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ETALE COVERINGS OF A MUMFORD CURVE

by Marius van der PUT

Introduction.

For a Riemann surface X over C of genus > 2 the finite
unramified coverings Y—> X are easily obtained from the unifor-
mization of X . Indeed, from the universal covering

3€ = {z e C | Im(z) > 0} —> X
with group F ^ TT^(X) one obtains all possibilities for Y by
taking 9C/N where N is a subgroup of F of finite index.

For an algebraic curve X defined over a complete non-archi-
medean valued field K the situation is more complicated. In order
to obtain "enough" unramified coverings Y —> X one has to
suppose that X is a Mumford curve. On further distinguishes between
merely unramified (or etale) coverings and analytic coverings. This
is done in section 1. In the next section the abelian etale coverings
of a Mumford curve over an algebraically closed field are constructed.
In section 3 the base field is a local field and the abelian unramified
extensions of the function field of the curve X are calculated. The
result of this section is due to G. Frey. We have presented here a
rigid-analytic proof of this theorem. For general background concern-
ing analytic spaces over K we refer to [ 1 ] and [3 ].

1. Analytic coverings and etale coverings.

The field K is supposed to be algebraically closed and to be
complete with respect to a non-archimedean valuation. A morphism
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/: Y—> X of analytic spaces over K is an etale covering if / is
surjective and if / for every point x E X there exists an affinoid
subspace K of X containing x such that /"^(U) is a disjoint
union of affinoid subspaces V,(f £ I) and such that each /: V, —> U
is a isomorphism.

Suppose that /: Y —> X is a finite morphism. This means
that X has an admissible affinoid covering (X,)^i such that each
/"^(X,) is a non-empty affinoid subset of Y and such that each
©x(X,) —> ©Y(/~ ̂ X,)) is a finite injective map of affinoid algebra's.
In case that f is finite on has: / is an etale covering if and only
if for each y £ Y the map /*: Q^^y —^ 6\,f(y) is an isomorphism.

A.

Indeed, f^ isomorphism implies that also /y*: (9y y —> ^x,/(y)
is an isomorphism and that there are affinoid sets V, U containing
y and f(y) such that /: V —> U is an isomorphism. Take x £ X
and put y"1^) = { ^ i , . . . , Yn} • Choose affinoid neighbourhoods
V, of Yi and U of x such that every V/—> V is an ismorphism.
After shrinking U we may suppose that the V, are disjoint and
that every point t £ U has n pre-images in Y. Then clearly
/-^U) = Vi U ... U V^ , the V, are disjoint and each V/ —> U
is an isomorphism.

The morphism / is called an analytic covering if there exists
an admissible affinoid covering (X,),^i of X, an admissible cover-
ing (Y/)/ej °^ Y by affinoid subsets and a surjective map TT : J —> I
such that for all i:

(i) /"^X,) is the disjoint union of the Yy with 7r(/) = i
(ii) /: Y. —^ X, is an isomorphism for each / with 7r(/) = f .

An analytic covering is certainly an etale covering. The map
/: K* —> K* given by z '—^ zn (n> I and n prime to char
K) provides an example of an etale covering which is not an analytic
covering. This is rather in contrast with the complex-analytic case
where the corresponding notions coincide. In the sequel we will
restrict ourselves to one-dimensional regular analytic spaces and
especially to complete non-singular curves over K. It is clear however
that many results will be correct for higher dimensional spaces.

LEMMA 1.1. — Let f\ Y —^ X be an etale (resp. analytic)
covering of non-singular complete irreducible algebraic curves. Then
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the minimal Galois extension g : Z —> X is also an etale (resp.
analytic) covering.

Proof — For the function fields of X, Y and Z we have the
inclusions F(X) C F(Y) C F(Z) and F(Z) is the minimal Galois-
extension of F(X) containing F(Y). Let Y , — > X ( z = l , . . . , ^ )
denote the morphisms corresponding to the subfields of F(Z) which
are conjugated with F(Y). Since each Y, —> X is an etale (resp.
analytic) covering the same holds for Y^ Xx ... x^ ̂ s —^ ^ • I11

particular Y^x ... x^\y is non-singular and complete and every
connected component is again an etale (resp. analytic) covering of
X. The canonical map Z —> ^lxx • • • xx ̂ s induces an iso-
morphism of Z with a connected component.

This proves the lemma.

LEMMA 1.2. — Let f: Y —> X be a non-constant morphism
between (non-singular, irreducible, complete) curves. The exists a
unique maximal decomposition Y —^ X = Y —L-^ Y^ —1-̂  X
where Y^ is a curve and f^ is an etale covering. There exists a unique
maximal decomposition Y—^ X = Y -^-> Y^ -r£-^ X with Y^
a curve and f^ an analytic covering. Moreover Y^ —L-^ X factors
as Y^ —> YQ -^ X. // Y——> X is Galois then also Y^——> X
and Yo —> X are Galois.

Proof. — One has to consider subextensions of F(X) C F(Y).
For subextensions F(Z^) and F(Z^) let F(Z3) denote the least
sub field containing F(X^) and F(X^). Then Z^—> X is an etale
(resp. analytic) covering if and only if Z^ —> X and Z^ —> X
are etale (resp. analytic) coverings.

1.3 Let now X denote the Mumford curve S2/F ; F a Schottky
group with St as set of ordinary points in P 1 . It is known that
Sl —> X is the universal analytic covering of X. In particular
every finite analytic covering Y —^ X has uniquely the form
ft/Fo ——> X where F^ is a subgroup of F of finite index. The
etale coverings of X are hidden in i2. We introduce the follow-
ing notion: c: ^2*—> ft is a r-equivariant covering if:

(i) c : flan —> ft is a finite, connected, Galois, etale cover-
ing with group H.
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(ii) Every automorphism 7 £ F of i2 lifts to an automorphism
8 of ^2* . (i.e. -c6 = 70).

Let G denote the group of analytic automorphisms 6 of S2»
such that c6 = 70 holds for some 7 € F.

From the definitions one obtains a canonical exact sequence
of groups 1 —^ H -2-^ G —> r —> 1 . Let N denote a normal
subgroup of G of finite index such that N H H = {1}. With the
notations we can formulate the following results.

