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CLASSIFICATION
OF NASH MANIFOLDS

by Masahiro SHIOTA

1. Introduction.

In this paper we show when two Nash manifolds are Nash diffeo-
morphic. A semi-algebraic set in a Euclidean space is called a Nash
manifold if it is an analytic manifold, and an analytic function on
a Nash manifold is called a Nash function if the graph is semi-algebraic.
We define similarly a Nash mapping, a Nash diffeomorphism, a Nash
manifold with boundary, etc. It is natural to ask a question whether
any two C°° diffeomorphic Nash manifolds are Nash diffeomorphic.
The answer is negative. We give a counter-example in Section 5. The
reason is that Nash manifolds determine uniquely their "boundary".
In consideration of the boundaries, we can classify Nash manifolds
by Nash diffeomorphisms as follows. Let M, M^ , M^ denote Nash
manifolds.

THEOREM 1. — There exist a compact real non-singular affine
algebraic set X, a non-singular algebraic subset Y of X of codi-
mension 1 , and a union M' of connected components of X-Y
such that M is Nash diffeomorphic to M' and that the closure M'
of M' is a Nash manifold with boundary Y. Here Y is empty if
M is compact.

In the above we call M' a compactification of M.
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THEOREM 2. - Let N ^ , N3 Z^ any respective compactifications
of M ^ , M^. TT^n the following are equivalent.

(i) M^ OTC? M^ are Nash diffeomorphic.
(ii) N^ a^zrf N^ are Nash diffeomorphic.

(iii) N^ aAzd N^ ar^ C00 diffeomorphic.

By the /i-cobordism theorem [5] we have

COROLLARY 3. - Assume that M^ and M^ are C°° A/7<?o-
morphic, that the dimension of M^ ^ not 3,4 nor 5 , and that
if dim M^ > 6 , for any compact subset A of M^ rter^ ^joy^y
a compact subset A' D A of Mji such that M^ — A' z'5 simply
connected. Then M^ and M^ are Nash diffeomorphic.

The correspondence M —> the compactification of M shows
the following.

COROLLARY 4. — The Nash diffeomorphism classes of all Nash
manifolds are in (^.-^-correspondence with the C°° diffeomorphism
classes of all C°° compact manifolds with or without boundary.

The next corollaries may be useful when we consider Nash ma-
nifolds and Nash functions.

COROLLARY 5. — Let M^ D M\, M^ be Nash manifolds and a
compact Nash submanifold. Let f : M^ —> M^ be a C°° mapping
such that f IM; is a Nash mapping. Then we can approximate f by
Nash mappings fixing on U[ in the compact-open C°° topology.

COROLLARY 6. — Assume that M is compact and contained
in R" . Then there exist Nash functions f^, . . . , fp on R" such
that the common zero point set of f^,. . ., fp is M and that
grad /i, . . . , grad fp on M span the normal bundle of M in R" .

2. Preparation.

See [3] for the fundamental properties of semi-algebraic sets.
LEMMA 7. - Let M c R" be a Nash manifold. Then there exists

a Nash tubular neighborhood U of M in R" , (i.e. U is a Nash
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manifold and the orthogonal projection p : U —> M is a Nash
mapping).

Pj^oof. - Let M be the Zariski closure of M in R". Let
Sing(M) denote the set of singular points of M. Then M-Sing(R)
is open and dense in M . Consider the normal bundle

N = {(x , y ) e M x R" | y is a normal vector of M at x in FT} .

Then clearly N is an analytic manifold. Moreover N is semi-
algebraic The reason is the following. We define the normal bundle
N of_ M-Sing(M) in the same way. Since N is an algebraic subset
of (ra-Sing(M)) x FT, N n (M x FT) is semi-algebraic. The equality

N n (M x R") = N n ((M-Sing(M)) x FT)

and the dense property of M-Sing(R) in M imply that N is the
topological closure of N n ( M x R ' 1 ) in M x R" . Hence N is
semi-algebraic.

The mapping q : M 3 (x , y ) —> x + y e R" is obviously
of Nash class. Let E^ be the set of critical points of the mapping
q x q : N x N —^ R" x R" . Then (N x N) - E^ contains

A! = {(^1^2) ̂  x N | z ^ =z2 = Oc,0)}.

Let E^ be the set of all points ( z ^ z ^ e N x N such that
Q ( z ^ ) = q ( z ^ ) . Then E^ is a closed semi-algebraic subset of N x N
and contains the diagonal

A^ = { ( z ^ z ^ ) e N x N j z ^ = z ^ } .

Moreover the topological closure E^ - A^ does not intersect with
A^ because of the existence of C°° tubular neighborhoods of M.
Hence E^ u (E^ — A^) is a closed semi-algebraic subset of N x N
which does not intersect with A, .

Let ^ be a positive continuous function on M defined by

<^(x) = dist(0c, 0, x , 0), E^ u (E^ - A^)) .

It is easy to see that any distance function from a semi-algebraic set
is semi-algebraic (i.e. the graph is semi-algebraic). Hence ^ is semi-
algebraic. Put

N ' = { O c , > O e N | 2 | ^ | < < p O c ) } .
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Then N' is an open semi-algebraic subset of N . We want to see
that the restriction of q to N' is a Nash diffeomorphism into R".
It is trivial that the restriction is an immersion. Assume the existence
of points z^ = ( x ^ , y ^ ) and z^ = ( x ^ , y ^ ) in N' such that
q(z^) = q ( z ^ ) , z^ ^ z^ . Then we have

x! + Y\ = ^2 + Yi '

dist^C^O.^O),^,^)) , . 2 , 2 . 2 . 2= ^i '•"•^ + ̂ i + y\ + ^2
dist2 (Oc,, 0 , x , , 0 ) , ( z , ,Z2 ) ) 1 / ,2 2 .2

></?OCl) ,^2) »

and 2 i ̂ i | < ^(^i), 2 | ̂  I < ̂ 2) •

It follows that |^i — x^ I2 = l^ i ~" ^2 I2 an^

1 ^ 1 - ^ 2 I2 ̂ ^^^^l.

Hence l^ i ~~ ^2 I2 ^>-^2 "*" ^1 • This is a contradiction. Therefore
^(N') is a Nash tubular neighborhood of M in R". The proof is
complete.

