Av(G)|wt=1 ·
∏

v vertex in G

(deg v − 1)!,

where deg v is the outdegree of v.
We can combine this formula with Theorem 1.3 to say:

Corollary 1.9.
E(Γ̃)
E(Γ) = 1

k
det[L (Γ)]Z[E]

∣∣
wt=1 ·

∏
v

((deg v − 1)!)k−1,

where the product is over the vertices in Γ. This quantity is a positive integer.

A recent example of this approach was taken by Verma [13], who explored the ratio
of Tutte polynomials between a graph and its cover. For certain very special graphs
and a particular specialization of the Tutte polynomial, the ratio in Problem 1.8 is
nice, although in general, the ratio of Tutte polynomials does not behave nearly as
nicely as the ratio of arborescence sums.

The rest of the paper will proceed as follows. Section 2 covers the background and
conventions necessary to read this paper. In this section, we also discuss the Laplacian
matrix and the Matrix Tree Theorem in greater detail, and give additional topological
background on covering graphs. In particular, we introduce the voltage graph, a con-
struction that allows us to compactly describe arbitrary regular covering graphs Γ̃ by
assigning a group-valued voltage to each edge of Γ. In Section 3, we prove the main
theorem. We also describe restriction of scalars and prove Corollary 1.4. Section 4
reviews some known results relating vector fields on voltage graphs to the voltage
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Laplacian. Vector fields are closely related to arborescences, and this discussion espe-
cially helps to frame the results of the case of 2-fold covers. We conclude with several
open questions in Section 5.

2. Background and Definitions
2.1. Arborescences. Let Γ = (V,E,wt) be an edge-weighted directed multigraph
with a weight function on the edges wt : E → R, for some ring R. We will usually
abbreviate “edge-weighted” to “weighted” and “directed multigraph” to “graph.” We
will consider the weights of the edges of G to be indeterminates, treating the weight
wt(e) of an edge e as a variable. Let the set of such variables be denoted wt(E). We
denote the source vertex of an edge e by es and target vertex of e by et. If an edge
has source v and target w, we may write e = (v, w). However, note that when Γ is
not necessarily simple, there may be more than one edge satisfying these properties,
so (v, w) may specify multiple edges. We denote the set of outgoing edges of a vertex
v by Es(v), and the set of incoming edges of v by Et(v).

Definition 2.1. An arborescence T of Γ rooted at v ∈ V is a spanning tree directed
towards v. That is, for all vertices w, there exists a unique directed path from w to
v in T . (1) We denote the set of arborescences of Γ rooted at vertex v by Tv(Γ). The
weight of an arborescence wt(T ) is the product of the weights of its edges:

wt(T ) =
∏
e∈T

wt(e).

We denote by Av(Γ) the sum of the weights of all arborescences of Γ rooted at v:

Av(Γ) =
∑

T∈Tv(Γ)

wt(T ).

Av(Γ) is either zero or a homogeneous polynomial of degree |V | − 1 in the edge
weights of G.

Example 2.2. Consider the following edge-weighted directed graph Γ.

1

23

a

bd
e

c

The arborescences rooted at 2 are:
1

23

bd

1

23

b .
e

The weight of the arborescence on the left is bd and the weight of the arborescence
on the right is be. So, A2(Γ) = bd+ be.

(1)In the literature, an arborescence rooted at v is usually defined to be a spanning tree directed
away from v, so that v is the unique source rather than the unique sink; see, for example, [7], [1],
and [4]. Our convention is consistent with the study of R-systems.
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2.2. The Laplacian matrix and the Matrix Tree Theorem. The Matrix Tree
Theorem, also known as Kirchhoff’s Theorem, yields a way of computing Av(Γ)
through the Laplacian matrix of Γ.

Definition 2.3. Label the vertices of Γ as v1, v2, . . . . The Laplacian matrix L(Γ) of a
graph Γ is the difference of the weighted degree matrix D and the weighted adjacency
matrix A of Γ:

L(Γ) = D(Γ)−A(Γ).
Here, the weighted degree matrix is the diagonal matrix whose i-th entry is

dii =
∑

e∈Es(vi)

wt(e)

and the weighted adjacency matrix has entries defined by

aij =
∑

e=(vi,vj)

wt(e).

Since we will always be working with weighted graphs in this paper, we will usually
drop the word “weighted” when talking about the Laplacian matrix. Note also the
ordering of the rows and columns of the Laplacian. We will always assume that v1
corresponds to the first row and column of L(Γ), that v2 corresponds to the second
row and column of L(Γ), and so on.

Theorem 2.4. (Matrix Tree Theorem) [1] The sum of the weights of arborescences
rooted at vi is equal to the minor of L(Γ) obtained by removing the i-th row and
column:

Avi(Γ) = det[Lii(Γ)].

Example 2.5. For the graph Γ from Example 2.2, we have

D(Γ) =

a+ b 0 0
0 c 0
0 0 d+ e

 , A(Γ) =

a b 0
0 0 c
d e 0

 , L(Γ) =

 b −b 0
0 c −c
−d −e d+ e

 .
Removing row and column 2 and taking the determinant, we get∣∣∣∣ b 0

−d d+ e

∣∣∣∣ = bd+ be.

As we computed in Example 2.2, this is A2(Γ).

2.3. Covering graphs, voltage graphs, and derived graphs.

Definition 2.6. A k-fold cover of Γ = (V,E) is a graph Γ̃ = (Ṽ , Ẽ) that is a k-fold
covering space of G in the topological sense that preserves edge weight. That is, we
require that a lifted edge in the covering graph has the same weight as its corresponding
base edge in the base graph. In order to use this definition, we need to find a way to
formally topologize directed graphs in a way that encodes edge orientation. To avoid
this, we instead give a more concrete alternative definition of a covering graph. The
graph Γ̃ = (Ṽ , Ẽ) is a k-fold covering graph of Γ = (V,E) if there exists a projection
map π : Γ̃→ Γ such that

(1) π maps vertices to vertices and edges to edges;
(2) |π−1(v)| = |π−1(e)| = k for all v ∈ V, e ∈ E;
(3) For all ẽ ∈ Ẽ, we have wt(ẽ) = wt(π(ẽ));
(4) π is a local homeomorphism. Equivalently, |Es(ṽ)| = |Es(π(ṽ))| and |Et(ṽ)| =
|Et(π(ṽ))| for all ṽ ∈ Ṽ .
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When we refer to Γ̃ as a covering graph of Γ, we assume a single distinguished pro-
jection π : Γ̃→ Γ has been fixed.

We do not require a covering graph to be connected. However, disconnected graphs
contain no arborescences, so our main quantity of interest Av(Γ̃) is always 0 in the
disconnected case.

Definition 2.7. A weighted permutation-voltage graph Γ = (V,E,wt, ν) is a
weighted directed multigraph with each edge e also labeled by a permutation
ν(e) = σe ∈ Sk, the symmetric group on k letters. This labeling is called the
voltage of the edge e. Note that the voltage of an edge e is entirely distinct from the
weight of e.

Definition 2.8. Given a permutation-voltage graph Γ, we may construct an k-fold
covering graph Γ̃ = (Ṽ , Ẽ,wt) of Γ. Γ̃ is a graph with vertex set Ṽ = V ×{1, 2, . . . , k}
and edge set

Ẽ := {[v × x,w × σe(x)] : x ∈ {1, . . . , k}, e = (v, w) ∈ Γ} .

Every covering graph of Γ can be constructed in this way.

Example 2.9. Let Γ be the permutation-voltage graph shown in Figure 1, where edges
labeled (x, y) have edge weight x and voltage y. Then we can construct a k-fold cover
Γ̃, with vertices (v, y) = vy and with edges labeled by weight, as shown in Figure 2.