THEOREM 1.4. —
1) S2^/N is a non-singular, irreducible, complete curve over K.

The map ft»/N —> ft/F == X is a Galois, e tale-covering mth Galois
group G/N. This map decomposes uniquely into

"*/N—> n/7r(N)—> X ^here n/7r(N)——> X
is the maximal analytic subcovering.

2) Let Y be an irreducible non-singular complete curve and let
f: Y——> X be a Galois, dale-covering. There exists a pair (ft* , N)
(unique up to isomorphism) and an isomorphism g : Y——> ?2*/N
such that the diagram Y——> X is commutative.i /n*/N

Proof. -
1) The construction of ^2»/N as a 1-dimensional regular analytic

space over K is very similar to the construction in [3] p. 105. One
can make this construction explicit by a choice of a fundamental
domain. Let F £ ft be a good fundamental domain for the group
^•(N) ([3] p. 28). Then F has the form P1 - Bi U ... U B^ where
TT(N) = < 7 i , . . . , 7a ) and B ^ , . . . , B^ are open discs such that the
corresponding discs B^ are still disjoint and such that 7^ is an iso-
morphisms of B,̂  - B, with B^ - B,^ (z = 1 , . . . , a).

Let B, 3 B,4' denote open discs such that the closed discs B^ are
still disjoint. Put G = P1 — B , U ... U B,.. Then n/7r(N) can be^^+ '̂ +constructed by glueing the affinoid pieces G, B^ — B ^ , . . . , B^ — B^
according to

(i) B^ - Bf is glued to G over the subset B^ - B,.
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(ii) for 1 < i < a , B^ — B/ is glued to B^+a — B/+^ by using
the isomorphism 7,: B^ - B/ -^ B^^ - B,+^ .

To obtain ft^/N we replace in the construction above the affi-
noid sets G , B," - B,, B^ - B, by the subsets c-^G), c-^ - B,),
c'^B^ — B,) of ft,,, and 7, by the unique element 7, *= N with
^•(7,) = 7, •

The only thing that one has to verify is that c~l(G) etc are
affinoid subsets. Indeed, one can easily verify the more general state-
ment: "Let U—> V be a finite morphism of analytic spaces over
K. If V is affinoid then U is also affinoid."

Using this construction of ft^N and the given affinoid covering
of ft^/N one can calculate that dim^ H^ft^/N, ©) < oo and
finally prove that ft^/N is actually a complete, irreducible, non-
singular algebraic curve over K. (See [3] p. 106-107). The only state-
ment that we still have to verify is the maximality of the analytic
subextension ft/7r(N) —^ X. The normal subextensions correspond
to normal subgroups M of G containing N. We have to show that
S2^/M ——^ S2/F is an analytic covering if and only if M ^ H.

Put M n H = Hi . We replace
n^ —^ n by ^ = n^/Hi —^ si

and H by H' = H/H, ; G by G' = G/H^ and M by M' = M/H^.
Again we have an exact sequence 1 —> H'—> G9——> F——> 1
and now Nf n H' = {1} . We have to show ̂  = ft if ft^/M' —^ ft/F
is an analytic covering. The hypothesis implies easily that Sl^ —^ ft
is a connected analytic covering. According to [3] p. 151, (3.4), one
has ft;,——^ ft.

2) We consider the commutative diagram

X<————ft' i , i''Y<—2——Yx^Sl = Sl'

The fibre product S2' is as a set of points equal to
{(y,o.>)eYxS2| /OQ=ir(y)}.

One can easily give S2' the structure of an analytic space over K since
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TT is an analytic covering. We denote by Go the Galois group of
Y | X. The group Gg x F acts as group of analytic automorphisms
on ft' in the following way: (a , 7) (y , a?) = (a(y) , 7(0?)). Easy
arguments will prove the following statements:

a) /' is an etale covering with group Gg; possibly not connected.
b) TT' is an analytic covering with group F; possibly not

connected.
c) ft7r = Y and ft7Go == f t .
d) for every connected affmoid U C f t , the set (/")"' ̂ U)

is affinoid. Go acts transitively on the connected components and
each of them is mapped surjectively to U.

e) After applying d) to a sequence U^ C U^ C 113 C ... of
connected affinoid subsets of ft which defines the holomorphic
structure on f t , one finds that ft' has finitely many components
f t ^ , . . . , f t^. Each component is mapped surjectively to ft and
Go acts transitively on the components.

f) From ft'/r = Y if follows that F acts transitively on the
components and that ft'i/N = Y where

N = { ( l , 7 ) ^ G o X r i 7 ( f t ' i ) = f t i } .

Put ft^ = ft'i and let c: ft^——^ ft denote the restriction of
/' to ft^ . We make the following definitions:

G = {(a , 7) ̂  Go x F | (a , 7) "* = "*}
H = {(a , D E G o X F K a , l ) f t^ = ft,,}
N = { ( l^^GoxrKhT)^-"*} .

From c) ft'/G^ = ft it follows that ft^/H = ft and that c: ft«—> ft
is a Galois etale covering, connected, and with group H.

The sequence 1 —^ H —> G —^ F —^ 1 is exact since for
every 7 E F there exists a O^GQ such that a(ft^) = 7(ft*). So
(a"1, 7) £ G and this element maps to 7. The group N is clearly
a normal subgroup of finite index in G and N H H = {1}. Finally,
according to f) we have ft^/N s Y.

Similar methods will easily give the uniqueness (up to isomor-
phism) of the pair (ft^ , N).
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PROPOSITION 1 .5 .— Let Y be a complete, non-singular,, irre-
ducible curve over K or a 1-dimensional, regular, connected a ff moid
space. Then Y has a universal analytic covering. The Galois group
of this universal analytic covering is a finitely generated free (non-
commutative) group.