The following lemma will be used in the proof of Theorem 2,
but this may be interesting itself. The case of polynomials on a
Euclidean space was treated in Remark 6 in [11].

LEMMA 8. -Let Me W be a Nash manifold closed in R\
Let /\ , f^ be positive proper Nash functions on M. Then there
exists a C°° diffeomorphism r of M such that /i ° T and f^
are equal outside a bounded subset of M .

Proof. — The case where M is compact is trivial. Hence we
assume M to be not compact. Let f^, f^ be the extension of
/^, /2 respectively onto a Nash tubular neighborhood U of M
defined by /,-=/,- ° P , i = 1,2, where p is the orthogonal pro-
jection. Then /,. are Nash functions, since any composition of
Nash mappings is of Nash class. We regard grad/,., i = 1,2 as
Nash mappings from U to R" also. The restrictions of grad/^
and grad f^ to M are vector fields of M. Let the restrictions be
denoted by H^ , w^ respectively. Put

B = { x e M K w ^ . H ^ ) = - I w ^ l \^^\} .
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Here < , > means the inner product as vectors. Then B is semi-
algebraic because of

B = M n {xe\J |<grad^0c) ,grad720c)>

= -lgrad/i(x)| |grad72001}.

Obviously B is the set of points x where w^ is zero or w^ is
a multiple of — w^ by a real non-negative number.

We will prove by reduction to absurdity that B is bounded.
Assume it to be unbounded. As R" is Nash diffeomorphic to
S" - { a point a} by the stereographic projection, we identify them.
The germ of B at a is not empty. Hence, considering the germ,
we obtain easily an unbounded one-dimensional semi-algebraic set
B'C B (see [3]). We can assume that B' is a Nash manifold with
boundary and Nash diffeomorphic to [0, oo), because the set of
singular points of one-dimensional semi-algebraic set is a semi-
algebraic set of dimension 0. Let v be a C°° non-singular vector
field on B'. Then, by the definition of B , we have

vfiW x vf^(x) < 0 for x e B' .

On the other hand, any non-constant Nash function defined on [0, oo)
is monotone outside a bounded subset, because the set of critical
points is a semi-algebraic set of dimension 0. Hence one of the
functions /^ |̂  and f^ |g» is monotone decreasing outside a
bounded subset. This contradicts the fact that /^ , f^ are proper
and positive.

Let K be a large real number, let ^ be a C°° function on M
such that

0 for | jc |<K1 /2

1 for ^xiXlK)112.
0 < <^ < 1 , </? =

Put L = M n { |^ | =K1 7 2}, L ' = M n { I j c l ^ K 1 7 2 } ,
L" = M n {\x\>(2K)l/2} .

For any real c ^ , c^ > 0 with ^ + c^ > 0, the vector field
w' = c^w^ +€3^ is non-singular outside B and satisfies w'/, ,
w'f^ > 0 at any point x ^ B such that Ci | w^ \ = c^ \w^ |.
Choose K so that L' n B = 0-. Put

w = Wi / lwJ + (^2/1^2 | on L'.
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Then w , w, and w^ are non-singular vector fields on L'. Moreover
w/i, w/2 are positive on L', L" respectively. It is sufficient to
consider the case

f^(x)=x\ + • • • + x ^ for x = ( x ^ , . . . , x ^ e R n .

Since L is a level of /,, L is smooth, and w, is transversal to L.
On any maximal integral curve of w , /, is non-singular and

monotone, and the set of values is [K, oo). Let ^ be the local 1
parameter group of transformations of L' defined by w. Then
V^ is well-defined for 0 < / < oo. put

i r ' ( z , t ) = i^(z) for (z , r )e L x [0,oo).

It follows that v ' is a diffeomorphism onto L'. The mapping

( z , t ) -^ (z,f^ o ^ ' ( z , t ) - K )

is a diffeomorphism of L x [0, oo). Let (z , t ) —> (z , s ( z , t))
be the inverse diffeomorphism. Put

7f(z,t) = v ' ( z , s ( z , t ) ) for ( z , t ) < = L x [0,°o) .

Then TT is a diffeomorphism from L x [0, oo) to L' such that

/i ° n ( z , t ) = t + K for (z , /)e L x [0, oo).
By the definition of v and ir' we have a positive C°° function p
on L' such that ir^ (^-\ = pw .\9//

It follows from n(L x {t > K}) = L" that
9/2 o TT
——— (z , t) > 0 for t>K.

ot

Hence, for each x e L , the /-function / 2 ° i r ( ^ , r ) on [K,oo)
is proper and non-singular. Choose real K'O K) so that

/2 ° fl-Oc, /) > K for (jc, /) e L x [K', °o).

Then we have a C" function fy on L x [0, oo) such that fj(x, t) ,
0 < r < o o , is c~ regular for each fixed x ( = L , that /, (x ,t)=t+ K
in a neighborhood of L x 0 and that f^(x , t) = /, o n ( x , t) for
( x , r ) e L x [K'.oo). it follows that ( x , t) -^ ( x , f y ( x , t) - K)
is a diffeomorphism of L x [0, °o). Let v" : ( x , t) —> (x , ' s ' ( x , t))
be the inverse. Then we see that



CLASSIFICATION OF NASH MANIFOLDS 215

/2 o 7T o 7T"(JC, t) = r + K if S ' ( X , t) > K' .

Hence
/i o 7 r = / 2 ° ^ r 0 ^ it 5 ' O c , r ) > K ' .

Since > ^ ( j c , r ) = ^ in a neighborhood of L x 0, we can extend
TT o 7T"""1 o 7r~1 onto M so that the extension r is the identity
on M — L ' . Then f\ ° r = fz outside a bounded set. Hence
Lemma is proved.

3. Proofs of Theorems 1 ,2 .

For the sake of brevity we assume that M, M^ and M^ are
connected. We also assume that the manifolds are not compact,
because the other case is well-known. Let n' be the dimension
of the manifolds. Let G^ ^ denote the Grassmann manifold of
w-linear subspaces in R'" +mf. Put

^ = W^ G^ x R"^ \xe \} .

Then G^ ̂ , has naturally affine non-singular algebraic structure [7].
Let 8M' denote M' — M' if M' is a manifold contained in

R" and the usual boundary if M' is a compact manifold with
boundary.

Proof of Theorem 1. — (1) First we reduce the problem to the
case in which there exist a real compact non-singular algebraic set
X c R" and an algebraic subset Z of X satisfying the following
conditions, (this was shown in the proof of Proposition 1 in [9]).