1

23

(a, 321)

(b, 231)(d, 123)
(e, 132)

(c, 123)

Figure 1. A permutation-voltage graph Γ.

There is a special case of the above definitions that will be particularly useful for
us. Let G be a finite group of size k. Instead of assigning each lift of an edge an integer
in {1, . . . , k}, we assign it an element g of G. Each edge e of the base graph is assigned
a group element ge, and the permutation-voltage σe is obtained by the action of the
group: σe(x) := ν(e) · x. We will abuse notation and write ν(e) = ge. In this context,
we will call Γ a G-voltage graph.

Given a G-voltage graph Γ, the associated |G|-fold covering graph Γ̃ of Γ is known
as the derived graph. The vertex set of Γ̃ is Ṽ = V ×G and edge set

Ẽ := {[v × x,w × (gx)] : x ∈ G, e = (v, w) ∈ Γ, ν(e) = g ∈ G} .

Example 2.10. Let G = Z/3Z = {1, g, g2}, and let Γ be the G-voltage graph shown
in Figure 3, where edges labeled (x, y) have edge weight x and voltage y. Then the
derived graph Γ̃, with vertices (v, y) = vy and with edges labeled by weight, is shown
in Figure 4.

While derived graphs in one sense are a very special subclass of covering graphs,
they actually account for all regular covering graphs.
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11

2131

12

22
32

13

23

33

a

a

a

b

b
b

c

c c

d

d d

e

e

e

Figure 2. The K-fold covering graph Γ̃ of Γ in Figure 1. Edge colors
denote correspondence to the edges of Γ via the quotient map.

1

23

(a, g)

(b, 1)(d, g2)
(e, 1)

(c, g2)

Figure 3. A Z/3Z-voltage graph Γ.

11

2131

1g

2g3g

1g2

2g23g2

a

a

a
b

bb
c

c

c

d

d

d

e

ee

Figure 4. The derived covering graph Γ̃ of Γ in Figure 3. Edge
colors denote correspondence to the edges of Γ via the quotient map.
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Definition 2.11. Given a graph Γ and a covering graph Γ̃, the deck group Aut(π) of
Γ̃ is the subgroup of graph automorphisms on Γ̃ that commute with π.

Definition 2.12. A regular cover Γ̃, sometimes known as a Galois cover, of a graph
Γ is a covering graph whose deck group is transitive on each fiber π−1(v) for each
v ∈ V .

Example 2.13. Note that the vertex 11 in Example 2.9 is part of a 2-cycle but vertex
12 is not. Thus, there is no automorphism that maps 11 to 12. This means that Γ̃ is
not a regular cover.

On the other hand, the derived graph in Example 2.10 is a regular cover because
the cyclic permutation σ that sends each vi,x to vi,gx is in Aut(π), which shows that
Aut(π) is transitive on each fiber π−1(v).

Theorem 2.14. (Theorems 3 and 4 in [5]) Every regular cover Γ̃ of a graph Γ may
be realized as a derived cover of Γ with voltage assignments in Aut(π). Conversely,
every derived graph is a regular cover.

The majority of this paper explores the relationship between the arborescences of
a voltage graph Γ and the arborescences of its derived graph Γ̃. Theorem 2.14 allows
us to deal with all regular covering graphs in the framework of a voltage. It turns
out that regularity is not necessary for Theorem 1.3, which holds for all k-fold covers;
however, the results of this main theorem have nice interpretations in terms of the
voltage Laplacian in the regular case.

2.4. Constructing arborescences of a covering graph: failure of the
obvious approach. In this subsection, we discuss the relationship between arbores-
cences of Γ to arborescences of its cover Γ̃. If there were a simple correspondence of
arborescences of Γ with (sets of) arborescences of Γ̃, this could lead to a nice combi-
natorial proof of Theorem 1.3. Unfortunately, we have not found such a relationship;
we illustrate the pitfalls.

Let T be an arborescence of the base graph Γ rooted at v. Given a fixed lift ṽ
of v in the covering graph G̃, there exists a unique connected lift of T to Γ̃ by the
local homeomorphism property of covers. The resulting subtree of Γ̃ could potentially
be completed to a full arborescence of Γ̃, possibly in multiple ways, by choosing an
outgoing edge of the remaining vertices in such a way as to avoid creating cycles. We
project these edges down to k−1 vector fields on Γ, using some method of partitioning
the edges into k − 1 vector field classes. It is therefore natural to conjecture that
arborescences of Γ̃ can be put into correspondence with arborescences of Γ by utilizing
this construction: each arborescence of Γ corresponds to a set of arborescences of Γ̃
by lifting and then filling in the remaining edges in various combinations according to
some nicely enumerable vector field pattern. This conjecture was our main motivation
for our study of vector fields; see Section 4 for more discussion on vector fields.

Unfortunately, it is not true that every arborescence of Γ̃ must stem from such a
construction. As a counterexample, consider the base graph Γ:

1

23

with regular 2-fold covering graph Γ̃:
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11

2131

12

2232

.

Then the following is an arborescence of Γ̃ rooted at 31:
11

2131

12

2232

.

However, this arborescence cannot be constructed from a lift of an arborescence of
Γ rooted at vertex 3. Any such arborescence must necessarily contain edges (3, 1)
and (1, 3), which form a 2-cycle. This counterexample uses a regular covering graph,
and the base graph has no loops or multiple edges. Therefore non-regularity, loops,
and multiple edges are not essential impediments to the construction. This construc-
tion might be salvageable, but any combinatorial bijection would need to be more
complicated than one that involves merely lifting the base arborescence.

Rather than fixing the data of a single arborescence on Γ and enumerating over
the data of certain sets of k − 1 vector fields on Γ, one might consider applying the
construction in the opposite way: fix a set of k − 1 vector fields and enumerate over
arborescences. However, it is even less clear how this construction would proceed.
Moreover, Theorem 1.3 suggests that the first method is likelier to succeed. Assum-
ing that Conjecture 1.7 is true (the arborescence ratio has positive coefficients), the
theorem implies that every arborescence of Γ is associated to multiple arborescences
of Γ̃, which suggests that our first construction attempt is closer to the truth. It is
interesting and surprising that Theorem 1.3 is true despite the lack of an obvious
combinatorial relationship between arborescences of Γ and of Γ̃.

2.5. The reduced group algebra. We wish to define a matrix similar to the
Laplacian matrix that tracks all the relevant information in an G-voltage graph. In
order to do so in general, we need to extend our field of coefficients in order to codify
the data given by the voltage function ν. Following the language of Reiner and Tseng
in [8]:

Definition 2.15. The reduced group algebra of a finite group G over a ring R is the
quotient

R[G] = R[G]〈∑
g∈G g

〉 ,
where R[G] is the group algebra of G over R. That is, we quotient the group algebra
by the all-ones vector with respect to the basis given by G.

For simplicity, in the remainder of this paper we takeR = Z. Note that ifG ∼= Z/2Z,
then Z[G] ∼= Z, with the non-identity element of G identified with −1.

Similarly, if G ∼= Z/pZ, with p prime, then Z[G] ∼= Z(ζp), where ζp is a primitive
p-th root of unity and the generator g of G is identified with ζp. (To see this, note that
both rings arise by adjoining to Z an element with minimal polynomial

∑p−1
i=0 x

i.) The
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fact that the reduced group algebra of prime cyclic G lies in a field extension over
Q ⊇ Z will be important later in giving us nice formulas for the ratio of arborescences
described in the introduction.

