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RIESZ MEANS FOR THE EIGENFUNCTION
EXPANSIONS FOR A CLASS

OF HYPOELLIPTIC DIFFERENTIAL OPERATORS

by Giancarlo MAUCERI

1. Introduction.

The problem of studying the asymptotic properties of the spectral
functions of differential operators and the related summability of the
eigenfunction expansions has received extensive consideration. Elliptic
differential operators have been studied by Garding [6], Bergendal [I],
Peetre [13], [14], and Hormander [9]. More recently Clerc [2] has
investigated the Riesz summability of the eigenfunction expansion for a
biinvariant Laplacian on a compact Lie group, and Metivier [12] has used
analysis on nilpotent Lie groups to study the asymptotic behaviour of the
spectra of a class of second order hypoelliptic differential operators.

In this paper we study the Riesz summability of the eigenfunction
expansions for a class of hypoelliptic differential operators on the
Heisenberg group. The Heisenberg group H^ is the Lie group whose
underlying manifold is R x C", with coordinates (r,Zi,.. .,z^), and whose
Lie algebra ()„ is generated by the left invariant vector fields

8 8 . 8 , 8 8
T=? ^^-a? zj=^zj^ ^l--n'

i "
Let ^ = - - ^ (ZjZj -h ZjZj) be the hypoelliptic « sublaplacian »

^ 7 = 1
studied by Folland and Stein in [5]. The operators fT and J^f generate a
commutative subalgebra OC of the complexified, universal enveloping
algebra U(^), whose spectrum is contained in the subset F^ = {(k,x) :
x ^ n\'k\] of R2 . We consider differential operators on H^ that can be
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written in the form P(fT,^f), where P is a homogeneous polynomial of
degree d in two variables, satisfying the following assumption :

(A) there exists a positive constant C such that P(k,x) ^ Cx^ in F^.

Assumption (A) implies that P(fT,^f) is a formally nonnegative,
hypoelliptic differential operator, homogeneous of degree d , with respect
to dilations. Since P(i'T,J^) is left invariant, via Fourier transform on H^ it
is easily seen that it has a unique self-adjoint extension P to L2^). Let
E(k) denote the spectral resolution of P, which we normalize so that it is
continuous to the left. Then E(k) is a right convolution operator on H^
with a kernel ^eC^HJ. Therefore E(k)f can also be defined for
distributions / satisfying proper growth conditions, for instance, possibly
for fe IAH,). It is clear that E(?i)/ -> / in L2 norm if / is in L^H,)
and ?i -> oo . However, in general, for p ^ 2, E(k)f fails to converge to
/ in L^ norm, unless a suitable summation method is applied. In this
paper we shall consider Riesz means. For all a, with Re a > 0, consider
the operator

r^0/ ^y
S^= 1-J W)

Jo \ K/

which is given by right convolution with the kernel

r^0/ X^Y
^)= l - p de^^ ^ttn-

Jo \ K/

We have then :

THEOREM 1.1. - Suppose that fe L^H^), 1 ̂  p ^ 2. Let Q = In + 2
be the homogeneous dimension of H^. Then :

r1 n(N) lim S^/ = / in U norm, provided Rea > (Q -1) - - , ;
R ̂  oo \_P 2J

(LP) lim S^) =/to) wh^n Rea > (Q-l)/p, if g is a Lebesgue
R-» oo

point of f in the sense

r-Q \fW-f(gr dh -.0 as r -^ 0;
J|^r
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(AE) lim S^f(g) = f(g) for almost every g , if
R-»oo

Rea^Q-l)!"2-!!;

(L) if f vanishes in a neighborhood of g then

S^f(g) = o(RE(Q-l)/P-Rea]/2ri)

as R -> oo, provided Rea > (Q—l)/p.

We also have

THEOREM 1.2. - Suppose that /eL^HJ, 2 ^ p < oo. TTi^n

(N*) lim S;/==/ in L^ norm, provided
R-» oo

Rea^Q- l ) ! 1 1 " ! ;
L2 ^J

(LP*) lim S^f(g) = /(^) w/i^n Rea > (Q -1)/2 ;/ ^ ^ a Lebesgue
R -» oo

point /or f;

(AE*) lim S^/(^) =.f(g) for almost every g , if
R^ oo

Q -1 r 21Rea > -—— 1 - - ;
2 L PJ

(L*) if f vanishes in a neighborhood of g then

S^f(g) = o(R[(Q-D/2-Rea]/2^)

as R -> co, provided Rea > (Q -1)/2.

The proof of Theorems 1.1 and 1.2 hinges on the following maximal
inequality

sup|S^)|^C[M(|/nte)]^
R>0

which holds for Rea > (Q—l) /p , when 1 ^ p ^ 2 and for
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Rea > (Q-l)/2, when 2 ^ p < oo. Here M denotes the Hardy-
Littlewood maximal function on HN, considered as a space of
homogeneous type, in the sense of [3]. The maximal inequality is based on
estimates for the kernel of the Riesz means s^, obtained adapting to the
Heisenberg group a technique used by Peetre [13] to deal with constant
coefficient elliptic differential operators on R" : the kernel s^ is
decomposed into a sum of two terms such that one has no spectrum at 0
and the other has a smooth Fourier transform. To estimate the second part
we use the differential calculus on the dual of H^ developed in [7].

We proceed now to an outline of the paper.

In section 2 we sketch some basic results of harmonic analysis on H^,
which are relevant to the study of the algebra OC generated by the
operators fT and J^f.

In section 3 we introduce the differential operators on the dual of H^
and develop their calculus. The main result here is Theorem 3.2 which
allows us to obtain the estimates for the kernel of the Riesz means in
section 4.