(i) M is a connected component of X — Z .
(ii) For every point a e Z , there exists a smooth rational

mapping ^ from X to R" for some integer n" < n1 such that
?(a) = 0, that

( = ) , „ ( on U
Z ^({Oci,...,^)^" |;Ci . . . x^= 0})

\ C / \ on X

where U is a neighborhood of a in X , and that ? is a submersion
on U. In this case we say that Z has only normal crossings at a
in X.
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Proof. — The boundary 3M is a closed semi-algebraic set in
R". By Lemma 6 in [6], there exists a continuous function 17 on
R" such that r^~^{0) = 3M and that the restriction of 17 to
R" — 3M is of Nash class, (see the remark after Proposition 1 in [9]).
Consider the graph of the restriction of 1/r? to M . Then the graph
is closed in R" x R and Nash diffeomorphic to M. Since R"'1'1

is Nash diffeomorphic to S""^ — a point by the Stereographic pro-
jection, we can assume that the Zariski closure M in R" is compact
and that 3M is a point. Let X : M' —> M be the normalization
of M (see [7]). Then there exists a Nash manifold M" open in M'
such that the restriction of X to M" is Nash diffeomorphic onto
M and that M" is a set of non-singular points of M'. It follows
that ^ M " C X ~ 1 ( ^ M ) and that M' is compact because so is M.
Apply Hironaka's desingularization theorem [2] to M\ Then we
have a compact non-singular affine algebraic set X of dimension
n9 and a smooth rational mapping ^ : X —^ M' such that the
restriction of /x to ^~1 (M") is diffeomorphic onto M". More-
over we can suppose that Z = iJi~1 (\~1 (9M)) has only normal
crossings (Main Theorem II in [2]). This means (ii). As ^"^(M") c Z ,
^~1 (M") is a connected component of X — Z . Hence we can assume
(i).

(2) Let p : V —> X be the orthogonal projection of a Nash
tubular neighborhood V of X in R". Put

Z ' = Z n M ,
F = {(x , y ) e X x R" | y is a normal vector of X at x in W1} .

Then the projection F —> X shows that F is the normal bundle
of X in R" . It is easy to see that F is a non-singular algebraic
set. Let F |y denote F n Y x R" , the restriction of the bundle
to Y, for any subset Y of X.

We want to show the following. There exist a compact
non-singular algebraic set Y in M of codimension 1 , a
connected component M' of M — Y, a polynomial mapping
q '. R" x R" x R —> R" and open neighborhoods U\ , U^ of
Y x O x O in F | y x R such that,

( i ) 4 ( j c , 0 , 0 ) = x for j c e Y ,
(ii) V, C V^ ,
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(iii) q |y is a diffeomorphism into R" whose image contains
M - M \

(iv) q |y is an immersion whose image contains M — M'.
Hence we can say that F |y x R and qW^) are the normal bundle
of Y in R" and a « bent » tubular neighborhood respectively.

Proof. — Let a be the ideal of the smooth rational function
ring on X consisting of functions which vanish on Z. Let ^ be
the square sum of finite generators of a . Then for every point a
of Z , there exists an analytic local coordinate system ( x ^ , . . . ,x^,)
for X centered at a such that ^ = x\. . . x^,, in a neighborhood
of a for some n " . Put Y = ^ ~ l ( e ) ^ M for sufficiently small
6 > 0. Here Y is not necessarily algebraic, so we approximate
later it by an algebraic set.

For any point a € Z', consider the set of all connected
components of M n (a small ball with center at a). Let T be the
disjoint union of the set as a runs on l! . Hence an element c of
T means a pair of a point o^(c) of Z' and a connected set a^(c)
contained in M. Then T has a topological manifold structure
such that a^ : T —> X is a topological immersion and that
02(0)0 o^c) ̂  0 for close c, c ' eT . Let v^ :T —> R" be
a continuous mapping which satisfies the following conditions.
For every point c of T, let (^, . . . ,.x^) be an analytic local
coordinate system for X centered at a = a ^ ( c ) such that
o^(c) = [x^ > 0, . . . ,x^,, > 0}, n" < n ' , in a neighborhood
of a. Then i^(c) is a vector tangent to X at a and satisfies

^ (c )x ,>0 for \<i<ntt,

here we regard v^(c) as a tangent vector of X at a. This means
that i^(c) points at a point of or^(c) . The existence of v^ is trivial.
Moreover we can assume the following, using a C°° partition of unity.
For every c€ T , there exists a C°° vector field v^ (c) on a small
neighborhood of f l = = o ^ ( c ) in R" such that v^(c\ = v^(c) and
that v^c^ = ^(c^) on ^e common domain of definition for any
close c', c" € T.

Put
a^(c) = p~1 a^(c) for c G T .
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We remark that p ~ 1 (Z) has only analytic normal crossings in V
(see [2] for the definition) and that a^(c) can be regarded as a
connected component of p~~1 (M) H (a small ball with center at
04 (c)), because we are concerned with only an arbitrarily small
neighborhood of Z\ Consider the restrictions of v^(c) to
a\(c) for all c E T . Then the restrictions of v^ (c) and i^(c')
to 0^(0) H o^(c') are equal for c, c ' € E T . Hence we have a C°°
vector field ^3 on (a neighborhood of Z' in R")^p"' l(M)
such that 1:3 = v^(c) on o\(c). By the property of i^ , 1^3 is
transversal to p-1 (Y) for any small e > 0 (Y = F1 (e) H M).

Fix e. Using the integral curves of 1:3, we obtain a C°°
imbedding ^ of a neighborhood U^ of Y x 0 x 0 in F |^ x R
into R" such that q^ (x , y , 0) = x + y ,

-?1 0^,0 =^(^,^ ,0 tor ( x , y , 0 ) , ( X , ^ , O G U ,

and that 4i (U^) is equal to (a neighborhood of 7! in R") H p-1 (M).
Here U^ is chosen so that (Ui , Y x 0 x 0) is C°° diffeomorphic
to (F IY x R , Y x 0 x 0). From these arguments it follows that
M — Y has two connected components the closure of one of which
does not intersect with 3M. Let the component be written as M'.
Then we can assume that ^ i (U^) contains M — M ' and hence that
(hi). Let q^ be a C°° extension of q^ to R" x R" x R . Then
there exists an open neighborhood U^ of Y x 0 x 0 in F ly x R
such that (ii) and (iv) are satisfied.