2.6. The voltage Laplacian matrix. We now define a generalization of the Lapla-
cian matrix that takes into account voltages:

Definition 2.16. The voltage adjacency matrix A (G) has entries given by

aij =
∑

e=(vi,vj)∈E

ν(e) wt(e),

where we consider ν(e) as an element of the reduced group algebra Z[G]. That is,
the i, j-th entry consists of sum of the volted weights of all edges going from the i-th
vertex to the j-th vertex. The voltage Laplacian matrix L (Γ) is defined as

L (Γ) = D(Γ)−A (Γ)
where D(Γ) is the (unvolted) weighted degree matrix as described in Definition 2.3.

Note that when every edge has trivial voltage, then L (Γ) = L(Γ), so that the
voltage Laplacian is indeed a generalization of the Laplacian. Since we consider the
edge weights of Γ as indeterminates, we treat the entries of L (G) as elements of
Z[G][wt(E)]—that is, the polynomial ring of edge weights with coefficients in the
reduced group algebra. We will often abuse notation and refer to this ring as simply
Z[G][E].

Example 2.17. Let Γ be the Z/3Z-voltage graph in Figure 3. Under the identification
Z[Z/3Z] ∼= Z(ζ3), the voltage Laplacian of Γ is

L (Γ) =

a+ b 0 0
0 c 0
0 0 d+ e

−
ζ3a b 0

0 0 ζ2
3c

ζ2
3d e 0


=

(1− ζ3)a+ b −b 0
0 c −ζ2

3c
−ζ2

3d −e d+ e

 .
2.7. Notation. Before reintroducing our main result, we summarize the conventions
and notation that will be used consistently throughout the rest of the paper. For a
graph Γ = (V,E,wt) and a covering graph Γ̃ = (Ṽ , Ẽ,wt),

• The parameter n refers to the order (number of vertices) of Γ, and we write
V = {vi : i ∈ [n]}

• The parameter k refers to the degree of the cover, i.e. Γ̃ is a k-fold covering
graph of Γ. When the cover is regular, we have k = |G|.

• We write the vertices of Γ̃ as Ṽ = {vji : i ∈ [n], j ∈ [k]}, where v1
i , . . . , v

k
i

are the lifts of vi. For regular covers, we write Ṽ = {vgi : i ∈ [n], g ∈ G},
associating each vertex with an element G for the purposes of the following
bullet point.

• In the case of a regular G-cover, the edges in Γ̃ are Ẽ = {(vhi , v
ν(vi)h
j ) :

(vi, vj) ∈ E, h ∈ G}. When the cover is not necessarily regular, we assign
a permutation in Sk to each edge of Γ. Then an edge e = (va, vb) with
permutation σ is lifted to the edges {(via, v

σ(i)
b ) : i ∈ [k]}; by abuse of notation,

we write ν(e) = σ. Note the difference between σ(i) and group multiplication.
For example, in Example 2.9, the permutation associated to the edge e is 132
in one-line notation.
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3. Proof of the Main Theorem
3.1. Restriction of scalars.

Definition 3.1. Let R be a commutative ring, and let S be a free R-algebra of finite
rank. Let T be an S-linear transformation on a free S-module M of finite rank. Then
we may also consider M as a free R-module of finite rank, and T as an R-linear
transformation; this is known as restriction of scalars. We write detR T to denote the
determinant of T as an R-linear transformation.

Recall that the voltage Laplacian L (Γ) has entries in the reduced group algebra
augmented by edge weights: S = Z[G][E]. Letting R = Z[E], we may also consider
L (Γ) as an R-linear transformation on a R-module of rank (k−1)n. Note that due to
the definition of the Laplacian (the fact that row entries sum to 0), we will consider
our linear transformation to act on the right.

Example 3.2. Returning to Example 2.17, the voltage Laplacian L (Γ) is a matrix
that represents a linear transformation on a Z(ζ3)[E]-module with basis vectors in-
dexed by the three vertices of Γ:

L (Γ) =

(1− ζ3)a+ b −b 0
0 c −ζ2

3c
−ζ2

3d −e d+ e

 .
We may consider this same module as a Z[E]-module instead, simply by disallowing
scalar multiplication outside of the subring Z[E] ⊆ Z(ζ3)[E]. Now we look at the basis
vectors of the Z[E]-module. Since the Z[E]-span of a set of vectors is smaller than
its Z(ζ3)[E]-span, however, we will need more basis vectors than before in order to
span the entire module. One basis for this module has basis vectors doubly indexed
by vertices and the two non-identity group elements of Z/3Z, which shows that the
module has Z[E]-rank 6. Ordering basis vectors as vg1 , v

g
2 , v

g
3 , v

g2

1 , vg
2

2 , vg
2

3 , the voltage
Laplacian may considered as a Z[E]-linear transformation, with matrix

[L (Γ)]Z[E] =


a+ b −b 0 −a 0 0

0 c c 0 0 c
d −e d+ e d 0 0
a 0 0 2a+ b −b 0
0 0 −c 0 c 0
−d 0 0 0 −e d+ e


and the Z[E]-determinant of this transformation is

det
Z[E]

[L (Γ)] := det[L (Γ)]Z[E]

= 3a2c2d2 + 3b2c2d2 + 6abc2d2 + 9a2c2e2 + 3b2c2e2

+ 9abc2e2 + 9a2c2de+ 3b2c2de+ 12abc2de.

3.2. The prime cyclic case. The framework provided by restriction of scalar now
allows us to prove that Corollary 1.4 follows from Theorem 1.3.

Proof of Corollary 1.4 given Theorem 1.3. The corollary follows from the theorem if
we can show that detZ[E][L (Γ)] = NQ(ζp)/Q (det [L (Γ)]). Theorem 1 of [9] states
that if A is a commutative ring, if B is a commutative subring of Matn(A), and if
M ∈ Matm(B), then

det
A

[M ] = det
A

(det
B

[M ]).

In this case, let A := Q[E]. The reduced group algebra B := Z(ζp)[E] may be realized
as a subring of Matp−1(A), with an element α of Z(ζp)[E] being identified with the

Algebraic Combinatorics, Vol. 5 #2 (2022) 330



Arborescences of covering graphs

Z[E]-matrix corresponding to multiplication by α in Z(ζp)[E], where we view Z(ζp)[E]
as an Z[E]-module. Note that Z[E] and Z(ζp)[E] are both commutative. Finally, we
let M = L (Γ). But the field norm NQ(ζp)/Q(α) is defined as the determinant of
the linear map x 7→ αx as a Q-linear transformation, or, equivalently in our case, a
Z-linear transformation. When extended to Q(ζp)[E], this definition shows that

det
Z[E]

(
det

Z(ζp)[E]
[L (Γ)]

)
= NQ(ζp)/Q

(
det

Q(ζp)[E]
[L (Γ)]

)
as desired. �

Example 3.3. Let Γ be the graph from Figure 3. We compute det[L (Γ)] in Exam-
ple 4.3:

det[L (Γ)] = (1− ζ3)bcd+ (1− ζ3)acd+ (1− ζ2
3 )bce+ (1− ζ3)(1− ζ2

3 )ace.

Since voltage is given by Z/3Z, the reduced group algebra is Z(ζ3)[E] ⊂ Q(ζ3)[E],
which we treat as an extension over Q. The Galois norm in this case is the same as
the complex norm, since the Galois conjugate of an element of Q(ζ3)[E] is its complex
conjugate. This norm is

det[L (Γ)] det[L (Γ)]
=
(
(1− ζ3)bcd+ (1− ζ3)acd+ (1− ζ2

3 )bce+ (1− ζ3)(1− ζ2
3 )ace

)
·
(
(1− ζ2

3 )bcd+ (1− ζ2
3 )acd+ (1− ζ3)bce+ (1− ζ2

3 )(1− ζ3)ace
)

= 3a2c2d2 + 3b2c2d2 + 6abc2d2 + 9a2c2e2 + 3b2c2e2 + 9abc2e2

+ 9a2c2de+ 3b2c2de+ 12abc2de

which matches det[L (Γ)]Z[E] from Example 3.2.