Section 5 is devoted to the proof of Theorems 1.1 and 1.2.

We conclude in section 6 with a discussion of open problems.

2. Preliminaries.

As general references for harmonic analysis on the Heisenberg group we
shall use [5] and [7]. The In + 1 - dimensional Heisenberg group H^ is
the manifold R x C", with multiplication rule

(t,z)(t\z') == (r+r^Imz.z^z+z')

n

where, if z be the vector (zi,...,zj, then z.? is ^ z^.. Two groups of
j= i

automorphisms play an important role for the analysis on H^ : the group
of « dilations » { y e : 8 e R + } and the group of « rotations » { p y : u e U(n)}
acting by

y,(r,z) = (e^.ez)
p^,z) = (t,u.z)
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where u.z denotes the action of the n x n unitary matrix u on the
vector z. If / is a measurable function on H^ we shall write Yg./ and
p u ' f tor the composite functions / o y ^ and / o p y . If A is an operator
mapping measurable functions on H^ to measurable functions on !!„,
Yg. A and p^.A shall denote the operators

/ -. y;1. (A(y,./)) and / -. p;1. (A(p,./)).

A measurable function / on H^ is homogeneous of degree ^((3 e C) if
Yg./= eV for all e > 0; / is U (^-invariant if py/ = / for all M e U ( n ) .
Homogeneous and U(M)-in variant operators are similarly defined. We
write \g\ for the norm of g == (r,z) in H^, which is defined by the formula

l^^+lzl4)1/4

where [z| is the usual length of the vector z. The norm is homogeneous of
degree 1 relative to the dilations Yg. We define the homogeneous
dimension Q of H^ to be 2n + 2. This is because d(y^g) = s^^,
where dg denotes the Haar measure on H^ (which coincides with the
Lebesgue measure on R x C1).

The operators we consider in this paper form a subset of the algebra d
of all U(n)-in variant differential operators in the enveloping algebra tl(^).
It is easily seen that the operators fT and ^ are in CC. In fact we shall
see that they generate Oi. The operator J^f, which is hypoelliptic, turns
out to play much the same fundamental role on H^ as the ordinary
Laplacian does on R".

We next recall the definition of Fourier transform for H^. In defining it
we shall only be concerned with the infinite dimensional representations
TT^, ^ e R ^ = {XeR,X^O} . We recall that they can be realized on the
same Hilbert space J € , which in the Schrodinger realization is L^R"),
The Fourier transform of a function /eL^HJ is the operator valued
function

fW= f f(g)^(g)dg.JH,

Denote by ^(^f) the algebra of all bounded linear operators on Jf
and by tr the canonical trace on ^(Jf). For S e ̂ (Jf), 1 ̂  p < oo let

|||S|||, = (t̂ S)^
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and let |||S|||̂  be the usual operator norm of S. Then we have the
Plancherel formula

ll/ll2 = c, f ill/Mill2!̂
JR*

C^ = 2" - l/7^n+l , which allows us to extend the Fourier transform as an
isometry ^ from L^H,,) onto the Hilbert space ^2 of all operator
valued functions F : R^ -> ^(^f) such that

i) (F(^,T|) is a measurable function of ^ for every ^,r|e^f,

ii) ||F||̂  = (C , f I I IFMIHip i r^ ) 1 / 2 <
JR*

00 .

More generally, for 1 ̂  p ^ oo, let fi^ denote the Banach space of
all weakly measurable operator valued functions F : R^ -> ^(^f) such
that

IIFH,. = (C , f |||F(?i)|||^r^)^< oo

if p < oo, and
||F|| = ess sup |||F(?i)|||^< oo

?L6R,

if p = oo. Then the following version of the Hausdorff-Young theorem
holds [10]. Let c^"1 be the inverse Fourier transform, defined on fl1 by

^"Vto)- f tr(7r?to)F(^))|^r^
JR*

and then extended to fi^, 1 < p < 2, by interpolation. Then ^-1 maps
fl^, 1 ̂  p ^ 2 into L^), 1/p + 1 / ^ = 1 and

II^^FII^ C,||F||^.

Every representation 71̂  determines a Lie algebra representation dn^
of ^ as linear maps from the vector subspace Jf^ of C°° vectors in ^f
into itself, defined by

dn,(X)^ = ̂  ̂ n, (exp (sX))^, X e \, ^ e ̂  .

This extends uniquely to a representation of the algebra U(^) of left
invariant differential operators on H^ as linear maps from Jf^ into itself.
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The operators dn^(Zj), Ar^(Z^), j = 1, . . . , n are closable operators on ^f.
Denote by W^.(^), W^.(^) their closures respectively. Geller [7] shows that for
every ^ e R^ there exists an orthonormal basis {E^ : a=(oci,. . .,o^) e N"}
such that for ^ > 0 :

(2.1) W,(?i)E^ = (2pi|(a,+ IM^E^.
W,(?i)E^ = (2|?l|^)l/2E^. 7

where ^ = (0,...,!,.. .,0) eN", with the 1 in the j'-th position. For
^ < 0, W/?i) = W/- ?i), and W/^) = W/-^). Let

H/?i) = - J (W,(?i)W/X) + W/?i)W,(?i)), j = 1, . . . , n

and denote by H(^) the operator ^ H^), with domain
j = i

Dom(H(X)) = {^eJf:^(|a|+M)|(^)|2 < 00}. Then H(X) is the closure
a

of the operator dn^(^). Moreover H(^) is a self-adjoint operator which
has a spectral resolution

(2.2) H(?i) = f (2N+n)|W(X)
N=0

where P^^) is the orthogonal projection on the finite dimensional
subspace of J'f spanned by the functions {E^: |a| == N}.

