ALEXANDRU BUIUM Degree of the fibres of an elliptic fibration

Annales de l'institut Fourier, tome 33, nº 1 (1983), p. 269-276 <http://www.numdam.org/item?id=AIF_1983__33_1_269_0>

© Annales de l'institut Fourier, 1983, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

DEGREE OF THE FIBRES OF AN ELLIPTIC FIBRATION

by Alexandru BUIUM

1. Statement of the results.

Let $f: X \longrightarrow B$ be an elliptic fibration over the complex field i.e. a morphism from a smooth complex projective surface X to a smooth curve B such that the general fibre F of f is a smooth elliptic curve and no fibre contains exceptional curves of the first kind. Consider the following subsets of Pic(X):

 $N_{e} = \{ \mathcal{L} \in \operatorname{Pic}(X), \quad \mathcal{L} = \mathcal{O}_{X}(D) \text{ for some effective } D \}$ $N_{s} = \{ \mathcal{L} \in \operatorname{Pic}(X), \quad \mathcal{L} \text{ is spanned by global sections} \}$ $N_{a} = \{ \mathcal{L} \in \operatorname{Pic}(X), \quad \mathcal{L} \text{ is ample} \}$ $N_{v} = \{ \mathcal{L} \in \operatorname{Pic}(X), \quad \mathcal{L} \text{ is very ample} \}$

and let n_e , n_s , n_a , n_v be the minima of the non-zero intersection numbers (\mathcal{E} . F) when \mathcal{E} runs through N_e , N_s , N_a and N_v respectively. In [3] p. 259, Enriques investigates the possibility of finding a birational model of X in the projective space \mathbf{P}^3 such that the fibres of f have degree n_e . His analysis suggests the following problem: find the minimum possible degree of the fibres of f in an embedding of X in a projective space. In other words: find n_v . There obviously exist inequalities: $n_e \leq n_s \leq n_v$ and $n_a \leq n_v$.

Let m denote the maximum of the multiplicities of the fibres of f. The aim of this paper is to prove the following propositions:

PROPOSITION 1. – Equality $n_e = n_s$ holds if and only if $n_e \ge 2m$.

PROPOSITION 2. – Equality $n_a = n_v$ holds if and only if $n_a \ge 3m$.

The statements above are consequences of the following more precise results:

THEOREM 1. – There exists a constant C_1 depending only of the fibration such that for any effective divisor D on X which does not contain in its support any component of any reducible fibre and such that D is either reduced dominating B, or ample, the following conditions are equivalent:

1) (D.F) $\geq 2m$.

2) $\mathfrak{O}_{\mathbf{X}}(\mathbf{D}) \otimes f^*\mathbf{L}$ is spanned by global sections for any $\mathbf{L} \in \operatorname{Pic}(\mathbf{B})$ with $\operatorname{deg}(\mathbf{L}) \ge C_1$.

3) $\mathcal{O}_{\mathbf{X}}(\mathbf{D}) \otimes f^*\mathbf{L}$ is spanned by global sections for some $\mathbf{L} \in \operatorname{Pic}(\mathbf{B})$.

THEOREM 2. – There exists a constant C_2 depending only on the fibration such that for any ample sheaf $\mathcal{L} \in Pic(X)$ the following conditions are equivalent:

1) $(\mathcal{L} \cdot \mathbf{F}) \ge 3m$.

2) $\mathcal{L} \otimes f^*L$ is very ample for any $L \in Pic(B)$ with $deg(L) \ge C_2$.

3) $\mathcal{L} \otimes f^*L$ is very ample for some $L \in Pic(B)$.

Our proofs are based on Bombieri's technique from [2]. Therefore the main point will be to prove that certain divisors on X are numerically connected.

2. Two lemmas.

LEMMA 1. – Let D be an effective divisor on X which does not contain in its support any component of any reducible fibre. Suppose D is either reduced or ample and put $T = D + a_1F_1 + ... + a_pF_p$ where F_i are distinct fibres and $a_i \in \mathbf{Q}$, $a_i > 0$ for $1 \le i \le p$. Suppose furthermore that $a_1 + ... + a_p \ge 2$. Then we have:

1) If $(D, F) \ge 2m$ then T is 2-connected.

2) If $(D,F) \ge 3m$ and D is integral and ample then T is 3-connected.