3.3. Triangularization. In this section we build up the machinery to prove our
main result, Theorem 1.3.

For ease of notation, we will first fix an ordering on the basis of Γ̃. Most of the
time we won’t assume the covering graph to be regular, and using the notations in
Section 2.7, we order the basis vectors of Γ̃ in a colexicographic order, i.e. v1

1 < · · · <
v1
n < v2

1 < · · · < v2
n < · · · < vk1 < · · · < vkn.

Definition 3.4. Let {v1, . . . , vn} be the set of vertices of our graph Γ, let Γ̃ be a k-fold
cover of Γ, where vertex vi is lifted to v1

i , . . . , v
k
i . Define n(k− 1)× n(k− 1) matrices

D and A with basis v2
1 , . . . , v

2
n, v

3
1 , . . . , v

3
n, . . . , v

k
1 , . . . , v

k
n as follows.

A[vti , vrj ] =
∑

e=(vt
i
,vr

j
)

wt(e)−
∑

e=(vr
j
,v1

i
)

wt(e)

D[vti , vti ] =
∑

e∈Es(vt
i
)

wt(e)

for 1 < t, r 6 k. Finally, we define

[L (Γ)]Z[E] := D −A.

In the case of regular covers, we can choose an ordering g1, . . . , gk on the group
elements, and use the order vg1

1 < · · · < vg1
n < vg2

1 < · · · < vg2
n < · · · < vgk

1 < · · · < vgk
n

on the basis vectors of Γ̃. If g1 is the identity element, Definition 3.4 gives the Z-
linearization of the voltage Laplacian. Note that in the case of non-regular covers, the
matrix cannot be interpreted as the Z-linearization of a voltage Laplacian.

With this definition in hand, we remind the reader of Theorem 1.3:
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Theorem 1.3. Let Γ = (V,E,wt) be an edge-weighted multigraph, and let Γ̃ be a
k-fold covering graph of Γ. Then for any vertex v of Γ and any lift ṽ of v, we have

Aṽ(Γ̃)
Av(Γ) = 1

k
det[L (Γ)]Z[E]

with [L (Γ)]Z[E] given by Definition 3.4.

To prove this theorem, we carefully apply a change of basis to the Laplacian matrix
of Γ̃.

Lemma 3.5 (Triangularization Lemma). Let Γ be as in Theorem 1.3. Write L(Γ̃) with
basis vectors ordered as above. Let

S =


idn idn . . . idn
0n
... id(k−1)n

0n

 .
Then the change of basis given by S yields the following block triangularization of
L(Γ̃):

(2) SL(Γ̃)S−1 =
[
L(Γ) 0
∗ [L (Γ)]Z[E]

]
.

Proof. Let βi =
∑
j∈[k] v

j
i . Conjugation by S corresponds to a change of basis that

maps v1
i 7→ βi and vji 7→ vji when j 6= 1. Therefore, all we need to do is examine

the action of the linear transformation corresponding to the matrix L(Γ̃) on this new
basis. Denote this linear transformation by T .

First, we show that

T (βi) =
n∑
j=1

`ijβj

where `ij is the (i, j)-entry of L(Γ). To see this, consider the k rows of L(Γ̃) correspond-
ing to the fiber {vri }r∈[k] of vi. The sum of these rows is equal to T (βi), expressed as a
row vector with respect to the standard basis. Choose a column of L(Γ̃) corresponding
to vrj . The entries of this column in the previously mentioned rows correspond (with
negative sign) to edges to vrj from some element in the fiber of vi. Since there should
be one of these for each edge (vi, vj) in Γ, the sum of these values is `ij . Now choose
the column of L(Γ̃) corresponding to vri . The entries of this column in the previously
mentioned rows on the off-diagonal correspond (with negative sign) to edges to vri
from some element in the fiber of vi other than vri . The diagonal entry of the column
corresponds (with negative sign) to edges from vri to itself as well as (with positive
sign) all edges out of vri . Adding these values, we get `ii, since there is one edge into
vri from a vertex in the fiber of vi for each edge from vi to itself and one edge out of
vri for each edge out of vi. Thus, the sum of the n rows of L(Γ̃) corresponding to the
fiber {vri }r∈[k] is precisely

T (βi) =
n∑
j=1

∑
r∈[k]

`ijv
r
j =

n∑
i=1

`ijβj

as desired. Therefore, the upper-left and upper-right blocks of (2) are correct.
The effect of our change of basis on the lower-right (k−1)n×(k−1)n block of L(Γ̃)

is to subtract the i-th column of L(Γ̃), for i ∈ [n], from columns i+ n, i+ 2n, . . . , i+
(k− 1)n. This exactly follows the construction of [L (Γ)]Z[E] from Definition 3.4. �
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Example 3.6. We illustrate Lemma 3.5 using Example 2.10, taking Γ to be the graph
in Figure 3 and Γ̃ to be its corresponding derived graph as in Figure 4. The Laplacian
matrix of Γ̃ is

L(Γ̃) =



a+ b −b 0 −a 0 0 0 0 0
0 c 0 0 0 0 0 0 −c
0 −e d+ e 0 0 0 −d 0 0
0 0 0 a+ b −b 0 −a 0 0
0 0 −c 0 c 0 0 0 0
−d 0 0 0 −e d+ e 0 0 0
−a 0 0 0 0 0 a+ b −b 0
0 0 0 0 0− c 0 c 0
0 0 0 −d 0 0 0 −e d+ e


.

Then letting S be the 9× 9 change of basis matrix defined in the lemma, we have

SL(Γ̃)S−1 =



b −b 0 0 0 0 0 0 0
0 c −c 0 0 0 0 0 0
−d −e d+ e 0 0 0 0 0 0
0 0 0 a+ b −b 0 −a 0 0
0 0 −c 0 c c 0 0 c
−d 0 0 d −e d+ e d 0 0
−a 0 0 a 0 0 2a+ b −b 0
0 0 0 0 0 −c 0 c 0
0 0 0 −d 0 0 0 −e d+ e


.

Recall from Example 2.5 that

L(Γ) =

 b −b 0
0 c −c
−d −e d+ e

 ,
and recall from Example 3.2 that

[L (Γ)]Z[E] =


a+ b −b 0 −a 0 0

0 c c 0 0 c
d −e d+ e d 0 0
a 0 0 2a+ b −b 0
0 0 −c 0 c 0
−d 0 0 0 −e d+ e

 .

We indeed find that L(Γ) appears as the upper-left block of SL(Γ̃)S−1 and that
[L (Γ)]Z[E] appears as the lower-right block of SL(Γ̃)S−1, as predicted by the lemma.
Note also the upper-right block of zeros in SL(Γ̃)S−1.

We would like to make the following statement:

det[SL(Γ̃)S−1]ii = det[L(Γ̃)]ii(3)

for any i ∈ [k]. This would allow us to obtain an expression for Aṽ(Γ̃)
Av(Γ) from Lemma 3.5,

since the left-hand side of (3) is
det[L(Γ)]ii det[L (Γ)]Z[E] = Avi

(Γ) det[L (Γ)]Z[E]

and the right-hand side is
det[L(Γ̃)]ii = Aṽ1

i
(Γ̃).

Unfortunately, Equation (3) is not true as stated. In general, a given minor does not
remain invariant under change of basis. However, Equation (3) turns out to be nearly
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true in that it is only off by a factor of k. Our goal is to instead prove the correct
statement

det[SL(Γ̃)S−1]ii = k · det[L(Γ̃)]ii.
To this end, we define U = SL(Γ̃)S−1. This is the matrix that we will use to connect
the two sides of Theorem 1.3. Without loss of generality, assume that we want to root
our arborescences of Γ at vertex v1 and our arborescences of Γ̃ at vertex v1

1 . Then the
following result is immediate from Lemma 3.5 and Theorem 2.4:

Corollary 3.7.
det[U1

1 ] = Av1(Γ) det[L (Γ)]Z[E].