In [7], Geller proves that a function / is U(n)-in variant if and only if
there exists a function ^ : R^ x N -> C such that

f(k)= f ^^}P^(k).
N=0

The Fourier transform of U(n)-in variant differential operators can be
similarly characterized.

PROPOSITION 2.1. — The algebra Of of \J(n)-invariant operators in U(t)^)
is the polynomial algebra in two variables C[fT,J^]. Given P = P(fT,J^)
in d, one has

(2.3) dn,(P) = f P(M2N+n)|^|)PyW = P^I,H(^)) ^
N=0

/or every 'k e R^.
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Proof. — Let G be the semidirect product of the groups U(n) and H^.
Then, with the notation of [8, Ch. X], 0 is the algebra D(G/U(n)) ofG-
invariant differential operators on G/U(n) ^ H^. Since the Lie algebra of
G is the direct sum of ^ and the Lie algebra of U(n) and
Ado(U(n))^ c: ̂ , ^ is the image under the Harish-Chandra
symmetrization map of the set I(t)J of polynomials on t)^, which are
AdG(U(n))-invariant. With our choice of coordinates we can identify t)^
with H^ and the adjoint action of U(n) on !)„ with the action of U(n)
on H^, via the exponential mapping (r,z) = exp (fT+zZ+zZ). Then a
polynomial function P(rT+zZ+zZ) is in I(^) if and only if it can be
written

P^^W".
k,m

Since the images of t and |z|2 under the symmetrization map are T
and - J^f, we have proved that 0 = C[fT,^f]. To prove (2.3) we only
need to observe that dn^T) = - iTT.

COROLLARY 2.2. — Let P be a homogeneous polynomial in two variables
of degree d . Then the operator P(i'T,^f) is hypoelliptic and formally
nonnegative if and only if there exists a positive constant C such that
P(^x) ^ Cx^ in the set

€„ = {(?i,x) e R2 : x = (2N +n)|^|, N e N}.

Proof. — The operator P(fT,^f) is hypoelliptic if and only if for every
irreducible nontrivial unitary representation n of H^, ^7r(P(iT,J^)) has a
bounded two sided inverse [15]. There are two classes of irreducible
unitary representations of H^ : the family of 1-dimensional representations
{n^'.^eC"} mapping T to 0, Z .̂ to ^/- 1 ̂  and Z .̂ to y^l^;
and the family of infinite dimensional representations {n-^: K e R^}
described earlier. Since dn^P(iT^)) = P^^2/!) and
dn^(P(iT^)) = P(?J,H(?i)), the Corollary follows easily from (2.3) and the
homogeneity of P.

Now consider the Lie algebra t)^ as an abelian group under addition
and let C^ denote the space of all functions that possess continuous and
bounded partial derivatives up to the order k, with respect to a fixed linear
coordinate system on !)„. Since exp : !)„ -> H^ is a diffeomorphism, we
can also regard Ck as a space of functions on H^.
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COROLLARY 2.3. - Let P(fT,J^) be as in Corollary 2.2, and denote by P
its closure in L2^). Then Dom (P^) c C\ provided 2md > 1k + Q/2.

Prcw/ - By Corollary 2.2 and the Plancherel formula the operator
valued function

X ^ M(?l)=^[(2N+^^)|X|]wdP(?l,(2N+M)|?l|)-wpy(?l)
N

is a^ F o u r i e r m u l t i p l i e r of L ^ H J C l l ] . Thus
Don^P^ c= Dom^^) c C\ provided 2md > 2k + Q/2 by Corollary
5.16 of [4].

COROLLARY 2.4. - The spectral function of the operator P LS m C°°.

We end this section with a result relating the action of the group of
dilations to the Fourier transform. We state it in the setting of U(n)-
invariant functions, even though it holds more in general.

PROPOSITION 2.5. - Let f be a V (^-invariant function in I-AHJ,
1 ^ p ^ 2. Then

(Ys./fW = ^-Q f ^(e-'UW^).
N=0

For the proof see [7].

3. Differential calculus on the dual of H^.

In this section we define differential operators on the dual of H^ as
Fourier transforms of operators of multiplication by polynomials in the
coordinate functions on H^. Given a polynomial P = P(r,z,z) define a
differential operator Ap acting on « smooth » functions F : R -> ^(Jf)
as follows. Suppose first that F = / for some function / in the Schwartz
space ^(H^). Then

ApF(?i) = (P/fW, X e R ^ .
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Clearly the set of all such operators is an algebra generated by the
operators A,^, A^., A^., j = I , . . . , M . Geller [7] has defined these operators
in a more general setting, that we presently describe. Let ^ be the vector
space spanned algebraically by the functions {E^ : a e N"}, and denote by
O^(Jf) the space of all (possibly unbounded) linear operators mapping
^ into Jf. For every function F : R^ -^ O^(^f) such that
Range(F(?i)) c= Dom(W/^)) = Dom(W/?i)) set

(3.1)
5JFW= -^^^W^

8,F(X) = ̂  [F(HW/^)]

(3.2)
W,F(^) = W/^)F(X)
W,F(X)=W/X)F(^).

Here [A,B] denotes the commutator of A and B. Furthermore if for
every a, P e N" the function 'k -^ (F(?i)E^,E^) is differentiable, let D^F
be defined by

(D,F(^)E^)=^(F(?i)E^).

