Annales de l'institut Fourier

Alexandru Buium
 Degree of the fibres of an elliptic fibration

Annales de l'institut Fourier, tome 33, n 1 (1983), p. 269-276

http://www.numdam.org/item?id=AIF_1983_33_1_269_0
© Annales de l'institut Fourier, 1983, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

DEGREE OF THE FIBRES OF AN ELLIPTIC FIBRATION

by Alexandru BUIUM

1. Statement of the results.

Let $f: \mathrm{X} \longrightarrow \mathrm{B}$ be an elliptic fibration over the complex field i.e. a morphism from a smooth complex projective surface X to a smooth curve B such that the general fibre F of f is a smooth elliptic curve and no fibre contains exceptional curves of the first kind. Consider the following subsets of $\operatorname{Pic}(\mathrm{X})$:

$$
\begin{aligned}
& \mathrm{N}_{e}=\left\{\mathscr{L} \in \operatorname{Pic}(\mathrm{X}), \mathscr{L}=\mathcal{O}_{\mathrm{X}}(\mathrm{D}) \text { for some effective } \mathrm{D}\right\} \\
& \mathrm{N}_{s}=\{\mathscr{L} \in \operatorname{Pic}(\mathrm{X}), \quad \mathscr{L} \text { is spanned by global sections }\} \\
& \mathrm{N}_{a}=\{\mathscr{L} \in \operatorname{Pic}(\mathrm{X}), \mathscr{L} \text { is ample }\} \\
& \mathrm{N}_{v}=\{\mathscr{L} \in \operatorname{Pic}(\mathrm{X}), \mathscr{L} \text { is very ample }\}
\end{aligned}
$$

and let $n_{e}, n_{s}, n_{a}, n_{v}$ be the minima of the non-zero intersection numbers ($\mathfrak{L} . \mathrm{F}$) when \mathfrak{L} runs through $\mathrm{N}_{e}, \mathrm{~N}_{s}, \mathrm{~N}_{a}$ and N_{v} respectively. In [3] p. 259, Enriques investigates the possibility of finding a birational model of X in the projective space P^{3} such that the fibres of f have degree n_{e}. His analysis suggests the following problem: find the minimum possible degree of the fibres of f in an embedding of X in a projective space. In other words: find n_{v}. There obviously exist inequalities: $n_{e} \leqslant n_{s} \leqslant n_{v}$ and $n_{a} \leqslant n_{v}$.

Let m denote the maximum of the multiplicities of the fibres of f. The aim of this paper is to prove the following propositions:
\quad Proposition 1. - Equality $n_{e}=n_{s}$ holds if and only if
$n_{e} \geqslant 2 m$.

Proposition 2. - Equality $n_{a}=n_{v}$ holds if and only if $n_{a} \geqslant 3 m$.

The statements above are consequences of the following more precise results:

Theorem 1. - There exists a constant C_{1} depending only of the fibration such that for any effective divisor D on X which does not contain in its support any component of any reducible fibre and such that D is either reduced dominating B , or ample, the following conditions are equivalent:

1) $(\mathrm{D} . \mathrm{F}) \geqslant 2 m$.
2) $\Theta_{\mathrm{X}}(\mathrm{D}) \otimes f^{*} \mathrm{~L}$ is spanned by global sections for any $\mathrm{L} \in \operatorname{Pic}(\mathrm{B})$ with $\operatorname{deg}(\mathrm{L}) \geqslant \mathrm{C}_{1}$.
3) $\Theta_{\mathrm{x}}(\mathrm{D}) \otimes f^{*} \mathrm{~L}$ is spanned by global sections for some $\mathrm{L} \in \operatorname{Pic}(\mathrm{B})$.