To complete the proof of Theorem 1.3, we need to show that

det[U1
1 ] = k · det[L1

1(Γ̃)].

3.4. The two-step change of basis. We will show the above equality by factoring
S as QP for some matrices Q and P specified in Section 3.5. This means conjugation
by S is the same as conjugation by P and then conjugation by Q. In this section we
will prove two lemmas that will tell us how conjugation by each of these matrices
affects minors.

Lemma 3.8. Let L be the Laplacian matrix of some graph Γ = (V,E,wt). Fix a basis
vector vi, and let P be the change of basis matrix that maps vi 7→

∑n
j=1 αjvj with

αi 6= 0. That is, P is the identity matrix but with αj in entry (i, j) for each j ∈ J .
Then

det[(PLP−1)ii] =

 n∑
j=1

αj
αi

Avi
(Γ).

Proof. First note that we need αi 6= 0 in order for P to be invertible. Otherwise,
column i would be all 0’s. If αj = 0 for all j 6= i, then the statement holds trivially,
because (PLP−1)ii = Lii in this case. So, we can assume there is some j 6= i such that
αj 6= 0.

Without loss of generality, let i = 1 and α2 6= 0. We can see that P−1 is the
identity matrix with 1

α1
in the (1,1) entry and −αi

α1
in the (1, i) entry. L(Γ̃)P−1 differs

from L(Γ̃) in that the ith column of L(Γ̃)P−1 is the ith column of L(Γ̃) with αi

α1

times the first column of L(Γ̃) subtracted from it. PL(Γ̃)P−1 differs from L(Γ̃)P−1

only in the first row. However, since we are finding the determinant of PL(Γ̃)P−1

with the first row and column removed, we are only interested in the lower-right hand
(n− 1)× (n− 1) submatrix and can ignore this operation.

Notice that P can be factored as PnPn−1 · · ·P2 where P2 is the identity but with
α1 in the (1, 1) entry and α2 in the (1, 2) entry and the rest of the Pj ’s are the identity
but with αj in the (1, j) entry. This also gives a factorization for P−1. We will first
focus on P2LP

−1
2 .

We may interpret (P2LP
−1
2 )1

1 as a submatrix of the Laplacian of a different graph,
which we will denote as Γ(2). We construct Γ(2) as follows: the vertices of Γ(2) are
v

(2)
1 , . . . , v

(2)
n . If there is an edge vr → vs in Γ, then there is an edge v(2)

r → v
(2)
s in

Γ(2), so Γ(2) contains Γ as a subgraph. For each edge e = (v2, v1) ∈ Γ, we add an
additional edge (v(2)

2 , v
(2)
1 ) to Γ(2) with weight α2

α1
wt(e); we call this an edge of type 1.

Furthermore, for each such e = (vi, v1) ∈ Γ where i 6= 1, 2, we add the edge (v(2)
i , v

(2)
2 )

to Γ(2) with weight −α2
α1

wt(e) and the edge (v(2)
i , v

(2)
1 ) with weight α2

α1
wt(e). The first

of these edges will be called an edge of type 2 and the second an edge of type 3.
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We can see that L(Γ(2)) is the same as L(Γ) except that (aside from the first row,
which remains unchanged) α2

α1
times the first column is subtracted from first column

and added to the second column. L1
1(Γ(2)) = (P2LP

−1
2 )1

1, so det[(P2LP
−1
2 )1

1] counts
the arborescences of Γ(2) rooted at v(2)

1 .
We will divide the arborescences of Γ(2) into four categories (See Figure 6).
(1) Arborescences that do not contain any type 1, type 2, or type 3 edges. The

weighted sum of these arborescences is counted by Av1(Γ) because these are
exactly the arborescences that use only edges in the subgraph Γ of Γ(2).

(2) Arborescences that contain a type 2 edge paired with arborescences that differ
from these by replacing the type 2 edge with a type 3 edge of the same
weight with opposite sign. For every type 2 edge, there is a type 3 edge of
the same weight with opposite sign. This means that for every arborescence
that contains a type 2 edge, there is an arborescence that is the same, except
instead of the type 2 edge it has a type 3 edge of the same weight with opposite
sign. The weights of these arborescences cancel out, so the weighted sum of
all of these arborescences is 0.

(3) Arborescences that contain a type 1 edge not counted in the previous cate-
gory (2). We claim that in such an arborescence, every edge lies in the sub-
graph Γ except for the unique type 1 edge. If such an arborescence contained
an edge of type 2, then since vertex 2(2) flows directly to the root the edge
of type 2 could be replaced by its corresponding type 3 edge and still yield a
valid arborescence; the same holds if we start with an edge of type 3. Thus,
arborescences in this category correspond to arborescences in Γ where the
edge out of 2 goes directly to 1. So, they contribute α2

α1
times the weight of

such arborescences in Γ.
(4) Arborescences that contain an edge of type 3 that are not counted in

category (2) either. These are arborescences where removing the edge
e = (v(2)

j , v
(2)
1 ) of type 3 and replacing it with the corresponding edge

e′ = (v(2)
j , v

(2)
2 ) of type 2 does not give an arborescence. This only happens

if adding e′ would create a cycle, so we conclude that v(2)
j lies downstream

from v
(2)
2 in the arborescence flow. This guarantees that there exists only

one type 3 edge—if we have one type 3 edge out of v(2)
j and another one

out of v(2)
j′ , then both of these vertices lie downstream of v(2)

2 but both lead
directly to v(2)

1 , which is a contradiction. Furthermore, such an arborescence
cannot contain an edge of type 1—this would immediately contradict vertex
v

(2)
2 lying upstream of v(2)

j —or an edge of type 2, since type 2 edges can
always be replaced by their corresponding type 3 edge and still yield a valid
arborescence, which would again land us in category (2).

We conclude that the only “added” edge in this arborescence is e itself.
Therefore, summing over j 6= 1, 2 we see that these arborescences in this
category correspond bijectively to arborescences in Γ where the edge out of
v2 does not go to v1. This means that in our sum, they contribute α2

α1
times

the weight of such arborescences in Γ.
The last two categories combine to contribute α2

α1
Av1(Γ) to the arborescence count

A
v

(2)
1

Γ(2). Adding the weighted sums of the arborescences in these four categories,
we find

A
v

(2)
1

(Γ(2)) = Av1(Γ) + α2

α1
Av1(Γ) =

(
α1 + α2

α1

)
Av1(Γ).
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From here, we proceed by induction—essentially, all we need to do is prove that
continuing to iterate the previous construction over vertices other than v2 continues
to work the way we want. For 3 6 k 6 n, we will construct Γ(k) from Γ(k−1) in the
same way we constructed Γ(2) from Γ. However, here the weights on our new edges
will have a factor of αk∑k−1

j=1
αj

rather than α2
α1

. We will show that L(Γ(k)) is L(Γ)

except that (aside from the first row, which remains unchanged) αj

α1
times the first

column of L(Γ) is subtracted from first column and added to the jth column for
2 6 j 6 k. Note that this means that L1

1(Γ(k)) = (PkPk−1 · · ·P2LP
−1
2 · · ·P−1

k−1P
−1
k )1

1,
so det[(PkPk−1 · · ·P2LP

−1
2 · · ·P−1

k−1P
−1
k )1

1] counts the arborescences of Γ(k) rooted at
v

(k)
1 . We will also show that

A
v

(k)
1

(Γ(k)) =

 k∑
j=1

αj
α1

Av1(Γ).