We need to approximate Y and q^ by an algebraic set and
a polynomial mapping. Since M' is a C00 manifold with boundary,
we have a C00 function \ on X such that \ is C°° regular on
Y and that the zero set of x ls Y • Approximate x by a smooth
rational function in the C°° topology, and consider the zero set.
If we use the same notation Y for the set, Y is a compact non-
singular algebraic set in M of codimension 1 . We have no problem
to apply the above argument to this Y, because the old Y can
be transformed to the new one by a C°° diffeomorphism of R"
arbitrarily close to the identity. By the equality

q^ (x , 0, 0) = x for x E Y ,
we have polynomial functions v ^ , . .. , v^ on R'1 x R" x R and
C°° mapping p i , . . . , p^ : R" x R" x R —> R" such that
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q^ = ,̂ ^.p, + the projection onto the first factor,
t = i

and that v, = 0 on Y x 0 x 0. Approximate p, by polynomial
mappings p\ in the compact-open C°° topology. Then

k
q = ,̂ ^ P,7 + the projection

/==!

is what we wanted. We have to modify U ^ , U^ so that (iii), (iv)
remain valid. But this is easy to see, hence we omit it.

(3) By (iii) in (2), q maps diffeomorphically (q- ̂ M - M') 0 U i »
Y x 0 x 0) onto (M - M', Y). The construction of Y and q in
(2) shows that (q-l (M - M7) H U^ , Y x 0 x 0) is C09 diffeomorphic
to (Y x (- 1 , 0], Y x 0). Hence M and M' are C°° diffeomorphic.
We want to prove that they are Nash diffeomorphic. As it is not easy
to prove directly this, we will use an intermediary Nash manifold N
which shall be Nash diffeomorphic to M and M'. In (3) we will
define a C°° manifold M" whose approximation shall be N.

Let q' : R" x R" x R —> R" be the projection to the first
factor. Put A = F |y x R , S = the critical point set of q |p, p ,

B = (A H q~1 (Z)) — S (where ======== means the Zariski closure),

C = (AH^-^X)) - S and B' = B 0 U^ .

Then A is a non-singular algebraic set, B and C are algebraic sets
of dimension n9 — 1 , n' respectively, and B' is a semi-algebraic
set of dimension n' — 1 . Moreover B has only normal crossings
in C at every point of B H U^ (see (ii) in (1)), C is non-singular
at every point of C H U^ , and for every point a of B' there exists
an algebraic local coordinate system (^ i , . . . ,x^) for C centered
at a such that
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B' = { X i = 0, x^ > 0, . . . , x^ > 0} U . . .

U {^ >0, . . . ,^»^ >0,;c^ =0}
in a neighborhood of a for some ^" < n and that

(i) q maps diffeomorphically {^ i = 0},. . . , {x^ = 0} into
Y. We remark that B' is naturally homeomorphic to T in (2). Put

C' = q-^M - M ' ) H U i .
Then C' is the subdomain of C sandwiched in between B' and
Y x 0 x 0.

We want to find a C°° manifold M" in R" x R'1 x R and
a C°° diffeomorphism ^ : M" —> M such that

( i i )M"DC\ ^ = q on C\ M" H B = 3M" = B' and
M ^ n c = c'.

Proof. - Since q maps ( C ' U Y x O x O , Y x O x O ) diffeo-
morphically to (M - M', Y), we only have to find a compact C°°
manifold M^ with_boundary in R" x R" x R and a diffeomor-
phism ^ : M(3) —> M' such that

(iii) BM^ = Y x O x 0,
(iv) q = <^' on Y x O x O ,
(v) M ( 3 ) n C = Y x 0 x 0 , and

(vi) M^ U C' is a C00 manifold.

Let 0^ denote the e-neighborhood of Y x 0 x 0 in
R" x R" x R for small e > 0. Let ^, i = 1,2, be a C°°
function on R" x R" x R such that

o<x,<. , x,» ji ,̂  °"

and that if Xi(^) ^ 1 then \^(x) = 0. Consider the mapping

^ : 03, 0 (C - C') —^ R71 x R" x R
defined by

^'00 = (1 - \^z)) (0,^,23) + xi(^) (q(z) - ̂ i , 0 , 0) + (z^ 0 , 0),

z === (^1,^2^3)-
Take sufficiently small e. Then, choosing x, suitably we see that
<^' is a C" diffeomorphism. It follows that

^'((03, - o^) n (c - c')) c M' x o x o.
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Put
M^ = (M' - q(0^ H (C - C'))) x 0 x 0 U ̂ \0^ H (C - C')).

Then M(3) is a compact C°° manifold with boundary Y x 0 x 0 (iii).
Let <^-1 :M' —> M^ be defined by

^-i(;c)= ( ^(^(^nc^rnc-c^if xE^(03,n(c-c'))
\ (x , 0, 0) otherwise .

Then <^~ 1 is a C00 diffeomorphism such that ^ = q in a neighbor-
hood of Y x 0 x 0 (iv). From <^(0^ 0 (C - C')) = 0^ 0 (C - C'),
(vi) follows. For (v), we modify M^ as follows. Increasing the di-
mension n if necessary, we can assume that

X C FT-1 x 0, and hence C, M C R " - 1 x 0 x R" x R .

Let Xa be a C°° function on M^ U C' such that Xa = 0 on
Y x 0 x 0 U C' and > 0 on M^ - Y x 0 x 0. Consider

{ ( x „ x ^ x , , 0 , y , t ) , y , t ) \ ( x , , 0 , y , t ) G M W }

in place of M^ . Then (v) is satisfied.
(4) Here we will approximate M^ by a Nash manifold N fixing

the "boundary". Let L' be a small open semi-algebraic neighborhood
of B' in C, and L be the union of M" and L' such that L is a
C°° manifold with boundary. This is possible since C is non-singular
at every point of B'. Let D' be an open tubular neighborhood of
L in R" x R" x R , and D be an open semi-algebraic subset of
D' containing L. We can choose M", L' and D so that D H C
is a small neighborhood of C' in C and that D H B is equal to
L' H B and that B has only normal crossings in C at every point
of D H B. Let r : D —> L denote the orthogonal projection.
Let h : D —> E^ „., m = In - n9 + 1, be defined by

/z(z)==(/^(z),^(z))=

(the normal vector space of L at r(z) in f\2n+l, z — r(z))

for z G D . Then h is a Nash map on r-^L'), and h^(0) = L.

