SATOSHI KOIKE **On condition** (a_f) of a stratified mapping

Annales de l'institut Fourier, tome 33, nº 1 (1983), p. 177-184 <http://www.numdam.org/item?id=AIF_1983__33_1_177_0>

© Annales de l'institut Fourier, 1983, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

ON CONDITION (a_f) OF A STRATIFIED MAPPING

by Satoshi KOIKE

In [3], D.J.A. Trotman showed that Whitney's condition (a) on the pair of adjacent strata is equivalent to condition (a^s) which has more obvious geometric content. These conditions can be generalized to the conditions of the kernel of the mapping called a stratified mapping. The generalization of condition (a) is condition (a_f) which is well-known in the stratification theory. On the other hand, we shall call the generalization of condition (a^s) condition (a^s_f) . Then, we have already known that (a_f) implies (a^s_f) from the proof of Lemma 11.4 in J.N. Mather [2] (or Lemma (2.4) of Chapter II in [1]). In this paper, we show that (a_f) is equivalent to (a^s_f) . In § 2 we prove this result, and in § 3 we give the illustrative example of the fact.

1. Definitions and the result.

Let X, Y be disjoint C¹ submanifolds of \mathbb{R}^n , and let y_0 be a point in $Y \cap \overline{X}$. We say the pair (X, Y) satisfies Whitney's condition (a) at y_0 if for any sequence of points $\{x_i\}$ in X tending to y_0 such that the tangent space $T_{x_i}X$ tends to τ , we have $T_{y_0}Y \subset \tau$. As stated above, this condition is equivalent to the following condition; (a^s): For any local C¹ retraction at y_0 , $\pi_Y : \mathbb{R}^n \longrightarrow Y$, there exists a neighborhood W of y_0 in \mathbb{R}^n such that $\pi_{Y|W \cap X}$ is a submersion.

Let $f: A \longrightarrow \mathbb{R}^{p}$ be a smooth mapping defined in a neighborhood A of $X \cup Y$ in \mathbb{R}^{n} . Suppose that the restricted mappings

 $f|_{X} : X \longrightarrow \mathbb{R}^{p}$ and $f|_{Y} : Y \longrightarrow \mathbb{R}^{p}$ are of constant ranks. Then we say the pair (X, Y) satisfies condition (a_{f}) at y_{0} if for any sequence of points $\{x_{i}\}$ in X tending to y_{0} such that the plane ker $d(f|_{X})_{x_{i}}$ tends to κ , we have ker $d(f|_{Y})_{y_{0}} \subset \kappa$, where ker $d(f|_{X})_{x}$ denotes the kernel of the differential of $f|_{X}$ at x.

Let U, V be C¹ submanifolds of \mathbb{R}^{ρ} such that $U \cap V = \phi$ or U = V. Further, suppose that f(X), f(Y) are contained in U, V respectively, and that $f|_X : X \longrightarrow U$ and $f|_Y : Y \longrightarrow V$ are submersions. Then we call this mapping f a stratified mapping. From now, we shall think of a stratified mapping.

We say that a local C¹ retraction at $y_0, \pi_Y : \mathbb{R}^n \longrightarrow Y$, and a local C¹ retraction at $f(y_0), \pi_V : \mathbb{R}^p \longrightarrow V$, satisfy the commutation relation (CRf) if it holds that $f \circ \pi_Y = \pi_V \circ f$ in a neighborhood of y_0 .

Remark 1. - For a stratified mapping, the following facts hold.

1) For any local C¹ retraction at $f(y_0)$, $\pi_V : \mathbb{R}^p \longrightarrow V$, there exists a local C¹ retraction at y_0 , $\pi_Y : \mathbb{R}^n \longrightarrow Y$ such that they satisfy (CRf). Consider the mapping $\pi_V \circ f$ in a neighborhood of y_0 . Since $\pi_V \circ f|_Y : Y \longrightarrow V$ is a submersion, there exists a local C¹ retraction at $y_0, \pi_Y : \mathbb{R}^n \longrightarrow Y$, such that $\pi_V \circ f \circ \pi_Y = \pi_V \circ f$. Thus, we see that they satisfy (CRf) in a neighborhood of y_0 .