Proof. – Suppose
$$T = T_1 + T_2$$
 where $T_k > 0$ and

$$T_k = D_k + A_k$$

$$D_1 + D_2 = D$$

$$A_1 + A_2 = A = a_1 F_1 + \ldots + a_p F_p.$$

We get

$$(T_1, T_2) = (D_1, D_2) + (D_1, A_2) + (D_2, A_1) + (A_1, A_2).$$

If in addition D is integral we may suppose $D_2 = 0$. Since by [6] ample divisors are 1-connected it follows that in any case $(D_1 . D_2) \ge 0$. On the other hand we have $(D_1 . A_2) \ge 0$ and $(D_2 . A_1) \ge 0$ because any common component of D and A must be a rational multiple of a fibre. We may write $A_2 = Z_1 + ... + Z_p$ where $Z_i \le a_i F_i$ for $1 \le i \le p$. We get

$$(A_1, A_2) = (A - A_2, A_2) = -(A_2^2) = -(Z_1^2) - \dots - (Z_p^2)$$

By [1] p. 123 we have $(Z_i^2) \le 0$ for any *i*. Suppose first that there exists an index *i* such that $(Z_i^2) < 0$. By [5], $(Z_i^2) = -2$, consequently $(T_1, T_2) \ge 2$. If an addition D is integral and ample then $A_2 \ne 0$ (because otherwise $T_2 = 0$) hence $(D_1, A_2) \ge 1$ and we get $(T_1, T_2) \ge 3$.

Now suppose $(Z_i^2) = 0$ for any *i*. Then by [1] p.123, we must have $Z_i = c_{i2}F_i$ where $c_{i2} \in \mathbf{Q}$, $0 \le c_{i2} \le a_i$, hence

$$A_1 = c_{11}F_1 + \ldots + c_{p1}F_p$$

where $c_{i1} + c_{i2} = a_i$. If both D_1 and D_2 dominate B we get $(D_k, F) \ge 1$ for k = 1, 2 hence

$$(T_1, T_2) \ge (D_1, A_2) + (D_2, A_1) \ge c_{12} + \dots + c_{p2} + c_{11} + \dots + c_{p1}$$

= $a_1 + \dots + a_p \ge 2$

and we are done. If $D_k = 0$ for k = 1 or k = 2 then $A_k \neq 0$ hence there exists an index i_0 such that $c_{i_0k} > 0$. Now if m_0 denotes the multiplicity of F_{i_0} we have $c_{i_0k} \ge 1/m_0 \ge 1/m$. Consequently we get $(T_1, T_2) = (A_k, D) \ge c_{i_0k}(D, F) \ge (D, F)/m$ and we are done again. Finally if $D_k \neq 0$ and D_k does not dominate B we get $(T_1, T_2) \ge (D_1, D_2) = (D, D_k) \ge (D, F)/m$ and the lemma is proved.

LEMMA 2. – Let m_1, \ldots, m_r denote the multiplicities of the multiple fibres of f. Then for any reduced effective divisor D not

A. BUIUM

containing in its support any component of any reducible fibre we have $(D^2) \ge -(D.F)(\chi(\mathcal{O}_X) + \sum_{j=1}^r (m_j - 1)/m_j).$

Proof. – We may suppose $D = D_1 + \ldots + D_t$ where D_i are integral, distinct, dominating B. For any $i = 1, \ldots, t$ let E_i be the normalization of D_i . By adjuction formula and by Hurwitz formula we get:

 $(D_i^2) + (D_i, K) = 2p_a(D_i) - 2 \ge 2p_a(E_i) - 2 \ge [E_i: B] (2p_a(B) - 2).$ Consequently:

$$(D^2) \ge \sum_{i=1}^{t} (D_i^2) \ge \left(\sum_{i=1}^{t} [E_i:B]\right) (2p_a(B) - 2) - (D.K)$$

= (D.F) (2p_a(B) - 2) - (D.F) (2p_a(B) - 2 + $\chi(\mathcal{O}_X)$
+ $\sum_{j=1}^{r} (m_j - 1)/m_j)$

because of the formula for the canonical divisor K (see [4] p. 572) and we are done.