Then if F(?i) = /(X) for some fe ^(H^) :

(3.3) A^.Fpi) = - 8,F(?i), A,F(?i) = 8,F(?i)

(3.4) A^(^) = D,F(X) - — Z (W,8,+W,S,)F(X).
2A' j = i

(See [7, Proposition 1.2 and Lemma 2.2]).

We remark that the operators 5,, 8, are derivations, i.e. :

8/ST) = (8,S)T + S(8,T)

and similarly for 5 .̂, whenever S, T, ST : R^ -> Op^(^f) are such that
Range(S(^)) u Range(T(^)) <= Dom(W^(X)). Euristically it is convenient
to think of &j and Sj as derivatives with respect to W .̂ and \Vy
respectively, in the sense specified by the following lemma.
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LEMMA 3.1. — For every 7, k = 1, . . . , n \ve have :

i) 8,W,=8,W,=0,

ii) 8,Wfe = S .̂Wfc = 0 if j ^ k,

hi) §̂  = ^W^-1, 8,W, = ^W^-1, ^ e N.

Proo/: - Since [Z^,ZJ = - 2i8^T, [Z^Zj = [2 ,̂2 J = 0 and
^(Z,) = W/^), ^(2,) = W/X), rf^(T) = - ̂ T, i) and ii) follow at
once, while iii) follows by induction.

In the following, given multiindices a, P e N", we shall adopt the
notation :

|a| = oci + . . . + a^, a + P = (oq+Pi,. . .,^+PJ
W" = W^i . . . W^", W" = W^i . .. W^"

8" = 8^ . . . 8^, S" = 5^ . . . 5^

W . 8 = ^ W,8,, W . 8 = ^ W,5,.
j = i j= i

Let A denote the operator Ap for P(t,z,z) = t2 + |z|4, which is the
Fourier transform of the operator of multiplication by the 4-th power of the
norm function. A crucial step in the study of the asymptotic behaviour of
the kernel of the Riesz means for an hypoelliptic operator P = P(iT,^f) is
the estimate of the ^p norm of the function ^ -^ ANF(P(?J,H(^))),
N = 1, 2, . . . , for a function F e C;:°(R+) in terms of the U norm of F
and a certain number of its derivatives.

THEOREM 3.2. - Let F be a function in C°°(R), with support in [0,1],
P a homogeneous polynomial in t\vo variables of degree d , satisfying
assumption (A). Then for every positive integer N, there exists a constant
C = C(n,N,P) such that for every p , 1 ̂  p ^ oo :

4N / p Y/P
I|AN(F o P)|| ^ C ^ IFWrp" dp .

7 = 1 \ JO /

The proof of Theorem 3.2 rests on the following Proposition.

PROPOSITION 3.2. - Let F, P be as in Theorem 3.2. Then
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^\NF(P(^I^H(^))) can be written as a linear combination of terms either of the
form :

(3.6) s(sign(?i))Q(?J,Hi(?i),... W))^ o P)(?J,H(?i))

m = 1, . . . , 4N — 1, where Q is a polynomial in n + 1 variables, and
e(sign(^)) = ± 1, or of the form :

(3.7) £(sign(?i))R(U,H^),... ,H^))

x (F^ o P)()J,H(?i)-h2s|?i|I)H(s) ds
J-^

where k, f are positive integers, m = 1, . . . , 4N, p, is a bounded function
and R is a polynomial in n + 1 variables such that

(3.8) R(U,Hi(?i),.. .,H^X))E^ = 0 , |a| ̂  - 1.

Before proceeding to the proof of Proposition 3.2, we show how
Theorem 3.2 follows from it. By assumption (A) the set

KI = {(X,Xi, . . . ,x , )eR x R\ :
(?i,Xi + . . . + x^) e F^, P(?i,xi -h . . . -h x^) e supp(F)}

is bounded in R x R\. Hence the fi^ norm of (3.6) can be estimated by
sup |Q| HF^ o p|| To estimate HF^ o P|[ we prove the following

K!
lemma.

LEMMA 3.3. - Let G be a function in C^R^.). Then there exists a
constant B, depending on n and on the constant C of assumption (A),
such that

Q ^lp
||GoP||^B |G(pTp^P .

i+ /

Proof. - The operator G o P(^I,H(^)) has the spectral resolution
^GtP^^lal+n)^!))?^), where P^pi) is the orthogonal projection on
a

the space generated by E^. Then

r r -II/P
||G o P|| = CJ ^ |G(P(M2|a|+n)pi|))nXr ̂  .

£p L J l^aeN" J

Decomposing the integral over R^ into two integrals I+ and I _ ,
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overR+ and R- respectively, and performing the change of variables
p' = ^P(l,2|a|+n) in I+ and p' = |^P(-l,2|a|+n) in I _ , we obtain

f r w
(3.9) | | G o P | | = ^ C j ^ oVNKPO^N+n)-^1^

C L N = 0

~| r+oo -jl/p

+ P^UN+n)-^1^) |G(pTp^P^ ,
J Jo J

where OD^N) = ^ 1 = (^N"-1). Since
|a| = N

P(±l,2N+n) ^ C^N-hn^

the series in (3.9) converges and the Lemma is proved.

Hence it remains only to estimate the terms of the form (3.7). Let S be
any such term and denote by Y[ the orthogonal projection onto the

€

subspace of Jf spanned by the vectors E^,|a| ^ ^. Thus, by (3.8),
S Y[ = S. On the other hand, by an argument similar to the one used in

/
the estimate of (3.6)

S n ^ sup |R|fc^ f E f F^Ppi^dal+s) +n)|?i|))
f Qp K2 L Jl^l"!^ J-<f

P 11/P
U(5)^ Wnd^\ ,

where K^ is a bounded subset of R x R\. Now, applying Minkowski's
inequality, we see that the right hand side is bounded by

rk r r -n/p
C Z ^(P^^lal+^+n^iri^^ ds.