Theorem 2. - There exists a constant C_{2} depending only on the fibration such that for any ample sheaf $\mathfrak{L} \in \operatorname{Pic}(\mathrm{X})$ the following conditions are equivalent:

1) $(\mathfrak{L} . \mathrm{F}) \geqslant 3 m$.
2) $\mathfrak{f} \otimes f^{*} \mathrm{~L}$ is very ample for any $\mathrm{L} \in \operatorname{Pic}(\mathrm{B})$ with $\operatorname{deg}(\mathrm{L}) \geqslant \mathrm{C}_{2}$.
3) $\mathfrak{e} \otimes f^{*} \mathrm{~L}$ is very ample for some $\mathrm{L} \in \operatorname{Pic}(\mathrm{B})$.

Our proofs are based on Bombieri's technique from [2]. Therefore the main point will be to prove that certain divisors on X are numerically connected.

2. Two lemmas.

Lemma 1. - Let D be an effective divisor on X which does not contain in its support any component of any reducible fibre. Suppose D is either reduced or ample and put $\mathrm{T}=\mathrm{D}+a_{1} \mathrm{~F}_{1}+\ldots+a_{p} \mathrm{~F}_{p}$ where F_{i} are distinct fibres and $a_{i} \in \mathbf{Q}, a_{i}>0$ for $1 \leqslant i \leqslant p$. Suppose furthermore that $a_{1}+\ldots+a_{p} \geqslant 2$. Then we have:

1) If $(\mathrm{D} . \mathrm{F}) \geqslant 2 m$ then T is 2 -connected.
2) If ($\mathrm{D} . \mathrm{F}) \geqslant 3 m$ and D is integral and ample then T is 3-connected.

Proof. - Suppose $\mathrm{T}=\mathrm{T}_{1}+\mathrm{T}_{2}$ where $\mathrm{T}_{k}>0$ and

$$
\begin{aligned}
\mathrm{T}_{k} & =\mathrm{D}_{k}+\mathrm{A}_{k} \\
\mathrm{D}_{1}+\mathrm{D}_{2} & =\mathrm{D} \\
\mathrm{~A}_{1}+\mathrm{A}_{2} & =\mathrm{A}=a_{1} \mathrm{~F}_{1}+\ldots+a_{p} \mathrm{~F}_{p}
\end{aligned}
$$

We get

$$
\left(\mathrm{T}_{1} \cdot \mathrm{~T}_{2}\right)=\left(\mathrm{D}_{1} \cdot \mathrm{D}_{2}\right)+\left(\mathrm{D}_{1} \cdot \mathrm{~A}_{2}\right)+\left(\mathrm{D}_{2} \cdot \mathrm{~A}_{1}\right)+\left(\mathrm{A}_{1} \cdot \mathrm{~A}_{2}\right) .
$$

If in addition D is integral we may suppose $D_{2}=0$. Since by [6] ample divisors are 1-connected it follows that in any case $\left(D_{1} . D_{2}\right) \geqslant 0$. On the other hand we have $\left(D_{1}, A_{2}\right) \geqslant 0$ and $\left(D_{2}, A_{1}\right) \geqslant 0$ because any common component of D and A must be a rational multiple of a fibre. We may write $\mathrm{A}_{2}=\mathrm{Z}_{1}+\ldots+\mathrm{Z}_{p}$ where $\mathrm{Z}_{i} \leqslant a_{i} \mathrm{~F}_{i}$ for $1 \leqslant i \leqslant p$. We get

$$
\left(A_{1} \cdot A_{2}\right)=\left(A-A_{2} \cdot A_{2}\right)=-\left(A_{2}^{2}\right)=-\left(Z_{1}^{2}\right)-\ldots-\left(Z_{p}^{2}\right)
$$

By [1] p. 123 we have $\left(Z_{i}^{2}\right) \leqslant 0$ for any i. Suppose first that there exists an index i such that $\left(\mathrm{Z}_{i}^{2}\right)<0$. By [5], $\left(\mathrm{Z}_{i}^{2}\right)=-2$, consequently $\left(T_{1} \cdot T_{2}\right) \geqslant 2$. If an addition D is integral and ample then $A_{2} \neq 0$ (because otherwise $T_{2}=0$) hence $\left(D_{1}, A_{2}\right) \geqslant 1$ and we get $\left(T_{1}, T_{2}\right) \geqslant 3$.