Remark 9. - Let / : M^ —> M^ be a C°° mapping of Nash
manifolds. Then we can approximate / by Nash mappings in the
compact-open C°° topology (this is announced in [9]).
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Proof. — By Proposition 1 in [9] there exist a compact non-
singular algebraic set X^ C R'1 1 , a closed semi-algebraic subset B[
of X^ and a union M[ of connected components of X^ — B[
such that

(i) Mi is Nash diffeomorphic to M ^ ,
(ii) for every point x of B^ , there exists an analytic local

coordinate system (.x^ ,. . . , jc^) for X^ centered at x such that

( M ^ , B ' i ) = ( { ^ > 0 , . . . , ; c ^ >0} ,

{x, = = 0 , X 2 > 0 , . . . , x ^ > 0 } U . . .
U {^ >(),...,x^_i >0,^ =0})

in a neighborhood of x , for some n^ < ̂  . Hence we can say
that M\ is a compact analytic manifold with cornered boundary.
We assume Mi == M'i . It follows that 3Mi = B'i .

In the same way as (2), we can construct a compact non-singular
algebraic set Y^ in M^ Fl (an arbitrarily small neighborhood of 3Mi)
and an analytic imbedding q\ : Y^ x [ — 1 , 0 ] —> X^ such that
q\ (YI x 0) = YI and that the image of q\ is an arbitrarily small
neighborhood of B[ . Put

M ' /=^ (Yi x [ - l , 0 ] )UMi .

Then M'/ is a compact analytic manifold with boundary containing
Mi , and there exists a C°° diffeomorphism TT of X^ arbitrarily
close to the identity such that 7r(M'/) C M^ .

Let M^ be contained in R 2 , and p be the orthogonal pro-
jection of a Nash tubular neighborhood of M^ in R"2 (Lemma 7).
Consider f o TT on M^. Then f o IT is extensible to X^ and hence
to R"1 as a C°° mapping to R 2 . Let 17 be an extension, and 17' be
a polynomial approximation of 17. Then /' = '»?' IM : ̂  —> R 2

is an approximation of / : M^ —^ R"2 . Since the closure of 7r(Mi)
in X^ is compact, we can assume that /'(M^) is contained in the
Nash tubular neighborhood of M^ . Hence p o /' : M^ —^ M^ is
a Nash approximation of /. Thus Remark is proved.

In many cases we want Nash approximation to be fixed on a
given semi-algebraic set. So the following are useful.
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LEMMA 10. - For any C°° function g on D vanishing on
D O B , there exist C°° functions a ^ , . . . , c^ a^d TWi functions
j3^ , . . . , j3g 0^2 D 5MC/2 ̂ r

g =o^j3i + • • • + Ofi^

PI = • " = ft? = 0 ^ D U B .

Pwo/: - Let ^ be the ideal of the smooth rational function
ring on R" x R" x R consisting of functions which vanish on B.
Let ^,. . ., ̂  be a system of generators of ^ . We want to find
04 , . . . , ag so that the equality in Lemma is satisfied for these
fti, a,. By a C°° partition of unity we only need to see this locally.
This is trivial in a neighborhood of any point of D — B.

For any point a of D O B , there exist smooth rational
functions 7 ^ , . . . ,7^, 6 ^ , . . . , 5^ with k = In + 1 - n* and
for some n" < n' such that 7 i , . . . , 7^ vanish on C, that
6^ . . . f>^» vanishes on B, that

B = {71 = ' " = 7 , = 5 i . . . 6 ^ = 0 }
in a neighborhood of a and that

7i x • • • x 7^ x 61 x • • • x 6^ : R" x FT x R —^ R^""

is a submersion in a neighborhood of a, since C is non-singular
at a , and B has only normal crossings at a in C .

Hence it is sufficient to prove that if

D = R^ = { ( X i , . . . ,x^)} and

B = {^ = . . . =^ ==^i. . .^ =0}

with k <k' < k " , and if a C°° function g on R^ vanishes on
B, then g = a^x^ + . . . 4- o^;^ + c^+i x^ .. . x^ for some
C°° functions c^ , . . . , a^ . The case when fe = 0 is trivial.
Hence, considering g(0, ^ . . , 0, x^ ,. . . , x^), we have a C°°
function c^ on R^' such that g = o i k + l x k + l - s x k l on

0 x R^ -fc .^ This implies that g — o^ x^ . . . x^ vanishes
on 0 x R^ - k . Then the existence of c^ , . . . ,o^ which satisfy
^ "~ ^+1 xk+l • • • -^ ==" alxl + ' ' ' + ^fc^fc ls well-known. Hence
Lemma follows.
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LEMMA 11. — With the same g as in Lemma 10, there exists
a Nash function g ' on D arbitrarily close to g and vanishing on
D U B .

Proof — Using Remark 9, we approximate c .̂ in Lemma 10
by Nash functions a/. Then g ' = ^ a,'̂  is a Nash approximation

< = i
of g and vanishes on B U D .

We continue with the construction of N. By Remark 9 we
have a Nash mapping h\ : D —^ G^ ^r which is an approximation
of h ^ . Apply Lemma 11 to h^. Then we have a Nash approxima-
tion h\ :D —^ R2"4'1 of h^ such that ^ = 0 on D U B . Let
W be a Nash tubular neighborhood of E^/ in R"" x R2"^
where G^ ^ is naturally imbedded in R" for some n^. Let
s : W —> E^ „» be the orthogonal projection. Put

h" ==(hf^h^)=sohf = 5 o ( ^ , ^ ) .

Then h^ : D —^ E^ „» is a Nash approximation of h, and h^
is identical to h^ on D O B . Shrinking L and D if necessary,
we take this approximation in the uniform C°° topology. Put

L" ==hff'l(G^xO)=h^-lW.

Then there exists a C°° diffeomorphism V/ from L" to L close
to the identity such that V/ = identity on D O B , because h is
transversal to G ^ ^ x O in E^ ^ . Put ^(M'^N. It follows
that L" is a Nash manifold containing D O B and that (M", B')
is C°° diffeomorphic to (N, B') identically on B'. Hence N is
the required Nash manifold.