J-^LJRJ^I^^ J

Hence, by the same argument used in' Lemma 3.3, we get

Gk +00 v^r r"^ "i1^
l|S|l,p^C ^ [2(N+5)+n]-2^ IF^pTp^p .

-< fN=^ / LJO J

This concludes the proof of Theorem 3.2.

Proof of Proposition 3.2. — We break the proof into several Lemmas.



128 GIANCARLO MAUCERI

LEMMA 3.4. — Let p be a positive integer. Then

(W. 8 - W. S^ = ̂  P, p(W,W)8a8p

a.p

where a, P are multiindices in N" such that 1 ̂  |a4-P| ^ p an^ Pa,p is a
noncommutative monomial in the variables W , W , of degree a in W and P
m W.

Proo/ — By induction on p, applying Lemma 3.1 and Leibniz's
formula to the derivatives 8^., 8^.

LEMMA 3.5. — The operator D^ commutes with the operators ^^Sj,
pil^S,, W,8,, W,5, for j= l , . . . , n .

Proo/ - Let a, peN\ By (2.1) the functions

^^((l^W/^E^) and W1'2^ - 1/2^)W^)E^,E^)

depend only on sign (k). Since 8 .̂, 8̂ . are the operators of commutation
with (-1/2^)W/^) and (l/2^)W/?i) respectively, D^ commutes with
l^l1^., l^l17^,.. The argument for W .̂ and W^. is similar.

LEMMA 3.6. — Let p be a positive integer, y e N". Then the operator

( i - y
D, - — ( W . 8 + W . 5 ) 8y57

\ 2A, /

is a linear combination of operators of the form

(3.10) X-PP^p(W,W)8a+YSP+Y^D^

where a , p e N " , ^ c e N <^ such that |a+P| + ^ < p , and P^ p fs a
noncommutative monomial in the variables W , W of degree a in W, P m
W.

Proo/ — Let (F = W. 8 + W. S. Since by Lemma 3.5 D^ commutes
with (F, we have

(D,-—grY= i^Q^Dr1

\ 2A / ^o
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where Qi(<F) is a polynomial of degree i in the indeterminate (F. Hence,
by Lemma 3.4 :

/ 1 V
D, - — gT 5^ = ^ C^^Dr^

\ 2A / o ^ ^ ^ f ^ p

(3.11) = ̂  ^ C^P^W^a^^D^a^
<x.p,^j

where P^ p is as in the thesis and the sum is extended over the set of indices
a , p e N " , y , j e N such that |a+(3| ^ { ^ p - j ^ p . Now, by
Lemma 3.5 :

D^aw = D^i-iY^i1^)7^!1^)7

= Z c,,,,^^-^.
fe=0

This shows that each summand in (3.11) is of the form (3.10).

Now, given a function G :R^ x R+ -> C, define the forward and
backward difference operators of step l\k\ as follows :

D^G(?i,x) = (2|?l|)-l[G(?l,x+2|?l|) - G(M] (^) e K* x K+
D_,,G(?i,x) = (2|?l|)-l[G(?l,x-2|?l|)-G(?l,x)] x ^ 2|?i|.

LEMMA 3.7. — Let k be a positive integer, a, P e N", P a homogeneous
polynomial in two variables. Then for any function ¥eC^(R+) :

(3.12) ^F(P(U,H(?i)) = ^ Q/U,H(?i))(F^ o P)(U,H(?i))
j = i

w^r^ ^^ Q ,'s ar^ polynomials. Moreover for 'k > 0

(3.13) a^^P^I,!^))

= S C,,p^[W(^)]P-a^[W(^)]^(Dlrl,DlPl,(F o P))(U,HM)
Y

w/i^r^ the sum is over the set of multindices y = (y^ , . . .,yJ e N" SMC/I that
max(0,a, - P,) ^ y, ^ a,, f = 1, . . . , n. For 'k < 0 (3.13) holds
interchanging W wf^i W, a mth P in the right hand side.
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Proof. — The spectral resolution of the operator (F o P)(U,H(^)) is :

(F o P)(^I,H(?i)) = f F(P(X,(2N+n)|?i|))P^).
N = 0

Hence

^(F o P)(?J,H(?i)) = ^ kkdF(P(^2N+n)|^|^^
N = O L aA J

and (3.12) follows by induction on k. To prove (3.13) we show first that for
any function G : R^ x R+ -> C one has :

(3.14) 8,G(^I,H(?i)) = W,(X)(D_^G)(U,H(?i)) if ^ > 0

= W/?i)(D+^G)(?iI,H(X)) if X < 0
and

(3.15) 5/3(?J,H(?i)) = W/?i)(D^G)(?J,H(?i)) if X > 0

= W,(?i)(D_,,G)(?J,H(?i)) if ^ < 0.

Indeed it is easily seen that

5,P^) = W^)(2^)-W(X) - P^)] if ^ > 0
= X+(N)W/?i)(2?i)-1 [P^) - Py_^)] if ^ < 0

where % + is the characteristic function of the set of positive integers. Thus
for X > 0 :

8,G(U,H(?i)) = W/X) f° G(X,(2N+n)|?l|)(2?l)-l[Py(?l)-PS^(?l)],
N=0

while for 'k < 0 :

§,G(UH(?i)) = W/?i) f G(?l,(2N+n)|?l|)(2X)-l[Py(?l)-PNn)_A)].
N=1

Summation by parts now yields (3.14). The argument for (3.15) is
similar. Now (3.13) follows from (3.14) and (3.15) by induction, applying
Leibniz's formula and Lemma 3.1.
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LEMMA 3.8. - Let 0> be a function in C^R"^). Then

ANO(?J,H^),H,(X),. . .,H^)) == O^H^H^),.. .,H^)),

m^ ON^C^R"-^).