Proof of 1.5. — The analytic space Y has a reduction r: Y —> Z
which is pre-stable and such that every component of Z is non-
singular. (This is proved in [4].) The graph G of Z, i.e. the vertices
of G are the components of Z and the edges of G are the double
points of Z , is in general no a tree. Let T —> G be the universal
covering of the graph. Then T is a tree and on it operates a group
r ^ 7Ti(G) which is a finitely generated free group such that T/F ^ G.
As in [3] p. 149 (3.2), one can lift the construction of T and F
to obtain an analytic space ft and an analytic covering u: ft —> Y
with group r, such that ft has a reduction ft and an induced
map ~u\ ft —^ Z which is for the Zariski-topology the universal
covering and such that the graph associated with ft is T and
u: T —> G is the universal covering of the graph mentioned
above. The proposition will follow now if we can show that ft
admits only trivial analytic coverings. It suffices to show that an
affinoid space U such that its canonical reduction U consists of
non-singular affine curves intersecting normally has only trivial
analytic coverings. Indeed ft is build up out of such affinoid spaces
U in an acyclic way.

Let now ^: V —^ U be an analytic covering. According to
the definition U = U^ U ... U Uy, where the U, are affinoid sub-
spaces of U and such that (p'^U,) is the disjoint union of affinoid
subsets of V, each of them mapped isomorphically to U,. After
refining the covering { U ^ , . . . , U ^ } of U we may suppose_that
it is a pure covering such that the corresponding reduction U of
U is prestable and has non-singular components (see [4]). The reduc-
tion V of V with respect to {^"KUi) , . . . , ^-^U^)} is also
prestable and the induced map _V —^ U is a covering for the
Zariski-topology. One knows that U is obtained from U by a finite
number of steps. In each step a_ point is replaced by a projective
line over K. This shows that U has only trivial coverings for the
Zariski-topology. If we assume that V is connected then also V
is connected. Hence V = U and so V = U. This shows finally
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the existence of the universal analytic covering u: ft —^ Y. We
want to show that ft has the usual property:

"Given a morphism f\ S —> Y , where S is a connected
analytic space which has only trivial analytic coverings, and given
points s^.S and coEft with M(a?)=/(^) , then there exists a
unique lift /': S —> ft with uf = f and f\s) = ̂ . "

We consider the fibre-product ft' = ft^y S —> S. This is an ana-
lytic covering S. By assumption, every component of ft' maps
isomorphically to S. Taking the component of ft' which contains
the point (co, s) one finds /' and one shows that /' is unique.

COROLLARY 1.6. - Let Y , N , f t ^ be as in ( 1 . 4 ) and let ft(Y)
denote the universal analytic covering of Y which has group F(Y).
There exists a normal subgroup 1̂  of F(Y) such that ft^ ^ ft(Y)/Fo
and F(Y)/ro ^ N.

Proof. — Easy consequence of (1.4) and (1.5).

Remark. — In general, ft^ is not the universal analytic covering
of Y. In section 2 we will discuss examples. The reason is that
a connected, Galois, etale covering e : ft^ —> ft , admits itself in
general non-trivial analytic coverings.

Example 1.7. — Take
ft = P 1 - { O , T T , 1 ,00} where 0 < | 7 r | < l .

And let ft^ = {(x , y ) G f t x K \y2 = x(x - TT) (x — 1)} . Assum-
ing that the characteristic of K is unequal to two, one finds that
c : ft^ —^ ft is a connected etale covering with Galois group Z/2.
The elliptic curve, corresponding to the equation y2 = x(x — TT) (x — 1)
is the Tate curve K * / ( q ) for a suitable q , 0 < \q\ < 1. Further
ft^ = K * / ( q ) - {± 1, ±^1/2}. The Tate curve has the universal
analytic covering K*——> K * / ( q ) . This easily implies that the uni-
versal analytic covering of ft^ must be U = K* — {± q^2 | n E Z}.
The resulting connected etale covering U —^ ft is in this case Galois.
Its group is generated by two elements 7 , 6 , defined as automor-
phisms of U by 7(2) = qz and 6(z) = z~ 1 . The only relations
are 62 = 1 and 67 = 7~15.
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More examples 1.8. — Let F denote a finitely generated dis-
continuous subgroup of PGC(2 ,K) . Suppose that F/[r,F] is a
finite group. Let ft denote the set of ordinary points for F. It
is known that ft/F ^ P1 (see [3] Ch. VIII, (4.3)). There exists a
normal subgroup F^ C F of finite index, which is a Schottky
group. That implies that c: ft —> ft/F = P1 is only ramified
above a finite subset S of P1 . Then ft - c'^S)—> P1 — S is
a Galois etale map with group F. Special cases of such groups F
are provided by Whittaker groups or by cyclic extensions of P1

(see [3, 6]).

Remark 1.9. — Let the Schottky group F and its space of
ordinary points ft C P1 be given. It is rather difficult to construct
equivariant etale coverings ft ̂  ——> f t . In the next section we will
restrict our attention to abelian extensions ft ̂  —> ft .

2. Construction of the abelian etale coverings.

We assume in this section that X is a Mumford curve over K
of genus g and we fix a presentation X = ft/r with F a Schottky
group on g generators and in which ft C P1 is the sub space of
ordinary points of F. According to (1.4) we have to construct the
abelian F-equivariant etale morphisms c : ft^, —^ ft such that in
the notation of (1.3), one has [G, G] n H = {1} . Indeed, there must
exists a normal subgroup N , of finite index, in G with abelian
factor group and N H H = {1}. We call an abelian F-equivariant
etale map c : ft^ —^ ft strongly abelian if [G, G] 0 H = {1} . This
condition is clearly equivalent to "G is the direct product of H
and F". Let 0 denote the group of invertib Ie holomorphic functions
/ on ft satisfying /(7co)//(o;) is a constant for every 7 G F.
According to [3] Ch. II, the group 0/K* is isomorphic to Z g . Ele-
ments 6 ^ , . . . , 6g in © are called a basis if their images in Zg form
a Z-basis. The main result of this section states that every F-equiva-
riant strongly abelian covering of ft has the form

"* = { (a ; ,Xi , . . . , \ ) e f tx (K*^ |X^=0 , (c j ) for f = l , . . . , ^ }

where we have chosen a basis 9 ^ , . . . , 6g of 0 and where n ^ , . . . , Ug
are positive integers, not divisible by char K. We start the proof by
giving ft^ the structure of an analytic space over K. Let {ft,,}
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denote a sequence of connected affinoid subsets of ft such that (i)
^ C ̂  C ft 3 C ... and (ii) every affinoid subset of ft is contained
in some ft^ . For each n we consider the affinoid space Sl^n corres-
ponding to the affinoid algebra

©02,) [X,,..., XJ/(X^ - 9,,..., X^ - 0^).