3. Proofs of Theorems 1 and 2.

Suppose $m_1 Y_1, \ldots, m_r Y_r$ are all the multiple fibres of f each having multiplicity m_j , $1 \le j \le r$ and take $b_j \in B$ such that $m_j Y_j = f^*(b_j)$. By the formula for the canonical divisor K we may write

$$\mathcal{O}_{\mathbf{X}}(\mathbf{K}) = f^* \mathbf{M} \otimes \mathcal{O}_{\mathbf{X}} \left(\sum_{j=1}^r (m_j - 1) \mathbf{Y}_j \right)$$

where $M \in Pic(B)$, $deg(M) = 2p_a(B) - 2 + \chi(\mathcal{O}_X)$.

Furthermore for any points x, x_1, x_2 on X denote by $p: \widetilde{X} \longrightarrow X$ and $q: \widehat{X} \longrightarrow X$ the blowing ups of X at x and $\{x_1, x_2\}$ respectively and let W, W₁, W₂ be the corresponding exceptional curves. Put y = f(x), $y_1 = f(x_1)$, $y_2 = f(x_2)$.

Proof of Theorem 1. – To prove 1) $\implies 2$) it is sufficient by [2] to prove that $H^1(\widetilde{X}, p^* \mathcal{O}_X(D) \otimes p^* f^* L \otimes \mathcal{O}_{\widetilde{X}}(-W)) = 0$ for any $x \in X$ hence by Bombieri-Ramanujam vanishing theorem [2] to prove that the linear system

$$\Lambda = | p^* \mathfrak{O}_{\mathbf{X}}(\mathbf{D} - \mathbf{K}) \otimes p^* f^* \mathbf{L} \otimes \mathfrak{O}_{\widetilde{\mathbf{X}}}(-2\mathbf{W}) |$$

contains an 1-connected divisor with selfintersection > 0. Now by Lemma 2 the selfintersection of Λ is

$$(D^2) - 2(D.K) + 2(D.F) \deg(L) - 4 > 0$$

provided $deg(L) \ge \alpha_1$ where α_1 is a constant depending only on the fibration. Now by Riemann-Roch on B we get that

$$|\mathbf{L} \otimes \mathbf{M}^{-1} \otimes \mathfrak{O}_{\mathbf{B}}(-b_1 - \ldots - b_r - 2y)| \neq \phi$$

provided deg(L) – deg(M) – $r - 2 \ge p_a(B)$. Hence there exists a constant α_2 depending only on f such that for deg(L) $\ge \alpha_2$ we may find a divisor $\underline{b} \in |L \otimes M^{-1}|$ with $b_1 + \ldots + b_r + 2y \le \underline{b}$. It follows that

$$\mathbf{G} = p^* (\mathbf{D} + f^* \underline{b} - \sum_{j=1}^r (m_j - 1) \mathbf{Y}_j) - 2\mathbf{W} \in \Lambda.$$

Now for deg(L) – deg(M) – $\sum_{j=1}^{r} (m_j - 1)/m_j \ge 2$ the divisor D + $f * \underline{b} - \sum_{j=1}^{r} (m_j - 1) Y_j$ must be 2-connected by Lemma 1. It follows by a standard computation that in this case G is 1connected. Hence we may choose $C_1 = \max \{\alpha_1, \alpha_2, \alpha_3\}$ where $\alpha_3 = deg(M) + \sum_{j=1}^{r} (m_j - 1)/m_j + 2$ and we are done. 2) \Longrightarrow 3) is obvious.

To prove $3) \Longrightarrow 1$ we may suppose that L is trivial and that D has no common components with Y, where mY is some fibre of multiplicity m. We only have to prove that $(D, Y) \ge 2$. Suppose (D, Y) = 1. By Riemann-Roch on the (possibly singular) curve Y we get

$$h^{0}(\mathfrak{O}_{\mathbf{Y}}(\mathbf{D})) = h^{0}(\omega_{\mathbf{Y}}(-\mathbf{D})) + \deg(\mathfrak{O}_{\mathbf{Y}}(\mathbf{D})) + \chi(\mathfrak{O}_{\mathbf{Y}})$$
$$= h^{0}(\mathfrak{O}_{\mathbf{Y}}(-\mathbf{D})) + 1$$