Now suppose $\left(Z_{i}^{2}\right)=0$ for any i. Then by [1] p.123, we must have $\mathrm{Z}_{i}=c_{i 2} \mathrm{~F}_{i}$ where $c_{i 2} \in \mathbf{Q}, 0 \leqslant c_{i 2} \leqslant a_{i}$, hence

$$
\mathrm{A}_{1}=c_{11} \mathrm{~F}_{1}+\ldots+c_{p 1} \mathrm{~F}_{p}
$$

where $c_{i 1}+c_{i 2}=a_{i}$. If both D_{1} and D_{2} dominate B we get $\left(\mathrm{D}_{k} . \mathrm{F}\right) \geqslant 1$ for $k=1,2$ hence

$$
\begin{array}{r}
\left(\mathrm{T}_{1} \cdot \mathrm{~T}_{2}\right) \geqslant\left(\mathrm{D}_{1} \cdot \mathrm{~A}_{2}\right)+\left(\mathrm{D}_{2} \cdot \mathrm{~A}_{1}\right) \geqslant c_{12}+\ldots+c_{p 2}+c_{11}+\ldots+c_{p 1} \\
=a_{1}+\ldots+a_{p} \geqslant 2
\end{array}
$$

and we are done. If $\mathrm{D}_{k}=0$ for $k=1$ or $k=2$ then $\mathrm{A}_{\boldsymbol{k}} \neq 0$ hence there exists an index i_{0} such that $c_{i_{0} k}>0$. Now if m_{0} denotes the multiplicity of $\mathrm{F}_{i_{0}}$ we have $c_{i_{0} k} \geqslant 1 / m_{0} \geqslant 1 / m$. Consequently we get $\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)=\left(\mathrm{A}_{k}, \mathrm{D}\right) \geqslant c_{i_{0} k}$ (D.F) \geqslant (D.F) $/ m$ and we are done again. Finally if $\mathrm{D}_{\boldsymbol{k}} \neq 0$ and D_{k} does not dominate B we get $\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right) \geqslant\left(\mathrm{D}_{1}, \mathrm{D}_{2}\right)=\left(\mathrm{D} . \mathrm{D}_{k}\right) \geqslant(\mathrm{D} . \mathrm{F}) / m$ and the lemma is proved.

Lemma 2. - Let m_{1}, \ldots, m_{r} denote the multiplicities of the multiple fibres of f. Then for any reduced effective divisor D not
containing in its support any component of any reducible fibre we have $\left(\mathrm{D}^{2}\right) \geqslant-(\mathrm{D} . \mathrm{F})\left(\chi\left(\Theta_{\mathrm{x}}\right)+\sum_{j=1}^{r}\left(m_{j}-1\right) / m_{j}\right)$.

Proof. - We may suppose $\mathrm{D}=\mathrm{D}_{1}+\ldots .+\mathrm{D}_{t}$ where D_{i} are integral, distinct, dominating B . For any $i=1, \ldots, t$ let E_{i} be the normalization of D_{i}. By adjuction formula and by Hurwitz formula we get:
$\left(\mathrm{D}_{i}^{2}\right)+\left(\mathrm{D}_{i} . \mathrm{K}\right)=2 p_{a}\left(\mathrm{D}_{i}\right)-2 \geqslant 2 p_{a}\left(\mathrm{E}_{i}\right)-2 \geqslant\left[\mathrm{E}_{i}: \mathrm{B}\right]\left(2 p_{a}(\mathrm{~B})-2\right)$.
Consequently:

$$
\left.\begin{array}{rl}
\left(\mathrm{D}^{2}\right) \geqslant & \sum_{i=1}^{t}\left(\mathrm{D}_{i}^{2}\right) \geqslant\left(\sum_{i=1}^{t}\left[\mathrm{E}_{i}: \mathrm{B}\right]\right)\left(2 p_{a}(\mathrm{~B})-2\right)-(\mathrm{D} . \mathrm{K}) \\
= & (\mathrm{D} . \mathrm{F})\left(2 p_{a}(\mathrm{~B})-2\right)-(\mathrm{D} . \mathrm{F})\left(2 p_{a}(\mathrm{~B})-2\right.
\end{array}\right)
$$

because of the formula for the canonical divisor K (see [4] p. 572) and we are done.