Proo/ — By a straightforward induction argument we can reduce
matters to prove that :

5,.8,0(U,Hi(?i),.. .,H^)) = ̂ I,^),.. .,H^))
and

I'D, - ̂  (W. 8 + W. 5)1o>(U,H^),... ,H,(?i)) = ^(^H^),... ,H^)),

with ^, ̂ 2 e C^R"^). Let P?^) be the orthogonal projection on the
space spanned by E^, a e N". Thus

<D(?J,H,(?i),... ,H^)) = ^ 0(?il,(2ai +1)|4 . . . ,(2a^ + l)|?i|P^(?i).
aeN"

As in the proof of Lemma 3.7 one can show that for ^ > 0 :

5,(D(XI,H^),.. .AA)) = W,(?i)(D_,,,,(D)(U,Hi(?i),. . .,H,(X))
8,<D(U,H,(H.. .,H,(?L)) = W/?i)(D^,,,0))(U,Hi(?i), . .,H^))

where D_ ^ ^ and D+ ̂ j are respectively the backward and forward
difference operators of step 2|^|, acting on the variable H^(X). For ^ < 0
one has the same formulas, except for the interchanging of D_ ^j and
D+^.. Thus for ^ > 0 :

(3.16) 8,8,<D(U,Hi(?i),...,H,(X))
= (D+,.,^) + W^)W^)(D_,^,D^,,,(D)
= (D+,.,^) + (H,(X)-^I)(D_,,,,D^^,(D),

while for X < 0 (3.16) holds interchanging D+ ^^ and D_ ^ . Let
x = (xi,. . .,xJ and denote by ^ the unit vector in the direction of the Xj
axis. Applying Taylor's theorem to (3.16) we obtain the following
expression for the function ^, valid for all X e R :

r1 r1
XV^x)=\ (8^)(^x-^2^sej)ds + (x,-?i) (1 -s)[(^<D)(?i,x+2^.)

Jo ; Jo ;

+ (^.<D)(?i,x-2?is^)^s.
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Hence ^^ eC(x)(Rn+l). The argument for ^ is similar. We omit the
details.

We are now in a position to conclude the proof of Proposition 3.2. By
(3.3), (3.4) and Lemma 3.6, the operator AN is a linear combination of
operators of the form

(3.17) X - ̂  ̂ W^a" +^+ ̂ D^

where p, k e N, a, P, y e N" are such that p + |y| = 2N, |oc + p| + k ^ p
and P^ p is as in the statement of Lemma 3.6. Applying one of the
operators in (3.17) to the function (F o P)(kl,H(k)), by Lemma 3.7 we
obtain a linear combination

(3.18) ^-^A^Bp,^,
ej

j = 1, . . . , k, £ e N", max(0,o^ — P^) ^ .̂ ^ o^ + y^ , where

A.,p,. = P^W.WQWP-^W6 for X > 0
= P^W^W13-01^8 for ?i < 0

Bp,,,^. = [D^.D^.^Q/F^ o P))] ^I,H(^))

and the Qj are polynomials. Since A(^ p g is a monomial of degree P + e
both in W and W, it is easily seen by induction that A^ p g is a
polynomial of degree |P+e| in the variables (XJ,Hi(^),.. .,H^)).
Moreover by (2.1) if a^s^.-l, W^E^ = 0 for ?i > 0 and
W(k)E^ = 0 for )i < 0. Hence A^,E^ == 0 for |a| ^ |e| - 1. On the
other hand, by Taylor's theorem :

^y,^ = f^' [^^'(Q/F^ o P))](U,H(X)+2^|X|I)v(u) du
J-|e|

where v is a continuous function in [—|£|,|P+y|] which depends on |e|,
|P+y|. Hence Bp^e j is linear combination of terms of the form

FlP+Yl
(3.19) [T(F^ o P)](^I,H(?i)+2M|?i|I)v(M) rfM

J-|e|

where T is a polynomial and / = j, . . . ,7 + |P+y+e|. Expanding the
integrand in (3.19) in Taylor series centered at H(^) up to the order p, we
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can write (3.19) as a linear combination of terms of the form

(3.20) I^E^F^ o P)] (^I,H(?i))

where S is a polynomial, h = Q, . . . , p — 1, m = 7, . . . ,
j + |P+y+e| + p — 1 , plus an error term

fip+yi r1
(3.21) I^M ^ (l-^-^F^ oP)](U,H(^)+2^pi|I)^v(M)^

J-|£| JO

m == j, . . . ,7 + ^ — 1 + |P+y+£| . Thus each summand in (3.18) can be
expanded into a sum of

(3.22) X-^l^p^U.H^XF^ o P)(^I,H(?i))

plus the contribution

flP+Yl
(3.23) (sign(^A,,^ W^ o P)](U,H(?i)+2^|I)^) dv

J-|£|

coming from the error term (3.21), which contains only positive powers of
^. Now observe that by Lemma 3.8 the terms containing negative powers
of X in the coefficient ^I^A^p^S of (3.22) must add up to zero. Thus
we can neglect them. The remaining terms are of the form (3.6). The error
term (3.23) is easily seen to be of the form (3.7). This concludes the proof of
Proposition 3.2.

4. Estimates for the kernel of the Riesz means.

In this section we shall estimate the L^ norm, 1 ̂  p ^ oo, of the
kernel of the Riesz means outside a ball of radius r in H^.