(5) We will prove that M and N are Nash diffeomorphic.
Let $ : L —> X be the C°° extension of the diffeomorphism
^ : M" —> M to L such that $(z) = q(z) for z ^M'\ Let
^ : D —> R" be a C°° extension of <S> o ^ : L" — ^ X to D.
Then ^ = q on D O B , and ^ Ij/' is an immersion. Apply
Lemma 11 to ^ — q. Then we obtain a Nash approximation
^ of ^ such that ^ = q on D U B . Compose ^' |̂  with
the orthogonal projection p of a Nash tubular neighborhood of
X in R" . This is well-defined if we shrink L and D and if the
approximation is chosen closely. Then the composed function
^ : L" —> X is an approximation of ^ \^» = $ o ^ : L" —> X
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such that ^" = q on D n B == I/' 0 B. Moreover we see
^ ' (N)=M as follows from the facts ^"(B') = q(^) = Z',
that M is a connected component of X — Z' and that
4^ IN is an immersion. It is trivial that M H ^^(N) is an
open subset of M. Assume it to be not closed. Then there
exists a convergent sequence of points x ^ , x ^ , . . . in ^"(N)
whose limit x GM is not contained in ^'(N). Let z ^ z ^ , . . .
be points of N such that ^'(z,) == ;c,, ; '= ! , . . . . Choosing
a subsequence, we can assume that z ^ , z ^ , . . . converges to
z E N . Then we have ^'(z) = x. This is a contradiction. Hence
^ff (N) 3 M. In the same way as above, we see that the set

{xeM\#^f\^(x)>2}

is empty or equal to M. For any point x G M, if we choose the
above approximation closely, this set does not contain x . Hence
^"iNn^'^M) ls diffeomorphic onto M. From the same reason
it follows that any connected component of X — Z' — M does not
contain any point of ^'(N), namely that ^ " ( N ) C M U Z ' .
Then ^ ( N ) n z ' = = 0 . Hence ^ff^ is a Nash diffeomorphism
onto M.

(6) Finally we will prove that M' and N are Nash diffeo-
morphic. For any point x e L" n B = D n B, let C^(L") denote
the ring of C°° function germs at x in L". Then the ideal
q^ C C^(L") of germs vanishing on L" H B is principal because
of the normal crossings property of B in C U D . Moreover we
have a polynomial function on R" x R" x R which vanishes on
D O B and the germ of whose restriction to L" is a generator of
q^ . Choose D so small that the fundamental class of L" H B
is mapped to the zero class in H^»_^(L" ;Z^ ) by the inclusion
map (this is possible since N is a compact topological manifold
with boundary B', here we use infinite chain). Then we see easily
that the ideal q of C°°(L"), the ring of C°° functions on L",
of functions vanishing on L" 0 B is principal (see Lemma 1 in
[12]). Approximate a generator of q by a Nash function p by
the method of Lemma 11 so that p = 0 on L" H B. Then it
follows that p generates q . Choose p so that p > 0 on N.

Recall q' : R" x R" x R —> R" , the projection to the first
factor. The restriction of q ' to B' is homeomorphic onto Y. Let
us extend this to N so that the extension maps diffeomorphically
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N to M'. Let v be the unit normal vector field of Y in X pointing
to the interior of M'. Choose small I/ . Put

0(z) =po (q9 " V/(z) +p(z) v o q ' o V/(z)) for zG^-^L').

Here we regard v as a mapping from Y to R", and p is the
orthogonal projection of a Nash tubular neighborhood of X in R" .
This is well-defined because </ (z)€Y for z E I/. Clearly 0 is a
Nash mapping.

We can assume that I/ 0 M" = {z E M" | p " ^-1 (z) < e} for
some e > 0. Let i/ be the unit C°° vector field on L' the family
of whose maximal integral curves consists of {q^1 (x) H L'}^y an(!
which points into M" at every point of B'. For any point a G B\
there exists a local analytic coordinate system z = ( z ^ , . . . ,z^»)
for L' centered at a such that p o ^/-1 (z) = ̂  . .. z^n for some
71" < T/ and that M" = { z ^ > 0, . . . , z^ > 0} in a neigh-
borhood of a. By (i) in (3), t/z, > 0, ; = 1,. . ., n" at a. It
follows that v ' p o V/"1 > 0 on L'H M" . Hence i/ is transversal
to {z G M" | p o \^-1 (z) = e ' } for some e9 > 0. This implies that
q1 maps {z G M" [ p o ^/-1 (^) = e'} diffeomorphically onto
Y. Therefore 0 | ^ , is diffeomorphic onto (a C°° collar
of M') — Y. The transversality of i/ shows also that
(M" -L\3(]\T -L')) is diffeomorphic to (M" - C\ 3(M" - C'))
so that if the diffeomorphism maps a point z E ^ ( M r y — L ' ) to
z ' e3(M"—C') we have q ( z ) = q ( z ' ) . Hence there exists a
diffeomorphism from (M" - L\ 3 (M" - L')) to (M', Y)
whose restriction to 9(M"—L') is q ' . Therefore we extend 0
to 0 : L" —^ X such that © |̂  is a C°° diffeomorphism
onto M'.

Apply Lemma 11 to 0 — q ' , and compose (the approxi-
mation mapping + q9) with p . Then we have a Nash approxi-
mation 0' : L" —> X of © such that ©' = © on L" H B .
To see that ©'1^ is a Nash diffeomorphism onto M' we only
need to show the following by the same reason as (5).

(i) © ' (B ' )=<7 ' (B ' )=Y.

(ii) M' is a connected component of X — Y.

(iii) ©'IN is an immersion.
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(i) and (ii) have been shown already. It is trivial that O'| , ,
N-^/ '^L )

is an immersion. Hence we only have to prove the following.

Statement. - Let 0^ : R"' —> R"^1 be a submersion,
K C R"' be a compact set. Let v^ be a unit C°° vector field on
R"' the family of whose all maximal integral curves consists of
{^O^eR————^

Q^ (jc) = x ^ . .. x^n for x = 0^,. . ., x^i) € R"' .

Assume that i;^>0, z = 1,. . ., M"(< n ' ) . Let (e^Q^) be

a C°° close approximation of ( O ^ , ^ ) such that 6f^l(0)^ 6^1 (0).
Then (0^ , 0^) is an immersion on {x^ > 0, . . . , x^ > 0} H K.