3. Proofs of Theorems 1 and 2.

Suppose $m_{1} \mathrm{Y}_{1}, \ldots, m_{r} \mathrm{Y}_{r}$ are all the multiple fibres of f each having multiplicity $m_{j}, 1 \leqslant j \leqslant r$ and take $b_{j} \in B$ such that $m_{j} \mathrm{Y}_{j}=f^{*}\left(b_{j}\right)$. By the formula for the canonical divisor K we may write

$$
\mathcal{\vartheta}_{\mathrm{X}}(\mathrm{~K})=f^{*} \mathrm{M} \otimes \mathcal{\vartheta}_{\mathrm{X}}\left(\sum_{j=1}^{r}\left(m_{j}-1\right) \mathrm{Y}_{j}\right)
$$

where $\mathrm{M} \in \operatorname{Pic}(\mathrm{B}), \operatorname{deg}(\mathrm{M})=2 p_{a}(\mathrm{~B})-2+\chi\left(\mathcal{O}_{\mathrm{x}}\right)$.
Furthermore for any points x, x_{1}, x_{2} on X denote by $p: \widetilde{\mathrm{X}} \longrightarrow \mathrm{X}$ and $q: \hat{\mathrm{X}} \longrightarrow \mathrm{X}$ the blowing ups of X at x and $\left\{x_{1}, x_{2}\right\}$ respectively and let $\mathrm{W}, \mathrm{W}_{1}, \mathrm{~W}_{2}$ be the corresponding exceptional curves. Put $y=f(x), y_{1}=f\left(x_{1}\right), y_{2}=f\left(x_{2}\right)$.

Proof of Theorem 1. - To prove 1) $\Longrightarrow 2$) it is sufficient by [2] to prove that $\mathrm{H}^{1}\left(\widetilde{\mathrm{X}}, p^{*} \Theta_{\mathrm{X}}(\mathrm{D}) \otimes p^{*} f^{*} \mathrm{~L} \otimes \Theta_{\widetilde{\mathrm{x}}}(-\mathrm{W})\right)=0$ for any $x \in X$ hence by Bombieri-Ramanujam vanishing theorem [2] to prove that the linear system

$$
\Lambda=\left|p^{*} \Theta_{\mathrm{X}}(\mathrm{D}-\mathrm{K}) \otimes p^{*} f^{*} \mathrm{~L} \otimes \mathcal{O}_{\tilde{\mathrm{x}}}(-2 \mathrm{~W})\right|
$$

contains an 1 -connected divisor with selfintersection >0. Now by Lemma 2 the selfintersection of Λ is

$$
\left(D^{2}\right)-2(D . K)+2(D . F) \operatorname{deg}(L)-4>0
$$

provided $\operatorname{deg}(\mathrm{L}) \geqslant \alpha_{1}$ where α_{1} is a constant depending only on the fibration. Now by Riemann-Roch on B we get that

$$
\left|\mathrm{L} \otimes \mathrm{M}^{-1} \otimes \mathcal{O}_{\mathrm{B}}\left(-b_{1}-\ldots-b_{r}-2 y\right)\right| \neq \varnothing
$$

provided $\operatorname{deg}(L)-\operatorname{deg}(M)-r-2 \geqslant p_{a}(B)$. Hence there exists a constant α_{2} depending only on f such that for $\operatorname{deg}(\mathrm{L}) \geqslant \alpha_{2}$ we may find a divisor $\underline{b} \in\left|\mathrm{~L} \otimes \mathrm{M}^{-1}\right|$ with $b_{1}+\ldots+b_{r}+2 y \leqslant \underline{b}$. It follows that

$$
\mathrm{G}=p^{*}\left(\mathrm{D}+f^{*} \underline{b}-\sum_{j=1}^{r}\left(m_{j}-1\right) \mathrm{Y}_{j}\right)-2 \mathrm{~W} \in \Lambda .
$$