We begin with the Laplacian. We can see that L(Γ(k)) is L(Γ(k−1)) except
that (aside from the first row, which remains unchanged) αk∑k−1

j=1
αj

times the first

column of L(Γ(k−1)) is subtracted from first column and added to the kth col-
umn. By our inductive hypothesis, αk∑k−1

j=1
αj

times the first column of L(Γ(k−1)) is(
αk∑k−1

j=1
αj

)(∑k−1
j=1

αj

α1

)
= αk

α1
times the first column of L(Γ). This shows that L(Γ(k))

is what we want.
Now we turn to the arborescences. The same method of counting arborescences in

Γ(2) from arborescences in Γ applies for counting arborescences in Γ(k) from Γ(k−1).
This means

A
v

(k)
1

(Γ(k)) = A
v

(k−1)
1

(Γ(k−1)) + αk∑k−1
j=1 αj

A
v

(k−1)
1

(Γ(k−1)),

which gives us what we want by the inductive hypothesis.
Thus, we have shown that

det[(PLP−1)1
1] = det[(PnPn−1 · · ·P2LP

−1
2 · · ·P−1

n−1P
−1
n )1

1] =

 n∑
j=1

αj
α1

Av1(Γ). �

L(Γ) =


a+ b −a 0 −b
−c c+ d 0 −d
−e −g e+ g 0
0 0 −f f

 , P2 =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1



P2L(Γ)P−1
2 =


a+ b− c −2a− b+ 2c+ d 0 −b− d
−c 2c+ d 0 −d
−e −g + e g + e 0
0 0 −f f


Figure 5. A Laplacian matrix before and after applying the change
of basis P2 with α1 = α2 = 1. Note that (P2LP

−1
2 )1

1 matches the
corresponding submatrix of the Laplacian of Γ(2) (see Figure 6).
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A graph Γ and the corresponding graph Γ(2).

1 2

43

de

f

An arborescence of type 1.

3 4

21

3 4

21
c

e

f

c

−e

f

A pair of arborescences of type 2.

3 4

21

c

e

f

An arborescence of type 3.

3 4

21

e d

f

An arborescence of type 4.

Figure 6. Types of arborescences for Γ(2) with α1 = α2 = 1.
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Here is the next lemma we need:

Lemma 3.9. Let R be a commutative ring and let M ∈ Matn(R). Let Q ∈ GLn(R)
such that the i-th row and column are each the i-th unit vector. Then

det[(QMQ−1)ii] = det[M i
i ].

In other words, the minor of M corresponding to removing the i-th row and column
is invariant under base change by Q.

Proof. Without loss of generality i = 1. Write

Q =
(

1 0
0 Q1

1

)
, M =

(
∗ ∗
∗ M1

1

)
.

Thus,

QMQ−1 =
(
∗ ∗
∗ (Q1

1)(M1
1 )(Q1

1)−1

)
.

Then since

det[(QMQ−1)ii] = det[((Q1
1)(M1

1 )(Q1
1)−1)]

= det[(M1
1 )]

=: det[M1
1 ],

we conclude that the desired minor is the same as the corresponding minor of M . �

3.5. Proof of Theorem 1.3.

Proof. Let P be the change of basis that maps v1
1 7→ β1 :=

∑
s∈[k] v

s
1, and let Q be

the change of basis that maps v1
i 7→

∑
r∈[k] v

r
i for i > 1. Note that P satisfies the

hypotheses for Lemma 3.8 with i = 1 and Q satisfies the hypotheses of Lemma 3.9
with i = 1. Letting S be the matrix from Lemma 3.5, we have S = QP . Thus, by
Lemmas 3.8 and 3.9,

det[U1
1 ] = det[(QPL(Γ̃)P−1Q−1)1

1]

= det[(PL(Γ̃)P−1)1
1]

= kAv1
1
(Γ̃).

However, from Corollary 3.7 we know that

det[U1
1 ] = Av1(Γ) det[L (Γ)]Z[E].

Therefore,

kAv1
1
(Γ̃) = Av1(Γ) det[L (Γ)]Z[E]

as desired. �

4. Vector fields and the voltage Laplacian
In this section, we discuss the connection between the voltage Laplacian and vector
fields on voltage graphs, and its implications for positivity in the 2-fold cover case.
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4.1. Negative Vector Fields.
Definition 4.1. A vector field γ of a directed graph Γ is a subgraph of Γ such that
every vertex of γ has outdegree 1 in Γ. As with arborescences, we define the weight of
a vector field to be the product of its edge weights, that is

wt(γ) :=
∏
e∈γ

wt(e).

Note that wt(γ) is a degree n monomial with respect to the edge weights of Γ. Write
C(γ) for the set of cycles in a vector field γ, of which there is exactly one in each
connected component. If G is abelian, and if c is a cycle of γ then we define the voltage
of c as ν(c) :=

∏
e∈c ν(e); this product is well-defined when G is abelian.

The determinant of L (Γ) counts vector fields of Γ in the following way:
Theorem 4.2 (Chaiken). Let G be an abelian group, and let Γ be an edge-weighted
G-voltage graph. Then∑

γ⊆Γ

wt(γ)
∏

c∈C(γ)

(1− ν(c))

 = det[L (Γ)]

where the sum ranges over all vector fields γ of Γ.
Example 4.3. Let Γ be the Z/3Z-voltage graph of Example 2.10. There are four
distinct vector fields of Γ (see Figure 7).

1

23

(b, 1)(d, g2)

(c, g2)

1

23

(a, g)

(d, g2)

(c, g2)

1

23

(b, 1)
(e, 1)

(c, g2)

1

23

(a, g)

(e, 1)

(c, g2)

Figure 7. The four vector fields of Γ

The first three of these vector fields contain one cycle; from left to right, these
unique cycles have weights ζ3, ζ3, and ζ2

3 . The last vector field has two cycles, one
with weight ζ and the other of weight ζ2. From Example 2.17, we have

det[L (Γ)] = (1− ζ3)bcd+ (1− ζ3)acd+ (1− ζ2
3 )bce+ (1− ζ3)(1− ζ2

3 )ace.
The four terms in this expression correspond to the four vector fields of Γ as described
by the theorem.
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We briefly point out the special case G = Z/2Z, which is especially nice because
the coefficients in Theorem 4.2 are nonnegative integers.

Definition 4.4. Suppose that Γ is a Z/2Z-voltage graph, also called a signed graph.
A vector field γ of Γ is a negative vector field if every cycle c of γ has an odd number
of negative edges, so that ν(c) = −1.

Denote the set of negative vector fields of signed graph Γ by N (Γ). Then Theo-
rem 4.2 may be written as:

Corollary 4.5. ∑
γ∈N (Γ)

2#C(γ) wt(γ) = det[L (Γ)].

Corollary 4.5 along with Corollary 1.5 has an immediate further corollary:

Corollary 4.6. If Γ̃ is a 2−fold regular cover of Γ, then the ratio Aṽ(Γ̃)
Av(Γ) has positive

integer coefficients.

Positivity for general covers is still unknown; see Conjecture 1.7.

4.2. Proofs of Theorem 4.2. We now present two proofs of Theorem 4.2. The first
is new, and the second is essentially due to Chaiken.

The first proof proceeds by deletion-contraction, and requires the following lemma.

Lemma 4.7. Let Γ be as in Theorem 4.2 with voltage function ν : E → Z[G], let v be
any vertex of Γ, and let g ∈ G. We define a new voltage function νv,g given by

νv,g(e) =


gν(e) if e ∈ Es(v), e 6∈ Et(v),
g−1ν(e) if e ∈ Et(v), e 6∈ Es(v),
ν(e) otherwise.

Then:
(a) For any cycle c of Γ, we have ν(c) = νv,g(c).
(b) The determinant of the voltage Laplacian of Γ with respect to the voltage ν

is equal to the determinant of the voltage Laplacian of Γ with respect to νv,g.
That is,

det[L (V,E,wt, ν)] = det[L (V,E,wt, νv,g)].