As a point set ft^ is equal to {(a?, X ^ , . . . , \g) £ ftsiJ a; £ ft,,} .
The analytic space ft^ is obtained by glueing together the affi-

noid spaces ft^ according to the natural inclusions ft^ —> ^*m
(for n <w) . The map c: ft^—> ft is etale and finite of degree
n^ ... n . The automorphisms of ft^——^ ft are of the form
(o;, X ^ , . . . , \) —> (a;, ̂  \ i , . . . , ?^\) where ?, denote a
primitive n^ih root of unity and 0 < c^ < n^. So ft^ —>> ft is
Galois with group H = Z / n ^ ^ ... ̂  Z/^ . The function theory
on n^ is not much more complicated than that of Sl. Indeed Q(Sl^)
equals lim ©(S2^^) and turns out to be

© 02) [X^,.. . , \ ]/(X^ - Q i,..., X^ - 6,).

As usual we write 3TC for the sheaf of meromorphic functions.
For any affinoid U one has <71t(U) = the total ring of fractions of
W).

Again 01Z(S2^) = lim^n^) coincides with

J1Z(a)[X,,...,XJ/(X^-0i,...,X;^0^).

The space S2^ is connected if and only if jnX^sie) is a field. Let m
denote the smallest common multiple of ^ i , . . . , ^ . If suffices
to verify that ^W [\,,... ̂ /(Y^ - 0, ; i = 1 ,... , g ) is
a field. By Kummer-theory this is translated into: the images of
(9^. . . , 0g in ^(n^/JlUa)*'" are independent over Z/m .

Suppose now that 0^ ... 9°^ , with 0 < a, < m, equals /w

for some /eOTl(n). Then clearly /E ©(ft)*. Since (/(^//(c^r
is constant for every 7 E F and since ft is connected, one finds that
/ G ©. The independance of Q ̂ , . . . , 6g yields cq = . . . = c^ = 0.
This finally shows that ft^ is connected. Let further Of denote
the homomorphism of F in K* satisfying 0/Cyo?) = fl/(7) 0,(o?).
Let &, £ Hom(F, K*) be chosen such that b^1 = ^ . Then we can
define a F-action on ft^ by

7(0;, X i , . . . , X^) = (7M»^i^i(7)».. . , \^(7)).
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This action commutes with the H-action on ft^ . Hence Sl^——^ ft
is a strongly abelian r-equivariant etale morphism with group H.
Next we want to find a presentation of Sl^ which does not depend
on the choice of Q ̂ , . . . , Qg , n^ , . . . , rig . This is done as follows.
Let G be the group of automorphisms of Sl^, as defined in (1.3).
The group acts on <}Tl(^), ©(S2^) etc. We consider its action on
0(ft^)*/K*. Let x ^ , . . . , Xg C ©(^)* be given by

x,(a; , \ i , . . . , \^) = X, .
A straightforward calculation shows that H°(G, ©(ft^/K*) is the
free Z-module generated by the images of ; x : ^ , . . . , x » . And this
group is a finite extension of H°(I\ CW*/K*) =0/K*. We obtain
in this way a Z-lattice T in 8/K* ® Q containing 0/K*. The
lattice T is uniquely determined by ^ and determines Sl^. We
will write Sl^ = ^2(T) in the sequel. The group of automorphisms
of ^2(T) —^ Sl is equal to the Pontryagin dual of the cokemel
of Q/K* ——^ T. We can now formulate the main result of this
section, using again the notation of (1.3). We consider only lattices
T such that char(K) does not divide the order of H .

THEOREM 2.1. —For every strongly abelian F-equivariant map
^——> ^2 there exists a unique Z-lattice and an isomorphism
n^—^ n(T).

COROLLARY 2.2. —Every finite abelian dale-covering of X = ft/F
has uniquely the form i2(T)/N, where T is a Z-lattice and where
N is a subgroup of G with N H H = {1} and TrN is a normal sub-
group of r of finite index and with an abelian factor group.

Proof of 2.2. - The corollary follows from (1.4), (2.1) and the
fact that G is the direct product of H and F. A further conse-
quence is:

COROLLARY 2.3. — The Galois group A of the maximal unramifi-
ed abelian extension of ^(X), the function field of X = ft/F, is
isomorphic to:

a) Z2^ if char K = 0
b) V x n Zf if char K = p ^ 0.e^p "
There is further a canonical surjective homomorphism of A

onto 28 == the Galois group of the maximal abelian analytic cover-
ing of X.
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Proof of( 2.1). — It suffices to show the following two statements:
a) if char K = p ^ 0 then there does not exist an equivariant

ft,tc —^ ^ with group Z/p.
b) if ft^ ——> ft is a cyclic equivariant etale covering with

group H = Z / n such that char(K)/^ and H n [G,G] = {1}, then
there is a suitable 9 C © with ^ ^. {(a;, X) £ ft x K* | X" = 0(a?)} .

Proof of a).
The map c: ̂ —»- ft induces a field extension OTl(ft) C OTl(ft^)

which is supposed to be cyclic of degree p . By Schreier theory,
OTZ(ft^) is obtained from OTZ(ft) by adjoining a root of X^ - X -/.
One can change the / in this equation by adding a meromorphic
function of the form g19 - g with g€ OTZ(ft). After a suitable change
of this type we may suppose that every pole (if any) of / has order
< p . In a pole o?o £ ft o f / o f order < p the map S2« ——^ ft
is ramified. So we have shown that / can be supposed to belong
to ©(ft).