Now for $\operatorname{deg}(\mathrm{L})-\operatorname{deg}(\mathrm{M})-\sum_{j=1}^{r}\left(m_{j}-1\right) / m_{j} \geqslant 2$ the divisor $\mathrm{D}+f^{*} \underline{b}-\sum_{j=1}^{r}\left(m_{j}-1\right) \mathrm{Y}_{j} \begin{gathered}j=1 \\ \text { must }\end{gathered}$ be 2 -connected by Lemma 1 . It follows by a standard computation that in this case G is 1connected. Hence we may choose $\mathrm{C}_{1}=\max \left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ where $\alpha_{3}=\operatorname{deg}(\mathrm{M})+\sum_{j=1}^{r}\left(m_{j}-1\right) / m_{j}+2$ and we are done.
$2) \Longrightarrow 3$) is obvious.
To prove 3$) \Longrightarrow 1$) we may suppose that L is trivial and that D has no common components with Y , where $m \mathrm{Y}$ is some fibre of multiplicity m. We only have to prove that (D.Y) $\geqslant 2$. Suppose (D. Y) $=1$. By Riemann-Roch on the (possibly singular) curve Y we get

$$
\begin{aligned}
& h^{0}\left(\mathcal{O}_{\mathbf{Y}}(\mathrm{D})\right)=h^{0}\left(\omega_{\mathbf{Y}}(-\mathrm{D})\right)+\operatorname{deg}\left(\mathcal{O}_{\mathbf{Y}}(\mathrm{D})\right)+ \\
& \quad \underset{\left(\mathcal{O}_{\mathbf{Y}}\right)}{=h^{0}\left(\mathcal{O}_{\mathbf{Y}}(-\mathrm{D})\right)+1}
\end{aligned}
$$

because the dualizing sheaf ω_{Y} is trivial. Now since $\mathcal{\theta}_{\mathbf{Y}}(-\mathrm{D}) \subset \mathcal{\theta}_{\mathbf{Y}}$ we get $H^{0}\left(\mathcal{O}_{Y}(-D)\right) \subset H^{0}\left(\Theta_{Y}\right)$. Since by $[5], H^{0}\left(\Theta_{Y}\right)$ consists only of constants and since $\mathcal{O}_{\mathbf{Y}}(-\mathrm{D})$ is not trivial we get $h^{0}\left(\mathcal{O}_{\mathbf{Y}}(-\mathrm{D})\right)=0$ hence $h^{0}\left(\mathcal{O}_{\mathrm{Y}}(\mathrm{D})\right)=1$. Since $\mathcal{O}_{\mathbf{Y}}(\mathrm{D})$ is not trivial, it follows that $\mathcal{O}_{\mathrm{Y}}(\mathrm{D})$ cannot be spanned by global sections, contradiction.

Proof of Theorem 2. - Note that 2) $\Longrightarrow 3$) is obvious and that 3$) \Longrightarrow 1)$ follows easily considering as above a multiple fibre of the form $m \mathrm{Y}$ and noting that Y must have degree at least 3 with respect to any very ample divisor because $p_{a}(\mathrm{Y})=1$.