Proof of Statement. — Since Q\ vanishes on

{x, = 0} U . . . U {x^ = 0} ,

there exists a C00 function ry on R"' such that Q\ = r?^^ • we

see easily that 17 is close to the function 1 (see the statement at
p. 268 in [10]). Replacing 17 by a C°° function which is equal to
17 in a neighborhood of K and is close to 1 in the Whitney C°°
topology, we can assume that

9(^l) „ . „ R^—-—— .> U on R .
9x^

Then TT : ( x ^ , . .. ,x^) —> (17^1 , x ^ , . . . ,^) is a C°° diffeomor-
phism close to the identity. Since Q\ o 7r~1 = 6^ and

7r{^i >0,...,^. >0} = {^ >0,...,x^ >0},

we need to treat only the case where Q\ = 9 ^ . By the same reason
as above, we can assume that 6[ is sufficiently close to 0^ in the
Whitney C°° topology. Then 0\ is a submersion. Let v\ be the
unit vector field on R" the family of whose all maximal integral
curves consists of {0^1 (y)} ^-i an^ which is close to v ^ .
Then we have v[x^ > 0, / = 1,. . . , n" . Hence

v\(x^.. x^) >0 on [x^ >0,. . . ,^. >0}.

This means that the Jacobian matrix of (6\ ,0^) has the rank n'
on {^i > 0 , . . . ,x^n > 0}. We complete the proofs of Statement
and hence of Theorem 1.
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Proof of Theorem 2. - Let N^ , N^ be contained in non-
singular algebraic sets X ^ , X^ C R" respectively so that 3N^ = Y^
and 3N^ = Y^ are non-singular. The implication (ii) ===» (i) is
trivial.

First we will prove (i) ===^ (iii). Let ^ , ^ be Nash func-
tions on X^ , X^ respectively such that <^~1 (0) = Yp {^. > 0} = M/
and that .̂ are C°° regular at Y, . The existence of such ^ follows
from the non-singular property of Y^ (see Lemma 1 in [12]) (in fact,
we can choose as < .̂ polynomial functions). Let ^ , <3^ be positive
proper Nash functions on M^ defined by

$! == ^llMi). ^2 = O/^lMs)0^

where r : M^ —^ M^ be a Nash diffeomorphism. Apply Lemma 8
to <t^ and 4>2 • Then there exists a C°° diffeomorphism TT of M^
such that ^ and $3 o TT are equal outside a compact subset of
M ^ . Hence we have <^ = ̂  o 7-0 TT on (a neighborhood of 3M^
in M^) — 3M^ . This means that T O TT maps {<^ = e} to {^ = e}
for small e > 0. Hence the restriction of r o TT on {<^ > e} for
small e > 0 is a C°° diffeomorphism onto {^ ^ €}. As {<^ > e},
{(/^ > e} are C°° diffeomorphic to N^ , N^ respectively, N^ and
N^ are C°° diffeomorphic.

We prove the inclusion (iii) =^ (ii) in the next general form.

LEMMA 12. - Let Li 3 L^ , L\ 3 L^ 6^ compact Nash manifolds
with or without boundary and compact Nash submanifolds. Assume
L^ = 3Li if L^ n 3Li ^ 0 . // ^A^re ^ fl C°° diffeomorphism from
(L^ , L^) ro (L^ , L^), w^ can approximate it by Nash one. If the
restriction of the given diffeomorphism to L^ is of Nash class, the
approximation can be chosen to take the same image as the diffeo-
morphism at each point of L^ .

Proof. — The idea of the proof is the same as in Proof of Theo-
rem 1, and this proof is easier than that since L^ and L^ are smooth.
Hence we give only the sketch. The case where L ^ , L[ have the
boundaries: Consider their doubles L^, L^ , and give them Nash
structures [7]. We approximate the natural respective imbeddings
of L^ , L[ into L3 , L'3 by Nash mappings. Then we can regard
L ^ , L[ as contained in L3 , L'3 respectively, and there is a C°°
diffeomorphism from (L3 , L ^ , L^) to (L^ , L\ , L^). If we can
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approximate the induced diffeomorphism from (1^3, 3L^ U L^) to
(1/3, 9L[ U L^) by a Nash one, Lemma 12 follows. Hence we can
assume that L^ , L\ have no boundary. Here we do not necessarily
assume that L^ has the global dimension, namely that the local
dimension is constant.

Assume that L^ is connected for the sake of brevity. Let
T T : ( L ^ , L ^ ) —> (L[,L^) be a C°° diffeomorphism. If TT 1^ is
not of Nash class, by Remark 9 we approximate TT j^ by a Nash
diffeomorphism TT' : L^ —> L^ . Choose TT' very closely. Then
we easily find a C°° extension TT" : L^ —> L\ of TT' such that
TT" is an approximation of TT . Hence, from the beginning we
can assume that TT\^ is of Nash class. Let L^ , L\ be con-
tained in R" , R^ respectively, and p : R" x R"' —> R" ,
p ' : R" x R"' —» R"' be the projections. Let L^ C R^'
denote the graph of TT\^ . Then L^ is a Nash manifold such
that pli /^P'lL" are Nash diffeomorphisms onto L^ , L^ res-
pectively. By the normalization of the Zariski closure L^ of L^,
there exist a non-singular connected component S^ of an alge-
braic set in R"" and a linear mapping <p from R"" to R'1^1 such
that <^?|g is diffeomorphic onto L^'. Increasing ^" if necessary,
we construct a C°° manifold S^ in R" and C°° diffeomorphisms
^ : S^ —> L i , ^' : Si —^ L'i such that S^ C S^ , V/ = p o <p
on S^ , V/' = p' o <^ on S^ and S^ H S^ = S^ . Using E^ ^» in
the same way as Proof (4) of Theorem 1, we reduce S^ to a Nash
manifold. Then we can find in the same way as Proofs (5), (6)
Nash approximations ^ : Si —> L^, ^f : Si —>- L[ of ^ , V/'
such that ^ = V / , ^' = V/' on S^ . Hence ^' o ^-1 : L^ —»- L^
is a Nash approximation of TT such that ^o^r"1 = TT on L^ .
Lemma is proved.