Consider the exact sequence
0 —> Fp —> ©(ft) ——^ G(Sl)——> M —> 0

where r is given by r(h) = h1' - h. The extension «^(ft^) | 31I(ft)
determines uniquely the subgroup of M generated by r(f). The
action of F of On(ft) extends to OTl(ft^). This implies that
o^(/07) = ^(7) ^(/) for a certain homomorphism c : F —> F* .
After replacing F by a subgroup of finite index, we may suppose that
a(f) is invariant under F. We recall that H°(r, ©(ft)) = H°(ft/r, ©x)
and H^r, ©(ft)) = H^ft/F, ©x) with X = ft/F . For the constant
sheaf Kx on X with stalk K one also has H°(r, K) = H°(X, Kx)
and H^F.K) = H^X.Kx). Further the canonical maps

H^X.Kx)—^ H^X^x) 0 - = 0 , 1 )
are bijective. Using the exact sequence of F-modules

one finds ° —— F. —— QW—— <s^ —— 0
H°(r, ®(ft)/Fp) = K/Fp and H^F, ©(S2)/Fp) = Hom(r, K/Fp).

The exact sequence of r-modules
0 —> ®(S2)/Fp ——»• QW —> M ——> 0

induces the long exact sequence
0—> K/Fp—- K——> H°(r,M)——> Hom(r,K/Fp)

——» Hom(r,K)——- ...
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This implies that H°(T,M) == 0. Hence r(f) = 0. This contradicts
the assumption that the equation Xp — X — / is irreducible.

Proofofb).
The map c: Sl^——^ ft induces a field extension OTl(ft) C OT(tf2*)

with cyclic group Z / n and irreducible equation X" — / , for some
/ejH(ft). Since ft^——»- ft is etale one may suppose that /G ©(ft)*.
We consider the exact sequence

1 —> ©(n)*/K*——^ ©(n)*/K*-^ M —^ 0
where r is defined by r(g) = ̂  .

The subgroup of M generated by g = r (f mod K*) has Z / n
elements and is uniquely determined by the extension JTl(I2) C OTl(ft^)
The action of F on JIl(S2) extends to OTC(n^). This implies that
7(5") = ^a(7) where a: F —^ (Z/n)* is some group homomorphism.
This means that f(^) = f^Y^b^Y holds for some 6^ e ®(f2)*.
Let jc denote an element of OU(^) with xn:=f. The action
of 7 on OTC(I2^) must have the form j(x) = x^ b^ . This action
must commute with the automorphism 6 of OTl(ft^) |JR,(S2) given
by 6(x) = ?x where ? is a primitive n-th root of unity. Since
Sj(x) = ^x^b^ and 76(;c) = ^x^7^, one finds that
a (7) = 1 for all ^ G F . The map 7 •—^ b^ is a 1-cocycle with

•f Q ^y
values in ©(^2)* and its ^-th power is the trivial cocycle 71—> ——- -
In [5 ] one has derived an exact sequence '

.... Hom(r,K*)——> HKr ,®^)*)—>Z—> 0 .

This implies that the image of the 1-cocycle {7 •—> b^} in Z is
zero. Hence b has the form ^(7). c o 7/0 for some homomorphism
d' . r —> K* and some functions c£ ©(ft)*. Hence 0 = c-"/
satisfies 0(7<^) = ^(7)" 0(co) and so 0 belongs to 0. The extension
OTl(S2) C OTl(S2^) is then also described by the equation X" — 0 . It
follows easily that Sl^ is isomorphic to {(a;, X) £ S2 x K* | X" = 0(a?)}.
This finishes the proof of (2.1).

Example 2.4. - The special case of (2.1) and (2.2) where the
genus of X is 1 is particularly simple. The statement reads:

Every finite abelian etale extension of X = K * / < q r > (where
0 < \q\ < 1) is of the form IC*/^')-^ K*/<^> where the map
(R is induced by z '—> z" from K*—> K* with n not divisible
by charK and where q9 satisfies ( q ' ) n ^ ( q ) ' = q z .
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PROPOSITION 2.5. - Let ^p: Y—> X be a finite abelian etale
of the Mumford curve X = S2/F. We suppose_that the order of the
group H (see (2.2)) is not divisible by charK. Let "U be a pure
affinoid covering of X such that the reduction (X,^) satisfies:

(i) every component of (X, ̂  is non-singular.
(ii) every singular point of (X, ^U) is an ordinary double point.

Thenjp^yi) is a pure affinoid covering of Y and the reduction
(Y, (^CU)) of Y with respect to ^"K^U) also satisfies ( i ) and
(ii). The canonical map of (Y, (^CLI)) ro (X,^) f.y unramified
outside the double points of (Y, ^p~l(C^L)).

Proof. — Any small enough U £ ̂  is isomorphic to an affinoid
subset of P1. The proof of (2.5) follows from the next lemma.

LEMMA 2.6. — Let U be an affinoid subset of P1 given by
the inequalities: | TT I < | z | < 1 ; | z — fli | > 1 , . . . , | z — a j > l ;
|z — b^\ > |7r | , . . . , |z — 6J > |7r| m which 0 < |7r| < 1 ; |aJ = 1 ;
1^ - ̂ .| = 1 for i +]\ |6,| = M fl^rf |6, - by\ = |7r| /or ; ̂  /.
Z^ ^ i , . . . , u^ € 0(U)* awrf /e^ n^,..., n^ denote positive integers
not divisible by char (K). Let V denote the affinoid space be given
by its affinoid algebra

w^ajxx,,...^)^1 -^,...,x^-^,).
Then the canonical reduction V of V Aa^ non-singular components.
The only_ singularities of V are ordinary double points. The map
V —> U is unramified outside the double points of V .

Proof. — We may suppose that ®(V) is an integral domain.
Let M denote the subgroup of ©(U)* consisting of the elements
m of the form

ko, .k. , ^/7r 7r \81 /7r 7r ̂w = z ^-^^ • • • • ^ - ^ (r-^) ••••(7-6:) •
The ^o, ^i , etc. are integers and we write k^ = ^o^)- Then M
is a free abelian group of rank s + t + 1 . Every element of ©(U)*
can uniquely be decomposed as u. m with m £ M and M = X + h,
X G K * and A £ ®(U) such that ||/z|| < |X | . Let d= [©(V): ®(U)]
and let N denote the group of elements of ©(V)* having their d-th
power in M. Then N = NQ (D N^ where N^ is the group of the
d-th roots of unity and where No is a free abelian group satisfying
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[ N o : M ] = d . Take a basis ^,...,^+1 of M such that No is
the free group generated by — u^ , . . . , ———— u^^i (in additive

i v + ^ + i
notation). With this choice one can write

©(V)= ©(U)[X,,...,X^J/(X;1-^; i= l , . . . , ^ + r + l ) .