2) On the other hand, it is not true that for any local C¹ retraction at y_0 , there exists a local C¹ retraction at $f(y_0)$ such that they satisfy (CRf): See the example in 3.

Here we introduce the next condition;

 (a_f^s) : For any local C¹ retraction at $y_0, \pi_Y : \mathbb{R}^n \longrightarrow Y$, and local C¹ retraction at $f(y_0), \pi_Y : \mathbb{R}^p \longrightarrow V$, satisfying (CRf), there exists a neighborhood W of y_0 in \mathbb{R}^n such that for any $x \in W \cap X$,

 $d(\pi_{\mathbf{Y}\mathbf{X}})_{\mathbf{x}} \colon \ker d(f|_{\mathbf{X}})_{\mathbf{x}} \longrightarrow \ker d(f|_{\mathbf{Y}})_{\mathbf{y}}$

is onto, where $\pi_{YX} = \pi_{Y}|_X$ and $y = \pi_{Y}(x)$.

THEOREM. – For a stratified mapping, (a_f) is equivalent to (a_f^s) .

Remark 2. – Theorem A in [3] is the case where $U = V = \{f(y_0)\}$ in the above theorem. Because, in that case, the kernel is the tangent

space, and (CRf) is satisfied for any local C¹ retraction at y_0 , $\pi_v : \mathbb{R}^n \longrightarrow Y$.

2. Proof of the theorem.

Let f be a stratified mapping i.e.

 $f_{|_{\mathbf{X}}}: \mathbf{X} \longrightarrow \mathbf{U}$ and $f_{|_{\mathbf{Y}}}: \mathbf{Y} \longrightarrow \mathbf{V}$

are submersions. We introduce the condition of "transverse foliation" defined locally in a neighborhood of y_0 in \mathbb{R}^n ;

 (\mathcal{H}^1) : For any local C^1 foliation \mathcal{F} which is transversal to the fiber of $f|_{Y}$ at y_0 , and whose leaves are unions of fibers of a local C^1 retraction π_Y satisfying the relation (CRf), there exists a neighborhood W of y_0 in \mathbb{R}^n such that \mathcal{F} is transversal to the fibers of $f|_{Y}$ in W.

LEMMA. $-(a_f^s)$ is equivalent to (\mathcal{H}^1) .

Proof. As it is trivial that (a_f^s) implies (\mathcal{H}^1) , we shall show that (\mathcal{H}^1) implies (a_f^s) . Consider a local C¹ retraction at y_0 , $\pi_Y : \mathbb{R}^n \longrightarrow Y$, and a local C¹ retraction at $f(y_0)$, $\pi_V : \mathbb{R}^p \longrightarrow V$, which satisfy (CRf) in a neighborhood of y_0 . Let N_{y_0} denote the normal space of ker $d(f|_Y)_{y_0}$ in $T_{y_0}Y$. Then, there exist a neighborhood W₁ of y_0 in Y, and a local C¹ foliation $\widetilde{\mathscr{F}}$ of W₁ such that $N_{y_0} = T_{y_0} \widetilde{F}_{y_0}$, where \widetilde{F}_{y_0} denotes the leaf of $\widetilde{\mathscr{F}}$ which contains y_0 . Shrinking the neighborhood W₁ if necessary, $\mathfrak{F} \equiv \{\{v \in \mathbb{R}^n \mid \pi_Y(v) \in \widetilde{F}\}\}_{\widetilde{F} \in \widetilde{\mathscr{F}}}$ is a local C¹ foliation of \mathbb{R}^n in a neighborhood of y_0 . From the construction, we have

$$\mathbf{T}_{\mathbf{y}_{0}}\mathbf{F}_{\mathbf{y}_{0}} \oplus \ker d(f|_{\mathbf{Y}})_{\mathbf{y}_{0}} = \mathbf{T}_{\mathbf{y}_{0}}\mathbf{R}^{n},$$

where F is a leaf of \mathcal{F} . Since $f|_Y : Y \longrightarrow V$ is a submersion, ker $d(f|_Y)_y$ is continuous in the Grassman manifold of

dim ker $(f|_{Y})_{y_0}$ -planes in *n*-space.