4. Proofs of Corollaries.

Proo/ of Corollary 3. - Let N^ , N3 be the compactifications
of M i , M^ respectively. By Theorem 2, we only have to prove thai
N^ and N3 are C°° diffeomorphic. Let L be a closed C°° collar
of NI . Put L' = NI - L, L" = P - L\ Let TT : M^ —> M^
be a C°° diffeomorphism. We see easily that ( N ^ — 7 r ( L ' ) ; 9N^,

16
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7r(L")) is a C00 A-cobordism. On the other hand it follows from
the assumption that BN^ is simply connected for dim M^ > 6.
Hence, by the /z-cobordism theorem N^ — TT(L') is diffeomorphic
to BN^ x [0,1]. This means that there exists a homeomorphism
T : Mi —> N^ such that T J L and Tl^ui/' are C00 diffeomorphic.
It is easy to modify r to be a C°° diffeomorphism. Hence Corollary 3
is proved.

Proof of Corollary 4. - The correspondence is trivially injective
by Theorems 1,2.

Surjectivity: Let N be a compact C°° manifold with or without
boundary. We need to give to N a Nash manifold structure. If N
has the boundary, consider the double N', and regard N as natu-
rally contained in N\ In the other case, put N' = N, 3N = 0 .
Then, by a Theorem in [I], (N\ 3N) is C°° diffeomorphic to a
pair (an affine non-singular algebraic set, a non-singular algebraic
subset). By this diffeomorphism, we give to N' an algebraic struc-
ture. Then, since N — 9N is a union of connected components of
N' — 3N, N — 3N is a Nash manifold. Obviously N is the com-
pactification of N — 8N. Hence Corollary follows.

Proof of Corollary 5. - Let N^ be the compactification of
M^ . Obviously we can assume that / is extensible to N^ and
hence to the double of N^ . Consider a Nash manifold structure
on the double and a Nash imbedding of M^ into it. Then, from
the beginning we can assume that M^ is compact. Let M, be
contained in R" , and q be the orthogonal projection of a Nash
tubular neighborhood of M^ in R" . Regard / as a mapping to
R" . If we can approximate / by a Nash mapping /' : M^ —> R"
so that f=f on M[, then q o /' : M^ —> M^ is a required
Nash approximation of /. Hence it is sufficient to consider the
case of M^ = R . We regard R as S 1 -{a point a}. Let L C M^ x S1

be the graph of /. Put L' = M^ x {b} where b is a point of S1 .
Then there exists a C°° diffeomorphism TT of M^ x S1 such that

TT(X , b) = (x , f(x)) for x G M^ .

It follows that TT(L') = L and that 7r |^x{&} is of Nash class. Apply
Lemma 12 to

TT : (M^ x S1 , U\ x {b}) —> (M, x S1 , TT(M^ x {&})).



CLASSIFICATION OF NASH MANIFOLDS 231

Then we obtain a Nash approximation r of TT such that r = TT
on M\ x {b} . For every point x G M^ , put ^(x) = p o r(jc, 6)
where p : M^ x S1 —> S1 is the projection onto the second
factor. Then g is what we want.

Proof of Corollary 6. - This corollary follows from Lemma 12
and the fact that R" is Nash diffeomorphic to S"-{a point} and
that (S" , M) is C°° diffeomorphic to (an affine algebraic set, a non-
singular algebraic subset) [ 1 ].

5. An example.

Let W , W' be compact C°° manifold with boundary such
that the interiors are C°° diffeomorphic, but W and W' are not
diffeomorphic (see Theorem 3 in [4]). Let X, X' be the doubles
of W, W' respectively. We regard W, W' as naturally contained
in X, X' respectively. By a theorem in [1] we can assume that X ,
X'.BW and 3W' are all non-singular algebraic sets in R" . Let P,
P' be polynomials on R" such that

P-^O) = aw, P'-^O) = aw'.
Put

Y = {(x,y)e\x R\yf(x)= 1},
r = { ( x , ^ ) G X ' x R 1^00=1}.

Then Y and Y' are C00 diffeomorphic non-singular affine algebraic
sets, and their compactifications are the disjoint unions of 2 copies
W + W(C X + X) and W' + W-(C X' + X') respectively. Hence,
by Theorem 2, Y and Y' are not Nash diffeomorphic. Here it is
not essential that Y, Y' are not connected. In fact we can find
connected examples.

BIBLIOGRAPHY

[1] R. BENEDETTI, and A. TOGNOLI, On real algebraic vector bundles,
Bull. Sc. Math., 104 (1980), 89-112.



232 M. SHIOTA

[2] H. HIRONAKA, Resolution of singularities of an algebraic variety
over a field of characteristic zero, I-II, Ann. Math., 79 (1964),
109-326.

[3] S. y.osASi£mcz, Ensemble semi-analytique, IHES, 1965.
[4] J.W. MILNOR, Two complexes which are homeomorphic but

combinatorially distinct, Ann. Math., 74 (1961), 575-590.
[5] J.W. MILNOR, Lectures on the h-cobordism theorem, Princeton,

Princeton Univ. Press, 1965.
[6j T. MOSTOWSKI, Some properties of the ring of Nash functions,

Ann. Scuola Norm. Sup. Pisa, III 2 (1976), 245-266.
[7] R. PALAIS, Equivariant real algebraic differential topology, Part I,

Smoothness categories and Nash manifolds, Notes Brandeis Univ.,
1972.

[8] J.J. RISLER, Sur Fanneau des fonctions de Nash globales, C.R.A.S.,
Paris, 276 (1973), 1513-1516.

[9] M. SHIOTA, On the unique factorization property of the ring of
Nash functions, Publ. RIMS, Kyoto Univ., 17 (1981), 363-369.

[10] M. SHIOTA, Equivalence of differentiable mappings and analytic
mappings, Publ. Math. IHES, 54 (1981), 237-322.

[11] M. SHIOTA, Equivalence of differentiable functions, rational func-
tions and polynomials, Ann, Inst. Fourier, 32, 4 (1982), 167-204.

[12] M. SHIOTA, Sur la factorialite de Panneau des fonctions lisses ra-
tionnelles, C.R.A.S., Paris, 292 (1981), 67-70.

Manuscrit re^u Ie 19juillet 1982.

Masahiro SHIOTA,
Research Institute for Mathematical Sciences

Kyoto University
Kyoto 606 (Japon).