Proof. (a) If c does not contain the vertex v, or if c is a loop at v, then the voltages
of all edges in c remain unchanged. Otherwise, c contains exactly one ingoing edge e
of v and one outgoing edge f of v, so that

νv,h(c) = ν(c)
ν(e)ν(f) [gν(e)][g−1ν(f)]

= ν(c)

as desired.
(b) The matrix L (V,E,wt, ν) may be transformed into the matrix L (V,E,wt, νv,g)

by multiplying the row corresponding to v by g and multiplying the column corre-
sponding to v by g−1, so the determinant remains unchanged. �

This lemma will allow us some freedom to change the voltage of Γ as needed in the
following proof.
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First proof of Theorem 4.2. Denote the left-hand side of the equation in the theorem
as

Ω(Γ) :=
∑
γ⊆Γ

wt(γ)
∏

c∈C(γ)

(1− ν(c))

 .
We proceed by deletion-contraction. The base case is when the only edges of Γ are

loops. When this happens, L (Γ) is diagonal, with

`ii =
∑

e=(vi,vi)∈E

(1− ν(e)) wt(e).

Thus we have

det[L (Γ)] =
n∏
i=1

 ∑
e=(vi,vi)∈E

[1− ν(e)] wt(e)

 .

If we expand the product above, each term will correspond to a unique combination
of one loop per vertex of Γ. But such combinations are precisely the vector fields of
Γ, so we obtain

det[L (Γ)] = Ω(Γ).
For the inductive step, assume that there exists at least one edge e between distinct

vertices, and assume that the proposition holds for graphs with fewer non-loop edges
than Γ. Using the lemma, we may change the voltage of Γ so that e has voltage 1
without changing either Ω(Γ) or det[L (Γ)]. Without loss of generality, let v1 = es
and v2 = et.

If γ is a vector field of Γ, then γ either contains e or it does not. In the latter case,
γ is also a vector field of Γ\e. Clearly all such γ arise uniquely from a vector field of
Γ\e. Therefore, there is a weight-preserving bijection between the vector fields of Γ
not containing e and the vector fields of Γ\e.

Otherwise, if e ∈ γ, then no other edge of the form (v1, vj) is in γ. We define
a special type of contraction: let Γ/1e := (Γ/e)\Es(v1). That is, we contract along
e, and delete all other edges originally in Es(v1). Note that the contraction process
merges vertices v1 and v2 into a “supervertex”, which we denote v12.

Then the vector field γ descends uniquely to a vector field γ on Γ/1e. Every vector
field γ in Γ/1e corresponds uniquely to a vector field of Γ containing e, obtained
by letting the unique edge coming out the supervertex v12 in γ be the unique edge
coming out of the vertex v2 in γ, and letting e be the unique edge with source at v1
in γ. This inverse map shows that the vector fields of Γ containing e are in bijection
with the vector fields of Γ/1e. This bijection is weight-preserving up to a factor of
wt(e). Finally, note that γ and its contraction γ have the same number of cycles,
with the same voltages. If a cycle contains e in γ, then that cycle is made one edge
shorter in γ, but still has positive length since e is assumed to not be a loop. If c is a
cycle containing e in Γ, then because e has voltage 1, the cycle voltage ν(c/e) of the
contracted version of c is equal to the cycle voltage before contraction. Thus, we may
write

Ω(Γ) = Ω(Γ\e) + wt(e)Ω(Γ/1e).
By the inductive hypothesis, since Γ\e and Γ/1e have strictly fewer non-loop edges
than Γ, we have

Ω(Γ\e) + wt(e)Ω(Γ/1e) = det[L (Γ\e)] + wt(e) det[L (Γ/1e)].
Note that L (Γ\e) is equal to L (Γ) with wt(e) deleted from both the 1, 1- and 1, 2-
entries. Therefore, via expansion by minors, we obtain

det[L (Γ\e)] + wt(e) det[L 1
1 (Γ)] + wt(e) det[L 2

1 (Γ)] = det[L (Γ)](4)
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where L j
i (Γ) is the submatrix of L (Γ) obtained by removing the i-th row and the

j-th column.
To construct L (Γ/1e) from L (Γ), we disregard the first row of L (Γ), since the

special contraction Γ/1e simply removes the outgoing edges Es(v1). Then, we combine
the first two columns of L (Γ) by making their sum the first column of L (Γ/1e),
since when we perform a contraction that merges v1 and v2 into v12, we also have
Et(v1) ∪ Et(v2) = Et(v12). Thus L (Γ/1e) is a (n − 1) × (n − 1) matrix that agrees
with both L 1

1 (Γ) and L 2
1 (Γ) on its last n− 2 columns, and whose first column is the

sum of the first columns of L 1
1 (Γ) and L 2

1 (Γ). Therefore,
det[L (Γ/1 e)] = det[L 1

1 (Γ)] + det[L 2
1 (Γ)].

Substituting into (4), we obtain
det[L (Γ)] = det[L (Γ\e)] + wt(e) det[L (Γ/1 e)]

= Ω(Γ\e) + wt(e)Ω(Γ/1 e)
= Ω(Γ)

as desired. �

The second proof of the theorem follows a style similar to Chaiken’s proof of the
Matrix Tree Theorem in [1]. Chaiken actually proves a more general identity, which
he calls the “All-Minors Matrix Tree Theorem”, that gives a combinatorial formula
for any minor of the voltage Laplacian. We do not reproduce such generality here,
but instead follow a simplified version of his proof, more along the lines of Stanton
and White’s version of Chaiken’s proof of the Matrix Tree Theorem [11].

Second proof of Theorem 4.2 (Chaiken). For simplicity, assume that Γ has no multi-
ple edges, since we can always decompose det[L (Γ)] into a sum of determinants of
voltage Laplacians of simple subgraphs of Γ, which also partitions the sum given in the
theorem. We also assume that Γ is a complete bidirected graph, since we can ignore
edges not in Γ by just considering them to have edge weight 0. Write L (Γ) = (`ij),
write D(Γ) = (dij), and write A (Γ) = (aij), so that `ij = δijdii − aij . Then the
determinant of L (Γ) may be decomposed as

det[L (Γ)] = det[(δijdii − aij)] =
∑
S⊆[n]

 ∑
π∈P (S)

(−1)#C(π) wtν(π)
∏

i∈[n]−S

dii


where P (S) denotes the set of permutations of S, the set C(π) is set of cycles of π,
and wtν(π) :=

∏
i∈S ai,π(i). The product of the dii may be rewritten as a sum over

functions [n]− S → [n], yielding

det[L (Γ)] =
∑
S⊆[n]

∑
π∈P (S)

(−1)c(π) wtν(π)
∑

f :[n]−S→[n]

wt(f)

=
∑
S⊆[n]

∑
π∈P (S)

∑
f :[n]−S→[n]

(−1)c(π) wtν(π) wt(f)(5)

where wt(f) denotes the unvolted weight of the edge set corresponding to the function
f , since this part of the product ultimately comes from the degree matrix. Thus, the
determinant may be expressed as a sum of triples (S, π, f) of the above form — that
is, we let S be an arbitrary subset of [n], we let π be a permutation on S, and we let
f be a function [n]− S 7→ [n].