Further, (\mathcal{H}^1) holds from the assumption. Therefore, there exists a neighborhood W_2 of y_0 in \mathbb{R}^n such that for any $y \in W_2$,

$$T_{y}F_{y} \oplus \ker d(f|_{Y})_{y} = T_{y}\mathbf{R}^{n}$$
(2.1)

and for any $x \in W_2 \cap X$,

$$T_x F_x + \ker d(f|_X)_x = T_x \mathbf{R}^n. \qquad (2.2)$$

From the relation (CRf), we have

 $d(\pi_{YX})_{x} : \ker d(f|_{X})_{x} \longrightarrow \ker d(f|_{Y})_{y}$ (2.3)

in a neighborhood of y_0 . By (2.1), (2.2), and (2.3), we see that the differential mapping (2.3) is onto near y_0 .

Remark 3. – From the proof of Theorem A in [3], we can see easily that (a_f) is equivalent to the following condition;

 (\mathfrak{F}^1) : For any C¹ foliation \mathfrak{F} which is transversal to the fiber of $f|_{Y}$ at y_0 , there exists a neighborhood W of y_0 in \mathbb{R}^n such that \mathfrak{F} is transversal to the fibers of $f|_{X}$ in W.

PROPERTY 1. - Let $\pi_{V} : \mathbb{R}^{p} \longrightarrow V$ be a local C¹ retraction at $f(y_{0})$.

1) There exists a neighborhood W of $f(y_0)$ in V such that $\{\pi_V \circ f\}_{w \in W}$ is a C¹ foliation of codimension V in a sufficiently small neighborhood of y_0 in \mathbb{R}^n .

Since $\pi_{Y} \circ f|_{Y} : Y \longrightarrow V$ is a submersion, $\pi_{V} \circ f$ has a maximal rank (of dimension V) at $y_0 \in \mathbf{R}^n$. Thus (1) follows.

2) If a point q in \mathbb{R}^n is contained in $(\pi_{\mathbf{V}} \circ f)^{-1}(w)$, then we have ker $df \subset T_q(\pi_{\mathbf{V}} \circ f)^{-1}(w)$. It is clear from the fact that $T_q(\pi_{\mathbf{V}} \circ f)^{-1}(w) = \ker d(\pi_{\mathbf{V}} \circ f)_q$.

PROPERTY 2. – Let $\pi_Y : \mathbb{R}^n \longrightarrow Y$ be a local C^1 retraction at y_0 , and $\pi_V : \mathbb{R}^p \longrightarrow V$ be a local C^1 retraction at $f(y_0)$. If any fiber of π_Y is contained in some fiber of $\pi_V \circ f$ in a neighborhood of y_0 , then (CRf) holds. It is trivial.

From Lemma, it is sufficient to show that (\mathcal{H}^1) implies (a_f) . We suppose that the pair (X, Y) does not satisfy condition (a_f) at y_0 . Then, there exists a sequence of points $\{x_i\}$ in X tending to y_0 with $\lim_i \ker d(f|_X)_{x_i} = K$, such that $K \not \Rightarrow \ker d(f|_Y)_{y_0}$. Thus, there exists a vector $k \in \ker d(f|_Y)_{y_0}$ such that $k \notin K$. By the similar way as the proof of Theorem A in [3], we can construct a C¹ foliation \mathfrak{F} of codimension 1 such that $T_{y_0}F_{y_0} \not \Rightarrow k$ and $T_{x_i}F_{x_i} \supset \ker d(f|_X)_{x_i}$ i.e. \mathfrak{F} is transversal to the fiber of $f|_Y$ at y_0 , and \mathfrak{F} is not transversal to the fiber of $f|_X$ at x_i . We take a local C¹ retraction at $f(y_0)$, $\pi_V : \mathbb{R}^n \longrightarrow V$, arbitarily. From Property 1 (2), we have