Let us prove 1) $\Longrightarrow 2$). Start with an ample $\mathfrak{L} \in \operatorname{Pic}(X)$ with $(\mathscr{L} . \mathrm{F}) \geqslant 3 m$, put $\mathcal{I}=\mathfrak{L} \otimes f^{*} \mathrm{~L}$ for $\mathrm{L} \in \operatorname{Pic}(\mathrm{B})$ and let us prove first that $|\Omega Z|$ has no fixed components among the components of the reducible fibres of f provided $\operatorname{deg}(L) \geqslant \beta_{1}$ for some constant β_{1}. Let Z_{1} be a component of a reducible fibre F and look for a divisor in $|\mathcal{N}|$ not containing Z_{1} in its support. Note that by [5], Z_{1} is smooth rational with selfintersection $\left(Z_{1}^{2}\right)=-2$. According to [5] there are two cases which may occur: either $\left(Z_{1}, Z_{2}\right) \leqslant 1$ for any other component Z_{2} of F, or $\mathrm{F}=b\left(\mathrm{Z}_{1}+\mathrm{Z}_{2}\right)$ for some natural b where Z_{2} is smooth rational with $\left(Z_{2}^{2}\right)=-2$ and $\left(Z_{1}, Z_{2}\right)=2$. In the first case put $Z=Z_{1}$ and choose a point $p \in Z$. In the second case, since $b\left(\mathfrak{f}, \mathrm{Z}_{1}\right)+b\left(\mathfrak{f} . \mathrm{Z}_{2}\right)=(\mathfrak{f} . \mathrm{F}) \geqslant 3 m \geqslant 3 b$ we must have $\left(\mathfrak{L} . \mathrm{Z}_{k}\right) \geqslant 2$ for $k=0$ or $k=1$. Put in this case $Z=Z_{1}+Z_{2}-Z_{k}$ and take $p \in Z_{1} \cap Z_{2}$. It will be sufficient to find a divisor in $|\Upsilon \subset|$ not passing through p. We have the following exact sequence:
where $c=(\mathscr{L} . Z) \geqslant 1$. It is sufficient to prove that $H^{1}(\mathfrak{I Z}(-Z))=0$. We use Ramanujam's vanishing theorem [6]. By Serre duality it is sufficient to prove that

$$
\left(\mathcal{N}(-Z-K)^{2}\right)>0 \text { and }(\mathfrak{N}(-Z-K) \cdot R) \geqslant 0
$$

for any integral curve R. Now

$$
\begin{array}{r}
\left(\mathfrak{N}(-\mathrm{Z}-\mathrm{K})^{2}\right)=\left(\mathfrak{L}^{2}\right)+2(\mathfrak{L} . \mathrm{F}) \operatorname{deg}(\mathrm{L})-2-2(\mathfrak{L} . \mathrm{Z})-2(\mathfrak{L} . \mathrm{K}) \\
>2(\mathfrak{L} . \mathrm{F})(\operatorname{deg}(\mathrm{L})-1-d)-2
\end{array}
$$

where $d \in \mathbf{Q}, \mathrm{~K} \equiv d \mathrm{~F}$. Consequently the selfintersection is >0 for $\operatorname{deg}(L) \geqslant d+2$.

To check the second inequality suppose first that R is contained in a fibre F. We get $(\mathcal{T}(-Z-K) . R)=(\mathfrak{L} . R)-(Z . R) \geqslant 0$ because the only case when $(Z . R)=2$ is $F=b\left(Z_{1}+Z_{2}\right)$ and $\mathrm{R}=\mathrm{Z}_{k}$. Now if R dominates B we get

$$
\begin{aligned}
(\mathfrak{N}(-\mathrm{Z}-\mathrm{K}) \cdot \mathrm{R})=(\mathfrak{f} \cdot \mathrm{R}) & +(\mathrm{F} \cdot \mathrm{R}) \operatorname{deg}(\mathrm{L})-(\mathrm{Z} \cdot \mathrm{R})-(\mathrm{K} \cdot \mathrm{R}) \\
& >(\mathrm{F} \cdot \mathrm{R}) \operatorname{deg}(\mathrm{L})-(\mathrm{F} \cdot \mathrm{R})-d(\mathrm{~F} . \mathrm{R}) \geqslant 0
\end{aligned}
$$

for $\operatorname{deg}(\mathrm{L}) \geqslant d+1$, and we are done. Now if β_{1} is chosen also such that $\beta_{1} \geqslant 2 p_{a}(\mathrm{~B})$ it follows that \mathcal{M} is still ample hence by Theorem 1 the linear system $\left|\mathscr{f} \otimes f^{*} \mathrm{~L}\right|$ is ample and base point free provided $\operatorname{deg}(\mathrm{L}) \geqslant \beta_{2}=\beta_{1}+\mathrm{C}_{1}$. By Bertini's theorem the above system contains an integral member D. To prove 1) $\Longrightarrow 2$) it is sufficient by [2] to prove that