It is possible to choose the ^i,...,^+i such that k^u^) = 1
and h^u,) = 0 for i = 2 , . . . , t + s + 1 .

Consider the surjective map of ®(U) < X ^ , Y^ , X^, X3,.. . , X,+^>
to ©(V) given by X, •—> X, and Y^i—> p X^ with p E K *
such that p"1 = TT . This map induces a norm on © (V) and the
reduction R of ®(V) with respect to this norm is

©(U)[X,,Y, ,X, ,X3, . . . ,X^J

divided by the ideal generated by the elements X"1 — 'u., Y"1 — — ,
__ A - u\

X^ YI , X^' - ~u, for i > 2. Further ®(U) is the localization of
K[T, S]/TS at the element _ _

(T-«,)...(T-7,)(S-^)..,(S-^).

A straightforward calculation shows that R has no nilpotents. Hence
R is the reduction of ©(V) with respect to the spectral norm. The
only singular maximal ideals of R are

(^1 9 ^ i 9 yv^ —— C^ , . . . , X^+^4.^ —— Cy+{+^)

in which c, E K satisfies cni = M,(r) with | T T | < |r| < 1 . The
completion of the local ring o f R at such a maximal ideal is
^ K|[Xi ,YJ/(XiYi) . Further ©(U)—> R is unramified outside
the ideal (S,T) of ©(U). This proves the lemma.

An example 2.7. — Let X be a Mumford curve of genus 2 with
reduction X

(Two rational curves L^ , L^ inter-
secting in 3 points pi , p ^ , p^.)

We write r: X——^ X for the reduction map. Let 0 £ 0 be a theta
function for the curve X. On the affinoid part r'^Li - [ p ^ , p ^ , p^})
the function 6 can be represented by a holomorphic invertible func-
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tion u which is normalized by \\u\\ == 1 . The reduction ~u is a
rational function on L^ which is invertible and regular outside
{P\» Pi ? Pa) • Let ord(0) denote the triple (^ , a^, ^3) £ Z 3 given
by fl^ = ord (i7). This induces a group homomorphism

ord:Q/K*——> { ( ^ l , f l 2 ^ 3 ) E Z 3 | f l l + ^ 2 + ^3 == °}-
Using [5] one easily shows that it is an isomorphism. Let Q,, 9^ £ 0
be a basis for the theta functions. Put ord(0i) = ( a ^ , a ^ , a ^ ) and
ord @2 = ( & i , & 2 , 63). As in (2.2) the curve Y is given by Y = n^/N
in which
^ == { ( a^X^X^EnxCK*) 2 ^ 1 = 0i(^) and X^2 = 02(^)}_

and where N maps bijectively to F. We assume further that char K
does not divide n, n^. The reduction of Y obtained in (2.5)
in denoted by Y. The etale map (R : Y ——^ X induces some
<^: Y——> X. We will use (2.5) and the proof of (2.6) in order to
calculate the reduction Y.

Let t be a parameter on L^ P1 such that t = 0, 1 , oo corres-
ponds to p i , p 2 ' P 3 on Li . Then ^~1(L^ — { p ^ , p ^ , p^}) is the
affine variety over K with coordinate ring

K[^^[X,,XJ/(X^ - t^t - I)'2, X,"2 - f^(t - I)62).

It is connected and non-singular. Its closure in Y is a curve M ^ .
The curve M^ is an abelian ramified covering of L^ = P1 . The
genus g of Mi is given by the Riemann-Hurwitz formula

2g - 2 = In, n, + n^ (^ - l) + Z!l̂ l (^ - l)
a \ e^j

^(,-0,

In this formula ^ denotes the ramification index of a point of M^
1 a- b-above u, in L. One easily verifies that —Z = — Z -1-—Z
^ ^i ^ ^2

for ^ = = 1 , 2 , 3 . One finds in the same manner that M^ = ^^(L^)
is a non-singular curve of the same genus. The two curves M^ and

Hi n^ Tl^H^ n\^l1 ~M, meet m —-— + —-—- + ——— pomts (namely the </?-pre-images
e! e2 e3 _

°f Pi 9 Pz ^ P a ) - Hence the arithmetic genus of Y is equal to
2g - 1 + n,n^ j -1- 4- -1- + -'- [ .

( ^i ^2 e3 )
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M^ One easily computes
^ that this number is
\ equal to the genus of

_ M.Y (as it should be).
(Picture of Y)

The universal analytic covering of Y (as constructed in (1.5)) has an
automorphism group F(Y) which is free on n.n^\ — + — + — }

3 < e! ^2 ^3 )
generators. This number is equal to ^ g.c.d. (n^a^n^bf) and
so >3 . '=1

This shows that Sl^ cannot be the universal analytic covering of Y.

2.8 The other examples of a Mum ford curve of genus 2 p n
a) X is a Mumford curve wth stable reduction X:

The reduction is P1 parametrized by t where the two
pairs of points t = 0, t = °° and t = 1 , t = d are

A ord
identified. Again one has an isomorphism Q/K——^ Z 2 given as
follows: 6 E © lift to a function u on r^^X — {p , q}) with cons-
tant absolute value 1. The reduction i7 is a rational function on the
normalization P1 of X and we put ord(0) = (ordoU, ordiM"). Let
9 ^ , 02 be a basis of the theta functions and put ord(0i) = (a^, a^)
and ord(^)== ( & i ? b^). Let Y be the curve obtained from X
by (2.2) with ft^ = {(a;, \, X^) l^? = 0i(c^),^2 = ^O^)} and N
which maps bijectively to F. The reduction of Y is made by
using (2.5). The canonical map <^: Y —^ X induces a <^: Y —^ X .
The pre-image ^"^(X — {p , q}) is affine with coordinate ring

Kia<,-,,<,-.iX,V]/(x"> - ,-(^)-2, Y"' - /. (̂ n .