because the dualizing sheaf ω_Y is trivial. Now since $\mathfrak{O}_Y(-D) \subset \mathfrak{O}_Y$ we get $H^0(\mathfrak{O}_Y(-D)) \subset H^0(\mathfrak{O}_Y)$. Since by [5], $H^0(\mathfrak{O}_Y)$ consists only of constants and since $\mathfrak{O}_Y(-D)$ is not trivial we get $h^0(\mathfrak{O}_Y(-D)) = 0$ hence $h^0(\mathfrak{O}_Y(D)) = 1$. Since $\mathfrak{O}_Y(D)$ is not trivial, it follows that $\mathfrak{O}_Y(D)$ cannot be spanned by global sections, contradiction. **Proof of Theorem 2.** – Note that 2) \implies 3) is obvious and that 3) \implies 1) follows easily considering as above a multiple fibre of the form mY and noting that Y must have degree at least 3 with respect to any very ample divisor because $p_a(Y) = 1$.

Let us prove 1) \implies 2). Start with an ample $\mathcal{L} \in \text{Pic}(X)$ with $(\mathcal{L}, F) \ge 3m$, put $\mathfrak{M} = \mathcal{L} \otimes f^*L$ for $L \in Pic(B)$ and let us prove first that $|\mathfrak{M}|$ has no fixed components among the components of the reducible fibres of f provided $deg(L) \ge \beta_1$ for some constant β_1 . Let Z_1 be a component of a reducible fibre F and look for a divisor in $|\mathfrak{M}|$ not containing Z_1 in its support. Note that by [5], Z_1 is smooth rational with selfintersection $(Z_1^2) = -2$. According to [5] there are two cases which may occur: either $(Z_1, Z_2) \le 1$ for any other component Z_2 of F, or $F = b(Z_1 + Z_2)$ for some natural b where Z_2 is smooth rational with $(Z_2^2) = -2$ and $(Z_1, Z_2) = 2$. In the first case put $Z = Z_1$ and choose a point $p \in Z$. In the second case, since $b(\mathcal{L}, \mathbb{Z}_1) + b(\mathcal{L}, \mathbb{Z}_2) = (\mathcal{L}, \mathbb{F}) \ge 3m \ge 3b$ we must have $(\mathcal{L}, \mathbb{Z}_k) \ge 2$ for k = 0 or k = 1. Put in this case $Z = Z_1 + Z_2 - Z_k$ and take $p \in \mathbb{Z}_1 \cap \mathbb{Z}_2$. It will be sufficient to find a divisor in $|\mathfrak{M}|$ not passing through p. We have the following exact sequence:

 $0 \longrightarrow H^{0}(\mathfrak{M}(-Z)) \longrightarrow H^{0}(\mathfrak{M}) \longrightarrow H^{0}(\mathfrak{O}_{\mathbf{P}^{1}}(c)) \longrightarrow H^{1}(\mathfrak{M}(-Z))$ where $c = (\mathcal{L}, Z) \ge 1$. It is sufficient to prove that $H^{1}(\mathfrak{M}(-Z)) = 0$. We use Ramanujam's vanishing theorem [6]. By Serre duality it is sufficient to prove that

$$(\mathfrak{M}(-Z-K)^2) > 0$$
 and $(\mathfrak{M}(-Z-K), R) \ge 0$

for any integral curve R. Now

$$(\mathfrak{M}(-\mathbf{Z}-\mathbf{K})^2) = (\mathfrak{L}^2) + 2(\mathfrak{L}\cdot\mathbf{F}) \operatorname{deg}(\mathbf{L}) - 2 - 2(\mathfrak{L}\cdot\mathbf{Z}) - 2(\mathfrak{L}\cdot\mathbf{K})$$

> 2(\varLets\color\mathbf{F}) (\text{deg}(\mathbf{L}) - 1 - d) - 2

where $d \in \mathbf{Q}$, $\mathbf{K} \equiv d\mathbf{F}$. Consequently the selfintersection is > 0 for deg(L) $\ge d + 2$.