PROPOSITION 4.1. — If 2 ^ p ^ oo, and p ~ 1 + q~1 = 1 :

Q X l / P RQ/2^
(4.1) ^""l) .̂.,̂ .,̂ ,

If 1 < p ^ 2, p ~ 1 + q~1 = 1 and Rea > (Q-l)/2 :

Q Y/^ RQ/2d
(4.2) ^^W^^J ^^^^(R^^.^-Q^-V.'



134 GIANCARLO MAUCERI

Here C^p denotes a constant that grows at most polynomially in
Im a, when Rea is bounded from above.

Proof. - Since the differential operator P(fT,J^) is homogeneous of
order 2d, it follows from Proposition 2.3 that s^ = R0/2^. y i/^).
Hence we only need to prove (4.1) and (4.2) for R = 1.

Now, by the Hausdorff-Young theorem :

Q V^
Wg^dg] ^CH(^) ||

,9\^r /

for 2 ^ p ^ oo. By Lemma 3.3

IK^ril,, = IKI-P)^,, ^ c{ r ii-pT^p^p 1/9

Hence (4.1) is trivial for r < 1. To prove it for r > 1 we decompose
s^ into a sum of two terms such that one has no spectrum at 0 and the
other has a smooth Fourier transform.

LEMMA 4.2. — Let N be an integer such that 4N > Rea + 1/q. For
every t , 0 < t < 1, there exists t\vo functions a?, T? such that

i) ^ = a ? + T ? ;

ii) IK^fll,, ^C^-^;
iii) IIA^fH^ ^C^^-4^

Proo/ - Let (o be a smooth function of one variable such that

co(x) = 1 if x < 1 — t
co(x) = 0 if x > 1 - t/2

Ico^x)! ^ Cr^" if 1 - t < x < 1 - r/2, m ^ 4N.

Define (a?f(?i) = (1 -(co o P)(?J,H(?i)) (^)^M and (r?)'(?i)
= (co o P)(^I,H(?i)) (s^r(X). Now i) is obvious and ii) follows from the
estimate

IK^Fll,. = IKI-O) opxi-^n^
< c f f ii-^p^ii-p^^p^pV79

\Jo /
< (^ ^-Rea+l/9
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To prove iii) observe that (r?f(X)=(FoP)(U,H(X)) where
F(x) = ©^(l-x)^ is a function in C°°(R+) with support in [0,1]. Since
Re a 4- 1/q < 4N it is easily seen that for j = 1, .. .,4N :

Qi \|F^V)|̂ P p ̂  c^6^-4^
3 /

Hence iii) follows by Theorem 3.2. The proof of the Lemma is now
complete.

Applying the Lemma, the triangle inequality and Hausdorff-Young's
theorem, we obtain for r > 1 :» '<

is r̂ dgr ^ Kiip + r-^ii^r^
a\~fr / < c(ii(<7?rn^ +^1^(^11^)

< C (^Rea+l/giy.-4N^.Rea+l/9-4N\

Taking t = r~ 1 we obtain (4.1) also for r > 1. To prove (4.2) consider
a partition of H^ into dyadic annuli A; = [geH^ :Tr ^ \g\<2i+lr}.
Then for 1 ̂  p ^ 2, applying Holder's inequality we obtain :

a \i/p °° / r v^î î r^ = z 1^)1^
^|^r / i=0 \JA; /

oo 7 /» \ l /2/ r \(2-p)12p

^ S ' l^)i2^ ^
1 = 0 \ J A , / \JA, /

Since dg ^ C(2lr)Q, using (4.1) we can estimate the last term with :
JA,

00 9i,.Q(l/p-l/2) 1
c v ____ < c ________
—a,? Z^ ^ , /^iy.\Rea+l/2 ^ a'^ ^ _(_ y.Rea+1/2-Q(l/p-l/2)

provided Re a > (Q -1)/2.

5. Proof of theorem 1.1.

We consider first the convergence of the Riesz means for smooth
functions with compact support.

LEMMA 5.1. - Let /eC^(H^), Rea ^ 0. Then S^f -. f in the
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topology of C°°(HJ as R -> oo. // / vanishes in a neighborhood of
g e H ^ , then S^/= 0(R-5) /or 6?i^ry 5 > 0.

Proo/ - Since [POT,^)]^/ = S^PO'T,^)]1^ / is bounded in L2

when R —> co for every N, it follows from the hypoellipticity of
P(fT,^f) that S^f belongs to a bounded, thus compact, subset of C°°(H,,).
Hence S^f-^f in (^(H,), because S^f -> f in L^H,).

Assume now that / vanishes in a neighborhood of g e H^. Then for
every positive integral m :

S^f(g)=S^f(g)- ^ C^-RrW^Wf^)'
k=0

With the aid of the spectral resolution of the closure P of P(i'T,^f) we
see that for every ^ e N

IIF^R/- Z ^(-R)-^^)!!, ^ CR-'IIP^'/II^
fc=0

when R is large. Hence S^/- ^ C^-R)"^^ is (HR"'") in Dom(PQ.
k

Taking / > Q/4d we obtain that S^f(g) = 0(R-m), by Corollary 2.3.

Pyw/ o/ (N). — By estimate (4.2) with p = 1, the kernel of the Riesz
means s^ is in L^HJ uniformly with respect to R, provided
Re a > (Q-l)/2. Hence

lis^/lli ^c^n/Hi
when Rea > (Q-l)/2. Since HS^/I^ ^ \\f\\2, by Stein's interpolation
theorem we have

IIS^/llp ^ C^II/H,, Rea > (Q-l)!"1-^.