$$k \in \ker d(f|_{Y})_{y_0} \subset \ker df_{y_0} \subset T_{y_0}(\pi_V \circ f)^{-1}(w_0),$$

where $w_0 = f(y_0)$. Therefore, the local foliations $\{(\pi_V \circ f)^{-1}(w)\}_{w \in W}$ and \mathscr{F} are transversal near y_0 . Thus,

$$\{(\pi_{V} \circ f)^{-1}(w) \cap F\}_{\substack{w \in W\\ F \in \mathscr{F}}}$$
(2.4)

is a C^1 foliation in a neighborhood of y_0 in \mathbf{R}^n .

PROPERTY 3. $(\pi_{V} \circ f)^{-1}(w_{0}) \cap F_{y_{0}}$ is transversal to Y at y_{0} . Since $\pi_{V} \circ f|_{Y} : Y \longrightarrow V$ is a submersion and

$$T_{y_0}(\pi_V \circ f)^{-1}(w_0) = \ker d(\pi_V \circ f)_{y_0},$$

we have

$$T_{y_0}Y + T_{y_0}(\pi_V \circ f)^{-1}(w_0) = T_{y_0}R^n.$$
 (2.5)

As $(\pi_{v} \circ f)^{-1}(w_{0})$ is transversal to $F_{y_{0}}$ at y_{0} , we have

$$T_{y_0}((\pi_V \circ f)^{-1}(w_0) \cap F_{y_0}) = T_{y_0}(\pi_V \circ f)^{-1}(w_0) \cap T_{y_0}F_{y_0}$$

Further, the vector k is not an element of $T_{y_0}F_{y_0}$. Therefore, we have

$$\Gamma_{y_0}((\pi_{V} \circ f)^{-1}(w_0) \cap F_{y_0}) + \langle k \rangle = \ker d(\pi_{V} \circ f)_{y_0}$$
(2.6)

where $\langle k \rangle$ denotes the subvector space spanned by the vector k of $T_{y_0} \mathbf{R}^n$. From (2.5), (2.6), and the fact that $k \in \ker d(f|_Y)_{y_0} \subset T_{y_0} Y$, we see that $T_{y_0}((\pi_V \circ f)^{-1}(w_0) \cap F_{y_0}) + T_{y_0}Y = T_{y_0}\mathbf{R}^n$.

By using Property 3, we can construct a local C¹ retraction at y_0 , $\pi_Y : \mathbb{R}^n \longrightarrow Y$, along leaves of the local foliation (2.4). Then, these local retractions π_Y and π_V satisfy (CRf) in a neighborhood of y_0 in \mathbb{R}^n , from Property 2. Further, from the construction it is clear that each leaf of \mathscr{F} is a union of fibers of π_Y . Thus, (\mathscr{F}^1) does not hold. This completes the proof of the theorem.

3. An Example.

In this section, we give an example which illustrates the proof of the theorem, and demonstrates Remark 1 (2).

S. KOIKE

Let
$$f = (f_1, f_2) : \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$
 be a mapping defined by
 $f(x, y, z) = (x, y^4 + 2y^2 z^2).$

We take $X = \{y \neq 0\}$ and $Y = \{y = 0\}$ as disjoint submanifolds in \mathbb{R}^3 , and take $U = \{y \neq 0\}$ and $V = \{y = 0\}$ as disjoint submanifolds in \mathbb{R}^2 . Then, restricted mappings $f|_X : X \longrightarrow U$ and $f|_X : Y \longrightarrow V$ are submersions i.e. f is a stratified mapping.

Put $S = \{p = (x, y, z) \in X | y = z\}$. For any point $p \in S$, we have

grad $(f_{1|X})_p = (1, 0, 0)$ and grad $(f_{2|X})_p = (0, 8y^3, 4y^3)$.