$$
\begin{aligned}
& \mathrm{H}^{1}\left(\widetilde{\mathrm{X}}, p^{*} \Theta_{\mathrm{X}}(\mathrm{D}) \otimes p^{*} f^{*} \mathrm{~L} \otimes \Theta_{\widetilde{\mathrm{X}}}(-2 \mathrm{~W})\right)=0 \\
& \mathrm{H}^{1}\left(\hat{\mathrm{X}}, q^{*} \Theta_{\mathrm{x}}(\mathrm{D}) \otimes q^{*} f^{*} \mathrm{~L} \otimes \Theta_{\hat{\mathrm{X}}}\left(-\mathrm{W}_{1}-\mathrm{W}_{2}\right)\right)=0
\end{aligned}
$$

for any $x, x_{1}, x_{2} \in \mathrm{X}$, provided $\operatorname{deg}(\mathrm{L}) \geqslant \beta_{3}$ for some constant β_{3}; in this case the constant $\mathrm{C}_{2}=\beta_{2}+\beta_{3}$ will be convenient for our purpose.

Now exactly as in the proof of the Theorem 1 we may find a constant β_{3} such that for $\operatorname{deg}(\mathrm{L}) \geqslant \beta_{3}$ the linear systems
and

$$
\left|p^{*} \Theta_{\mathrm{x}}(\mathrm{D}-\mathrm{K}) \otimes p^{*} f^{*} \mathrm{~L} \otimes \Theta_{\widetilde{\mathrm{x}}}(-3 \mathrm{~W})\right|
$$

$$
\left|q^{*} \Theta_{\mathbf{x}}(\mathrm{D}-\mathrm{K}) \otimes q^{*} f^{*} \mathrm{~L} \otimes \mathcal{\theta}_{\hat{\mathrm{x}}}\left(-2 \mathrm{~W}_{1}-2 \mathrm{~W}_{2}\right)\right|
$$

have strictly positive selfintersections and contain divisors of the form
and

$$
\mathrm{G}_{1}=p^{*}\left(\mathrm{D}+\sum_{i} a_{i} \mathrm{~F}_{i}\right)-3 \mathrm{~W}
$$

$$
\mathrm{G}_{2}=q^{*}\left(\mathrm{D}+\sum_{i} b_{i} \mathrm{~F}_{i}\right)-2 \mathrm{~W}_{1}-2 \mathrm{~W}_{2}
$$

with $a_{i}, b_{i} \in \mathbf{Q}, a_{i} \geqslant 0, b_{i} \geqslant 0, \sum_{i} a_{i} \geqslant 2, \sum_{i} b_{i} \geqslant 2$ and where F_{i} are fibres. Then by Lemma 1 the divisors $\mathrm{D}+\sum_{i} a_{i} \mathrm{~F}_{i}$ and $\mathrm{D}+\sum_{i} b_{i} \mathrm{~F}_{i}$ are 3-connected hence by a standard computation, G_{1} and G_{2} are 1-connected and the Theorem is proved.

BIBLIOGRAPHY

[1] A. Beauville, Surfaces algébriques complexes, Astérisque, 54 (1978).
[2] E. Bombieri, Canonical models of surfaces of general type, Publ. Math. IHES, 42 (1972), 171-220.
[3] F. Enriques, Le superficie algebriche, Zanichelli, 1949.
[4] P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley \& Sons, New York, 1978.
[5] K. Kodaira, On compact complex analytic surfaces II, Ann. of Math., 77 (1963).
[6] C.P. Ramanujam, Remarks on the Kodaira vanishing theorem, J. of the Indian Math. Soc., 36 (1972), 41-51; Supplement to the article "Remarks on the Kodaira vanishing theorem", J. of the Indian Math. Soc., 38 (1974), 121-124.

Manuscrit reçu le 20 avril 1982.

Alexandru Buium, Department of Mathematics
National Institute for Scientific
and Technical Creation
Bd. Pacii 220
79622 Bucarest (Romania).