The corresponding non-singular projective curve (i.e. the normalization
of Y) has genus g given by the Riemann-Hurwitz formula

2g - 2 == - 2n,n^ + 2 ̂ 1 (e, - 1) -h 2 -^ (^ - 1) and
^1 e!

J«z=-^-Z+-^Z and J-Z=^Z+-^Z.
^1 ^i ^ ^2 "1 ^2

The number of double points of Y is —1—2- -h —!—L. So Y is an
irreducible curve with double points. el e2
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The group F(Y) (see (1.5)) is free on nln2 4- nln2 - i
generates, e\ e!

b) X is Mumford curve with stable reduction X -

p̂p
D L,

t \ q

Let Lj be described by a parameter /, where ^ = 1 , - 1 corres-
ponds to p and ^ = 0 corresponds to r . A parameter ^ describes
1.2 in a similar way. A theta function 9 for X is lifted to a function
u on r~l{L^ ~ { p , r } ) . One can normalize u such that ||u|| = 1.
Put a, = ordjM". In a similar way a, is defined. One obtains again
an isomorphism ord: Q/K*——> Z2 with ord(0) = (ai, a^) as
given above.

Let 6 ̂ , 6^ be a basis of the theta functions and let Y —^ X
be defined^ " " ^ Q ^ " ^ / Q ^ . We study now the reduction Y and
the map y: Y——> X. The pre-image ^-'(L^ is given by the equa-

tions X"' -(•^-j-j-J1, Y"2 - (^ ̂  Y'1. Here we have written

ord(<?i) = (a,, a;) and ord^) = (6,, 6^). Let e^ > 1 be defined

^ ~~z ::='—z +^l-z • Then ^"'(Li) turns out to be thet-i n, ra^

disjoint union of -"-"1 curves M, (1), . . . , M, (-"l"l). Each Mi(0
1 ^1 -

is a rational curve with one double point. The M^(i) are isomorphic
to each other. The map M^i)—> L^ has degree ^ and is only
ramified in the unique double point of Mi(0. On each M^(i) lie
e^ pre-images of the point r . There is a similar description for

<?- l(L,)=M,(l)U.. .UM,(^l) with -Lz=- a l-Z+-^Z
v ^2 / ^2 ^1 "2

Every M^(i) meets ^^ of the curves M^/) and every I^/) meets
e^ of the curves M^(Q. The reduction Y is totally split and stable.
The curve Y is a Mumford curve. We have made a picture of Y for
the values a, = 1 , ^ = 0, b, = 0, ^ = 1 , ^ = ^ = 2 and
^2 = e! = 3.
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^—
X^

3. Mumford curves over a local field.

In this section k denotes a local field and K will be the
completion of the algebraic closure of k. Let F C P Gfi(2, k) denote
a Schottky group on g generators. Then R is a subset of P^fc).
Let ^ denote the analytic space over k, given by ^2 = P1 — Si.
The action of F on t2 is fc-rational and one can form the quotient
X = ft/r. For every (finite) extension fi of k the set of C-
rational points of X x^ £ is equal to P^fi) — ^ / P . In particular
the set of fe-rational points of X is equal to P1^) — ff/r. For
our purposes we need that X has ^-rational points. So we have to
assume that K is a proper subset of ^(k). The theta functions,
corresponding to F, are elements of 0(^1) since they can be
written in the form

Q = n 7(fl) , where a^P\k)-^ and 5 E F .0 7^r z - j6(a)

For every SSF the homomorphism Cg: F—^ K*, given by
^5(7^) = ^(7)^6(^)? has also values in k * . As in § 2 we
want to calculate the abelian unramified field-extensions of
3n(X)== H°(r,JIl(n)). The field JlUX) is a function field of
genus g with precise field of constants k .

A contribution to those extensions are the abelian extensions
of the field of constants k . Restrictions with respect to the exten-
sions in § 2 are:

(i) k contains only finitely many roots of unity; let n denote
their number.
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(ii) For a theta function 9 with 0(700) = 0(7) 0(o;), there
exists in general no homomorphism b: F —>t fc* with
y =a.

For any lattice T (again T is a lattice in Qfk*x^^Q contain-
ing @ / k * ) there is an analytic space ft(T) over k defined by the
more or less symbolic formula

ft(T)= { ( G ; , X i , . . . , X ^ ) e a x ( f e * ) ^ X ^ = = ^ ( a ; ) , z = 1, . . . ,^}.
The function field 3U(ft(T)) of ft(T) is equal to J1I(ft)[;Ci,..., xj
where x^ == 0,. Let us write a,EHom(r,fe*) for the homo-
morphism 7<—^ 0,(7o;) ^.(a?)"1 . Let &,£Hom(r,K*) denote
a homomorphism satisfying b.1 = a ^ . Let £ be a finite Galois exten-
sion of k containing all the values &,(7) . The analytic space (over k)
ft(T) x^ C has a group of automorphism G given by: an automorphism
5 belongs to G if 5 extends some automorphism 7 E r of f t .

From our choice of the field £ it follows that we have an exact
sequence:

1 —> H —> G -ZL^ F —^ 1 with H = Aut(ft(T) x^ fi —^ ft).

Let M denote the subgroup Aut(ft(T)x^£ —> f t x^ f i ) of H and
let N denote the subgroup Aut(ft(T)x^£—^ ft(T)) s Gal(£| k)
of H. Then M is a normal subgroup and we have an exact sequence
1 —> M —> H —> Gal (C | k) —> 1 and H is the semi-direct
product of M and N.

According to § 2 every finite abelian unramified covering of
X has the form ft(T) x £/N for suitable, T, £ and N and in which
N is a normal subgroup of G and G/N is a finite abelian group.

One clearly has [ G , G ] H H is contained in N. In particular
[H,H] is contained in N. We will need the following lemma.