To check the second inequality suppose first that R is contained in a fibre F. We get $(\mathfrak{M}(-Z-K), R) = (\mathfrak{L}, R) - (Z, R) \ge 0$ because the only case when (Z, R) = 2 is $F = b(Z_1 + Z_2)$ and $R = Z_k$. Now if R dominates B we get

$$(\mathfrak{M}(-Z - K) \cdot R) = (\mathfrak{L} \cdot R) + (F \cdot R) \deg(L) - (Z \cdot R) - (K \cdot R)$$
$$> (F \cdot R) \deg(L) - (F \cdot R) - d(F \cdot R) \ge 0$$

for deg(L) $\ge d + 1$, and we are done. Now if β_1 is chosen also such that $\beta_1 \ge 2p_a(B)$ it follows that \mathfrak{M} is still ample hence by Theorem 1 the linear system $|\mathcal{L} \otimes f^*L|$ is ample and base point free provided deg(L) $\ge \beta_2 = \beta_1 + C_1$. By Bertini's theorem the above system contains an integral member D. To prove 1) \Longrightarrow 2) it is sufficient by [2] to prove that

$$\begin{split} & \mathrm{H}^{1}(\mathrm{X}\,,\,p^{*}\,\mathfrak{O}_{\mathrm{X}}(\mathrm{D})\otimes\,p^{*}f^{*}\mathrm{L}\otimes\,\mathfrak{O}_{\widetilde{\mathrm{X}}}(-2\mathrm{W}))=0 \\ & \mathrm{H}^{1}(\hat{\mathrm{X}}\,,\,q^{*}\,\mathfrak{O}_{\mathrm{X}}(\mathrm{D})\otimes\,q^{*}f^{*}\mathrm{L}\otimes\,\mathfrak{O}_{\widetilde{\mathrm{X}}}(-\mathrm{W}_{1}-\mathrm{W}_{2}))=0 \end{split}$$

for any $x, x_1, x_2 \in X$, provided deg(L) $\geq \beta_3$ for some constant β_3 ; in this case the constant $C_2 = \beta_2 + \beta_3$ will be convenient for our purpose.

Now exactly as in the proof of the Theorem 1 we may find a constant β_3 such that for deg(L) $\ge \beta_3$ the linear systems

and

$$|p^* \mathcal{O}_{\mathbf{X}}(\mathbf{D} - \mathbf{K}) \otimes p^* f^* \mathbf{L} \otimes \mathcal{O}_{\widetilde{\mathbf{X}}}(-3\mathbf{W})|$$
$$|q^* \mathcal{O}_{\mathbf{X}}(\mathbf{D} - \mathbf{K}) \otimes q^* f^* \mathbf{L} \otimes \mathcal{O}_{\widehat{\mathbf{X}}}(-2\mathbf{W}_1 - 2\mathbf{W}_2)|$$

have strictly positive selfintersections and contain divisors of the form $G = n^* (D + \sum a F_1) - 3W$

and

$$G_1 = p \left(D + \sum_i a_i \Gamma_i \right) - 3W$$

$$G_2 = q * \left(D + \sum_i b_i F_i \right) - 2W_1 - 2W_2$$

with $a_i, b_i \in \mathbf{Q}$, $a_i \ge 0$, $b_i \ge 0$, $\sum_i a_i \ge 2$, $\sum_i b_i \ge 2$ and where F_i are fibres. Then by Lemma 1 the divisors $D + \sum_i a_i F_i$ and $D + \sum_i b_i F_i$ are 3-connected hence by a standard computation, G_1 and G_2 are 1-connected and the Theorem is proved.

BIBLIOGRAPHY

- A. BEAUVILLE, Surfaces algébriques complexes, Astérisque, 54 (1978).
- [2] E. BOMBIERI, Canonical models of surfaces of general type, Publ. Math. IHES, 42 (1972), 171-220.

A. BUIUM

- [3] F. ENRIQUES, Le superficie algebriche, Zanichelli, 1949.
- [4] P. GRIFFITHS and J. HARRIS, *Principles of algebraic geometry*, John Wiley & Sons, New York, 1978.
- [5] K. KODAIRA, On compact complex analytic surfaces II, Ann. of Math., 77 (1963).
- [6] C.P. RAMANUJAM, Remarks on the Kodaira vanishing theorem, J. of the Indian Math. Soc., 36 (1972), 41-51; Supplement to the article "Remarks on the Kodaira vanishing theorem", J. of the Indian Math. Soc., 38 (1974), 121-124.

Manuscrit reçu le 20 avril 1982.

Alexandru BUIUM, Department of Mathematics National Institute for Scientific and Technical Creation Bd. Pacii 220 79622 Bucarest (Romania).