Hence (N) follows by a density argument. We also note that (N*) is a
consequence of the self-adjointness of S^.

LEMMA 5.2. - Assume that /eL^H,,), 1 ̂  p < 2. Thus for
Rea > (Q—l)/p H^ /i^i;e

(5.1) ^PW(g)\^C^M,(f)(g)
R>0
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( r \
\vhere Mp(f)(g) = sup r-Q 1/toW ̂  I is the Hardy-Littlewood

r>o J\h\^r /

maximal function of po\ver p.

Proof. - Since both S^ and Mp are operators commuting with left
translations, it suffices to prove (5.1) for g == e = (0,0). Let /(=L/(HJ,
1 ^ p ^ 2, be a function vanishing in {/i : \h\ ^ r}. Then by
Proposition 4.1 :

(5.2) \S^f(e)\ ^ C
RQ/2^p

1 + (Rl/2^\Rea+l/p IL/ "P*

Next, given any function /eL^H,.), write f^(g) = f(g) if
2V ^ |^| ^ 2 V + 1 , v e Z ; /,^) = 0 otherwise. Hence :

|SR/(^)| ^ E ISiJv l̂
V= — 00

+ 00 RQ/2d
<c Ê

-< ^ _^ CRl/2^v\Rea+l/p l ^ v l l p -

Since ||/J|^ ^ 2(v+l^Mp(/)(^) the above sum can be estimated by :

+00 (Rl/2^v\Q/p

CM^)J_^^^^.

If Rea > (Q—l)/p the series converges to a bounded function of R,
because it is locally bounded and it does not change if R is replaced by
2 2 d wR. This proves (5.1).

Proof of (LP). - We may assume that f(g) = 0 . If g is a Lebesgue
point for / we can approximate / by functions in C^(H^), vanishing in a
neighborhood of g , in the norm Mp( f)(g). Since for such functions h,
S^toQ -* h(g) regardless of the value of a, we obtain (LP) via the
maximal inequality.

Proof of (AE). - To prove (AE) we establish first the following
inequality

(5.3) sup |S;/| I ^ A,,, 11/H,, Rea > (Q-l)[(2/p)-l]
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for 1 < p ^ 2. Indeed it follows from (5.1) with p = 1, and the Hardy -
Littlewood maximal theorem, that for Rea > Q — 1 :

(5.4) sup|S^/| ^B,J/||,, for 1 < p ^ 2 .

By a classical result of Kaczmarcz on orthogonal expansions, extended
to the context of continuous eigenfunction expansions by Peetre [14] (see
also [9]) :

sup|S^/| ^ CA ||/||2 + sup |S^/|
R > 0 R > 0

for every a, Rea > 0 and fixed Oo. Taking Reao > Q — 1 we obtain for
all a, Rea > 0 :

(5.5) suplS^/l ^DJI/II^.
R > 0

Using (5.4), (5.5) and the interpolation theorem of Stein as in [9] we
obtain (5.3). Since S^f -> f uniformly if /eC^(H^), a dense subset of
L^H^), (AE) follows immediately from (5.3) for 1 < p ^ 2. For p = 1
it is already a consequence of (LP).

Proof of (L). — It is a straightforward consequence of (5.2) and of
Lemma 5.1.

The proof of Theorem 1.2 is completely analogous. We only need to
remark that when 2 ^ p < oo, by (4.2) the maximal inequality (5.1) holds
for Rea > (Q-l)/2.

6. Open problems.

We would like to conclude this paper by briefly discussing two open
problems.

One open question is whether Theorems 1.1 and 1.2 are valid in the case
of a general hypoelliptic, formally nonnegative differential operator in
U(H^). In this paper we restricted our consideration to a particular class of
operators contained in the algebra Of generated by iT and J^f. There are
two reasons why we did so. The first one is that operators in the class Ci
have symbols which are scalar valued functions of (^,N) e R^ x N. One
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cannot expect in the general case of operator valued symbols to be able to
estimate norms in the fi^ spaces. Even so we did not consider general
hypoelliptic operators in d. As we proved in Corollary 2.2, an operator in
d is hypoelliptic and formally nonnegative if and only if its symbol P
satisfies assumption (A) in the proper subset C^ of F^. However in order
to obtain the estimate of Theorem 3.2, we had to consider the error terms
(3.7) in Proposition 3.2, which depend also on the values of the polynomial
P on the set F^. This is a substantial difficulty in trying to extend our
results to any homogeneous, formally nonnegative hypoelliptic operator in
a.

Another interesting problem is whether the results of Theorem 1.1 could
be sharpened for some operators in OC. Comparing our results with those
obtained by Peetre [13] for constant coefficient elliptic operators, we see
that the statements of Theorems 1.1 and 1.2 can be obtained from the
corresponding statements of Theorems 2.1 and 2.2, replacing the Euclidean
dimension n by the homogeneous dimension Q and the order of the
operator by the degree of homogeneity Id. Now it is known that in R"
sharper results can be obtained for the Laplace operator A, or more
generally for operators such that the unit ball defined by the principal
symbol is strictly convex. For instance, if s^ is the kernel of the Riesz
means for — A, the estimate

RH/2

IS^X)! ^ C ——————-7.————————————1 + (R^lxD^+^-i^-n

can be obtained by explicit Fourier inversion.

It would be interesting to know whether the corresponding estimate

RQ/2m\ ̂  c
1 + (R^I^DRea+tQ-l^+l

holds for the sublaplacian J^f on the Heisenberg group. In that case the
results (LP), (AE), (L) of Theorem 1.1 and the maximal inequality (5.1)
could be correspondingly sharpened.
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