LEMMA 3.1. — Let H denote the automorphism group of
f t (T)x^C|f t and let [H,H] denote the commutator subgroup
of H. Then ft(T) x^ £/[H, H] ^ ft(T') x^ £' where

(i) £' is the maximal abelian subextension of £.
(ii) T' is a sublattice of T, and T' satisfies n T ' C Q / k * .

Proof — We choose a basis 0 ^ , . . . , 9g of © such that T is

the Z-module generated by — (6. mod k * ) , . . . , — (Qy mod k * ) .
MI A ^
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As before the function field of S2(T) x^ £ has the form
,mn)®fcCh:i,. . . ,^] with 0 , = = X ? 1 .

The commutator subgroup [H,H] is generated by the elements
{a^a^a^ a^\o^ (^ e N) and {ah a-1/!-11 a G N and A G M } .
Let A, denote the element of M given by the action A/(Xy) = X,
if / ^= i and A^(X,) = ?,X, where {•, is a primitive ^,-th-root of
unity. An easy calculation shows that ah^a~lh^~l = /^I(a) where
^,(a) is an integer depending on i and a . Let ^ = g.c.d. (n,,
all fl,(a)). One easily shows that [H,H] is equal to the semi-
direct product (h^ , . . . , A^>. [N, N]. Let T' denote the sublattice

of T generated by —(0, mod fc*) , . . . ,—(0»modfe*) and let
e! ^

S. denote the maximal abelian extension of k contained in £.
The function field of ft(T')xC' is OTZ(n) ®^ £'[X^,..., x^} with
cl^Cf = n,. The automorphism group of ft(T)x £ over ft(T')x 9!
turns out to be [H,H]. Hence ft(T)x £/[H, H] = n(r)x £'. Let
us write ^ , = = ^ 1 . The automorphism group of n(T')x£'|S2 is
commutative. In particular, any

a e GalCe'j k) = Aut(ft(T')x C'| ft(T'))
must commute with any h G Aut(ft(T') x t91 ft x i1) . Take h given
by the formula A(Y,) = T,Y( (i = 1, . . . , ^) where r, is a primitive
^,-th root of unity. Then aA(Y,) = or(T,) Y, and A a(Y,) = r,Y,.
So T, E fe and each e^ divides n = the number of roots of unity
of k. This finally shows that nT C 0/fe* .

LEMMA 3.2. — Let H denote the automorphism group of
^2(T)^ £|S2. Z^r Hi Z^ a subgroup of H, containing [H,H]
a^rf 5-^cA rtfl^ rt^ fm^^ o/ Hi ^ Gal(£|fc) ^ contained in
[GaKCI fe), Gal(C| fc)]. TTwz ^(T)x t/Hi ^ S2(T")x £' wzrt

a) S.1 is the maximal abelian extension of k, contained in £.
b) T" is a sublattice of T such that n T" C Q/fe* .

Proof. -One divides first by [H,H]. The result n(T')x£'
is further divided by the group Hi/[H, H] which lies by assumption
in Aut^T^xE' l f txe ' ) . The result is f t(T")xC' where T"
is a sub lattice of T\
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(3.3) We apply (3.2) to the group H^ = [G, G] n H. Let <^: F —^ G
be a left-inverse of the canonical surjection G —^ F. One can
define the action of (^(7) on the function field of S2(T)x6 by:
^) (/) = /o 7 for any /G 3U(ft); (^(7) X = X for any X E £
and (^(7)X, =&,(7)X,.

Then H^ == H 0 [G, G] is generated by [H, H] and the commu-
tators (p(j)h ^(y)"1/!"1 with 7 G F and A £ H . This expression
is 1 for any A G M . For h = aG Gal(£|fe) = Aut(ft(T)x £|n(T))
one easily sees that the commutator lies in M. This means that H^
satisfies the condition of (3.2). Let ft(T")x S . * denote the quotient
of ft(T)x£ by H^ . This quotient is invariant under any (^(7).
In other words, the action of F on i2 can be extended to action
of r on S2(T")xC\

Let us describe the function field of B(T") x £' by
F = JTUn) (^ C ' [Yi , . . . , YJ with Y?1 = 0,.

Then each n^ divides n.
The automorphism ^ on F which lifts the automorphism

7 on OTl(S2) must satisfy ^y(Y,) = 6,(7) Y, for certain elements
bf(y) £ fi\ Moreover ^ must commute with the action of Gal(£'|fc)
on F. This implies that .̂(7) E k. We draw the conclusion that
T" is a sub lattice of — (Q/fc*) such that the canonical homo-
morphism c : @/k* —> Hom(r, k * ) which is given by

c(0 mod k*) (7) = 0(70;) (9(o;)-1,
extends to a groupJiomomorphism T"—^ Hom(r,fe*). This
proves the main result.

THEOREM 3.3. — Every finite abelian, unramified extension
of X has uniquely the form ft(T)x £/N where

(i) £ ^ a finite abelian extension of k

(ii) T is a sublattice of — (Q/fe*) ^cA rAfl^ the canonical
homomorphism c: Q/k* —^ Hom(r, k*) extends to T.

(iii) N is a normal subgroup of G with N H H = {1}. The
image TTN of N in Y is a normal subgroup with abelian
factor group.
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COROLLARY 3.4. (G. Frey). - The profinite Galois group D of
the maximal abelian uramified extension of the function field OTl(X)
of X is isomorphic to the direct product

Gai(^/A;)eyez/^ e ...ez/^.
The numbers n^ , . . . , Hg satisfy n^ \n^ \ ... | n^ \ n where n = the
number of roots of unity in k and they are determined by the
curve X.

Proofof(3.4). — One easily sees that there exists a largest lattice
T, with @/k* C T C -!- Q/k* such that the map

c: Q/k*——> Hom(r,A;*)
extends to T. The finite group in (3.4) is the cokemel of the injec-
tion Q/k* C T.

Remark 3.5. — The corollary (3 A) has been proved by G. Frey
[2]. His proof is quite different from the one presented here. It is
based upon a detailed study of the action of the Galois group
G^\(,kab\k) on the points of finite order (or the Tate-modules) of
the Jacobian variety (or a generalized Jacobian variety) of the
Mumford curve X = ^2/F.
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