The permutation π can always be decomposed into cycles, and f will sometimes
have cycles as well — that is, sometimes we have f (m)(k) = k for some k ∈ Z and
k ∈ [n] − S. We can “swap” cycles between π and f . Suppose c is a cycle of f that
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we want to swap into π. Let the subset of [n] on which c is defined be denoted W .
Then we may obtain from our old triple a new triple (S

∐
W,π

∐
c, f |[n]−S−W ), where

π
∐
c denotes the permutation on S

∐
W given by (π

∐
c)(v) = π(v) if v ∈ S and

(π
∐
c)(v) = c(v) if v ∈ W . That is, we “move” C from f to π. Similarly, if c is a

cycle of π, then we can obtain a new triple (S −W,π|S−W , f
∐
c). Note that these

two operations are inverses.
This process is always weight-preserving: it does not matter whether c is considered

as a part of π or as a part of f , since it will always contribute wt(c) to the product.
However, one iteration of this map will swap the sign of (−1)#C(π), and will also
remove or add a factor from wtν(π) corresponding to the voltage of c. If π and f have
k cycles between both of them, then there are 2k possibilities for swaps, yielding a
free action of (Z/2Z)k. If we start from the case where π is the empty partition, then
the sign (−1)#C(π) starts at 1. Every time we choose to swap a cycle c into π from
f , we flip this sign and multiply by ν(c), effectively multiplying by −ν(c). Thus, the
sum of terms in (5) coming from the orbit of the action of (Z/2Z)k on (S, f, π) is

wt(π) wt(f)
∏

c∈C(π)∪C(f)

(1− ν(c))

where wt(π) is now unvolted. This orbit class corresponds to the contribution of one
vector field γ of Γ to the overall sum, where γ is the unique vector field such that
wt(γ) = wt(π) wt(f). Thus, summing over all orbit classes, we obtain the desired
formula:

det[L (Γ)] =
∑
γ⊆Γ

wt(γ)
∏

c∈C(γ)

(1− ν(c))

 . �

5. Conjectures and Future Directions
We end our paper by a discussion of several unanswered questions and possible future
research directions.

5.1. Interpreting the restriction-of-scalars determinant. In the case
where the voltage group G is prime cyclic, Corollary 1.4 yields a computationally nice
interpretation of Theorem 1.3: the Z-determinant is really a field norm, which may
be computed in ways other than restriction of scalars—for example, as a product of
Galois conjugates. This result could be extended if there existed an analogue to the
field norm for arbitrary reduced group algebras, or indeed for general free algebras of
finite rank. A good first step might be to consider abelian groups.

problem 5.1. Let R be a commutative ring, and let A be a free algebra over R of finite
rank. Let α ∈ A. Find an alternative expression or interpretation of detR[α], where
the multiplicative action of α is viewed as a linear transformation on the R-module
A, analogous to a field norm. Useful special cases include R = Z or Q, when A is
commutative, and/or when A is the group algebra or reduced group algebra of some
finite group G.

5.2. Positivity of the ratio and possible combinatorial expression using
vector fields. By Corollary 1.6, the ratio Aṽ(Γ̃)

Av(Γ) is a homogeneous polynomial with
integer coefficients. We further conjecture that these coefficients are positive. In more
detail:

Conjecture 1.7. Let Γ be a directed graph, Γ̃ a k-cover of Γ, v a vertex of Γ and ṽ
a lift of v in Γ̃. If the edge weights of Γ are indeterminates then the polynomial Aṽ(Γ̃)

Av(Γ)
has positive coefficients.
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Corollary 4.6 gives positivity for regular 2-fold cover, and the following proposition
gives a way to extend that result to all regular covers by 2-groups. However, in the
case of general regular covers, we do not have a concrete combinatorial interpretation
of det[L (Γ)]Z[E]. Such an interpretation would probably be the cleanest way to prove
Conjecture 1.7.

Proposition 5.2. Suppose we have the exact sequence of groups 1→ N → G→ H →
1, where N and H have the property that every regular N - (resp. H-) cover satisfies
the positivity conjecture. Then every regular G-cover satisfies the positivity conjecture.

Proof. Let Γ be a graph, let ΓG be a regular G-cover of Γ, and let ΓH be the image
of ΓG under the projection map G→ H. We will show that both the covers ΓH → Γ
and ΓG to ΓH are regular, and therefore that those arborescence ratios are positive.
Therefore, the arborescence ratio for the cover ΓG → Γ is the product of these ratios,
and therefore positive as well.

Since G is a group extension ofH by N , we will write elements of G as ordered pairs
(h, n), h ∈ H,n ∈ n, where n 7→ (h, n) 7→ h under our exact sequence. Multiplication
of these elements involves Schreier theory:

(h1, n1) · (h2, n2) = (h1h2, f(h1, h2, n1)n2),

where f(h1, h2, n1) is an element of N that is independent of n2 (see, for example,
Equation 15.1.7 on p. 232 of [6]).

To show that a given cover is regular, we need to demonstrate voltages for the
edges of the base graph that give us the desired cover. First, we show that ΓH is
regular over Γ.

Let e : v → w be an edge in Γ, with G-voltage g = (hg, ng). Then e lifts to the set
of edges {eg′ : vg′ → wgg

′} in ΓG, and these edges project to the set {eh : vh → whgh}
in ΓH . Therefore, in the cover ΓH → Γ, we can set the voltage of e to be hg, and this
gives a regular H-cover.

Now we show that ΓG is a regular N -cover of ΓH . This is more challenging since
H is not necessarily a subgroup of G. Consider the edge e of Γ from above, and let
h ∈ H. The edge eh : vh → whgh in ΓH is covered by the edges {e(h,n)|n ∈ N} in ΓG.
Computations in G tell us that

e(h,n) : v(h,n) → w(hg,ng)·(h,n) = w(hgh,f(hg,hng)n).

Set the voltage on eh to be f(hghng) ∈ N . Then

(eh)n : (vh)n → (whgh)f(hghng)n,

so identifying (eh)n with e(h,n) and likewise for vertices gives us ΓG as a regular cover
of ΓH . �

Corollary 5.3. Let G be a 2-group. Then every regular G-cover satisfies the positivity
conjecture.

Proof. By Corollary 4.6, this result holds in the case of Z/2Z. Since G is a 2-group,
Z/2Z is a normal subgroup, and so the proposition can be applied inductively. �

problem 5.4. Find a combinatorial interpretation of the polynomial 1
k det[L (Γ)]Z[E] =

Aṽ(Γ̃)
Av(Γ) , assuming Conjecture 1.7 is true.

Vector fields are a potential source of a combinatorial interpretation for the ar-
borescence ratio. We observed that in a k-fold cover, the ratio Aṽ(Γ̃)

Av(Γ) always appears
to be a product of (k − 1) weighted sums of vector fields.
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Conjecture 5.5. Let Γ̃ be a k-fold cover of Γ, then

Aṽ(Γ̃)
Aṽ(Γ) =

∑
(γ1,...,γk−1)∈Vk−1

f(γ1, . . . , γk−1)
k−1∏
i=1

wt(γi)

where V is the set of vector fields of Γ, and f is an Z>0-valued function.

Moreover, as we look over all possible k-fold covers Γ̃, the ratios exhaust all possible
(k − 1)-tuples of vector fields of the base graph, which is only known in the 2-fold
case. This observation motivates the following conjecture stated in terms of random
covers.

Conjecture 5.6. Let Γ = (E, V ) be a graph, fix a vertex v with non-trivial arbores-
cence. Let Γ′ be a random k-fold cover of Γ, assuming uniform distribution. Then the
expected value of the ratio of arborescence is

E
[
Av′(Γ′)
Av(Γ)

]
= 1
k

∑
γ∈V

wt(γ)

k−1

= 1
k

∏
w∈V

 ∑
α∈Es(w)

wt(α)

k−1

where V is the set of vector fields of Γ.

Conjecture 5.6 is an alternative approach to positivity via a “pigeon-hole” like
argument: assuming the ratio of some covering graph has a negative coefficient, some
cancellation shall happen as we sum over all possible covers; this might cause the
expected value to not be “large enough” to match Conjecture 5.6.
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