Therefore, we have ker $d(f|_X)_p = \langle (0, 1, -2) \rangle$. We take a sequence of points $\{p_i\}$ in S tending to $0 = (0, 0, 0) \in Y$. We have

$$\lim_{i} \ker d(f|_{\mathbf{X}})_{p_i} = \langle (0, 1, -2) \rangle.$$

On the other hand, ker $d(f|_Y)_0 = \langle (0, 0, 1) \rangle$. Therefore, (X, Y) does not satisfy condition (a_f) at 0.

In this case, (X, Y) does not satisfy condition (a_f^s) at 0 as a matter of course. For example, we take the canonical projection over Y as a local retraction at $f(0), \pi_V : \mathbb{R}^2 \longrightarrow V$. Then, the foliation whose leaves are fibers of $\pi_V \circ f$ is

$$\mathfrak{V}_{1} = \{\{(x, y, z) \in \mathbf{R}^{3} \mid x = k_{1}\}\}_{k \in \mathbf{R}}.$$

Further, we consider the foliation

$$\mathcal{F}_{2} = \{\{(x, y, z) \in \mathbf{R}^{3} \mid z + 2y = k_{2}\}\}_{k_{2} \in \mathbf{R}},\$$

which is transversal to the fiber of $f|_{Y}$ at 0, and is not transversal to the fibers of $f|_{X}$ in S. As \mathcal{F}_{1} and \mathcal{F}_{2} are transversal, the intersection of \mathcal{F}_{1} and \mathcal{F}_{2} becomes a foliation of \mathbb{R}^{3} ,

$$\{\{(x, y, z) \in \mathbb{R}^3 \mid x = k_1, z + 2y = k_2\}\}_{\substack{k_1 \in \mathbb{R} \\ k_2 \in \mathbb{R}}}$$

It is clear that the leaves of this foliation induce a retraction π_Y which does not admit condition (a_r^s) at $0 \in \mathbb{R}^3$.

Nextly, we show that this example demonstrates Remark 1 (2). We consider a retraction at $0 \in \mathbb{R}^3$, $\pi_Y(x, y, z) = (x + yz^2, 0, z)$. Then, we have $f \circ \pi_Y(x, y, z) = (x + yz^2, 0)$. Let (x_0, y_1, z_1) , (x_0, y_2, z_2) be points in X such that $0 < y_1 < y_2$ and

$$y_1^4 + 2y_1^2 z_1^2 = y_2^4 + 2y_2^2 z_2^2 = C > 0.$$

182

From the fact that $0 < y_1 < y_2$, we have

such that they satisfy (CRf).

$$x_{0} + y_{1} z_{1}^{2} = x_{0} + \frac{C - y_{1}^{4}}{2y_{1}} \neq x_{0} + \frac{C - y_{2}^{4}}{2y_{2}} = x_{0} + y_{2} z_{2}^{2}$$
$$f \circ \pi_{V}(x_{0}, y_{1}, z_{1}) \neq f \circ \pi_{V}(x_{0}, y_{2}, z_{2}).$$

i.e.

On the other hand, $f(x_0, y_1, z_1) = f(x_0, y_2, z_2)$. Therefore, there does not exist a local C¹ retraction at $0 \in \mathbb{R}^2$, $\pi_V : \mathbb{R}^2 \longrightarrow V$,

BIBLIOGRAPHY

- C.G. GIBSON, K. WIRTHMULLER, A.A. du PLESSIS, E.J.N. LOOIJENGA, Topological stability of smooth mappings, *Springer Lect. Notes*, Berlin Vol. 552 (1976).
- [2] J. MATHER, Notes on topological stability, *mimeographed*, Harvard Univ. (1970).
- [3] D.J.A. TROTMAN, Geometric versions of Whitney regularity for smooth stratifications, Ann. scient. Ec. Norm. Sup., Vol. 12 (1979), 461-471.

Manuscrit reçu le 4 janvier 1982.

Satoshi KOIKE, Department of Mathematics Faculty of Sciences Kyoto University Kyoto 606 (Japan).

184