KA-SING LAU

The class of convolution operators on the Marcinkiewicz spaces

Annales de l'institut Fourier, tome 31, nº 3 (1981), p. 225-243 http://www.numdam.org/item?id=AIF 1981 31 3 225 0>

© Annales de l'institut Fourier, 1981, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

THE CLASS OF CONVOLUTION OPERATORS ON THE MARCINKIEWICZ SPACES

by Ka-Sing LAU (*)

1. Introduction.

Throughout the paper, the functions we consider will be complex valued, Borel measurable on R. For $1 \le p < \infty$, we will let

$$\mathcal{M}^{p} = \left\{ f: \|f\|_{\mathcal{M}^{p}} = \overline{\lim_{T \to \infty}} \left(\frac{1}{2T} \int_{-T}^{T} |f|^{p} \right)^{1/p} < \infty \right\}$$

and

$$\varphi^{p} = \left\{ g: \|g\|_{\varphi^{p}} = \overline{\lim_{\epsilon \to 0^{+}}} \left(\frac{1}{2\epsilon} \int_{-\infty}^{\infty} |g(u+\epsilon) - g(u-\epsilon)|^{p} du \right)^{1/p} < \infty \right\}.$$

The space \mathscr{M}^{p} is called the *Marcinkiewicz space*. The space \mathscr{V}^{p} was introduced by Hardy and Littlewood [3] in order to study the fractional derivatives and is called the *integrated Lipschitz class*. By identifying functions whose difference has zero norm, it was proved that both \mathscr{M}^{p} and \mathscr{V}^{p} are Banach spaces [4], [8]. These spaces have also been studied in detail in [2], [3], [7], [10], [11], [12]. Let \mathscr{W}^{p} denote the class of functions f in \mathscr{M}^{p} such that

$$\lim_{\mathbf{T}\to\infty} \frac{1}{2\mathbf{T}} \int_{-\mathbf{T}}^{\mathbf{T}} |f|^p$$

exists; then \mathscr{W}^p is a "non-linear" closed subspace of \mathscr{M}^p . In [13], Wiener introduced the integrated Fourier transformation g = W(f)of an f in \mathscr{W}^2 as

$$g(u) = \frac{1}{2\pi} \left(\int_{-\infty}^{-1} + \int_{1}^{\infty} \right) f(x) \frac{e^{-iux}}{-ix} dx + \frac{1}{2\pi} \int_{-1}^{1} f(x) \frac{e^{-iux} - 1}{-ix} dx. \quad (1.1)$$

(*) Partially supported by the NSF grant MCS7903638.

We call this transform the *Wiener transformation*. By using a deep Tauberian theorem, he showed that

$$\|f\|_{\mathcal{M}^2} = \|W(f)\|_{\mathcal{M}^2}, \quad f \in \mathcal{M}^2.$$

Recently, this result has been extended by Lee and the author [8] to include the fact that the Wiener transformation $W: \mathcal{M}^2 \longrightarrow \mathcal{O}^2$ is a surjective isomorphism. Moreover, the exact isomorphic constants have also been obtained. The theorem is an analog of the Plancherel theorem in the classical L^2 case. For $1 , <math>\frac{1}{p} + \frac{1}{p'} = 1$, W also defines a bounded linear operator from \mathcal{M}^p into $\mathcal{V}^{p'}$.

It is the purpose of this paper to study the convolution operators on the Marcinkiewicz space \mathcal{M}^p , $1 \le p < \infty$, and on the closed subspace \mathcal{M}^p_r of regular functions f (i.e.,

$$\lim_{T \to \pm \infty} \frac{1}{T} \int_{T}^{T+a} |f|^{p} = 0$$

for a > 0). Some results related to this subject can be found in [2], [14], [15].

In [2], Bertrandias showed that for each bounded regular Borel measure μ on R, the convolution operator $\Phi_{\mu} : \mathscr{M}^{p} \longrightarrow \mathscr{V}^{p}$ given by $\Phi_{\mu}(f) = \mu * f$ is well defined and $\|\Phi_{\mu}\|_{\mathscr{M}^{p}} \leq \|\mu\|$. In § 2, we show that if μ satisfies $\int_{R} |x| d |\mu| < \infty$, then the restriction map $\Phi_{\mu} : \mathscr{M}_{r}^{p} \longrightarrow \mathscr{M}_{r}^{p}$ satisfies

$$\lim_{\mathrm{T}\to\infty} \frac{1}{2\mathrm{T}} \int_{\mathrm{R}} |(\chi_{\mathrm{T}} \Phi_{\mu} - \Phi_{\mu} \chi_{\mathrm{T}}) f|^{p} = 0,$$

where χ_T is the characteristic function of [-T, T]. This is used to prove that for any bounded regular Borel measure μ ,

$$\left\| \, \Phi_{\mu} \, \right\|_{\mathcal{M}^p_r} \, = \, \left\| \, \Phi_{\mu} \, \right\|_{\mathrm{L}^p} \, ,$$

where $\|\Phi_{\mu}\|_{L^{p}}$ is the norm of the convolution operator Φ_{μ} on $L^{p}(=L^{p}(\mathbb{R}))$ (Theorem 2.4).

Let $\mathscr{I}_{\mathscr{M}_{r}^{p}}(\mathscr{I}_{L^{p}})$ denote the norm closure of the family of convolution operators on $\mathscr{M}_{r}^{p}(L^{p})$, respectively). It follows from the result mentioned above that $\mathscr{I}_{\mathscr{M}_{r}^{p}}$ is isometrically isomorphic to \mathscr{I}_{rp} .

However, under the strong operator topologies, the structures of the two spaces are quite different. We prove that in $\mathscr{I}_{\mathscr{M}_{r}}^{p}$, the strong operator sequential convergence and the norm convergence coincide (Theorem 2.6).

In § 3, we consider the convolution operator under the Wiener transformation $W: \mathscr{M}^p \longrightarrow \mathscr{V}^{p'}$, $1 . One of the difficulties in defining the multiplication operators on <math>\mathscr{V}^p$ is that even for a very "nice" function h, the pointwise multiplication

$$(h \cdot g)(u) = h(u) \cdot g(u), \quad g \in \mathscr{V}^p \tag{1.2}$$

does not give a function in \mathscr{V}^p . Let

$$\mathscr{D}^{1/p} = \{h: h(u+\epsilon) - h(u) = o(\epsilon^{1/p}) \text{ uniformly on } u\},\$$

it is shown that if $g \in \mathscr{V}^p \cap L^p$ and $h \in \mathscr{D}^{1/p}$, then (1.2) defines a function in \mathscr{V}^p . In [8, Theorem 3.3], it was proved that for each $g \in \mathscr{V}^p$, there exists a $g' \in \mathscr{V}^p \cap L^p$ such that $||g - g'||_{\mathscr{V}_p} = 0$. Hence, for the above h, $h \cdot g$ can be defined to be the equivalence class in \mathscr{V}^p containing $h \cdot g'$ (defined by (1.2)) where $g' \in \mathscr{V}^p \cap L^p$ and $||g - g'||_{\mathscr{V}^p} = 0$. The main result of this section is that for $1 and for any bounded regular Borel measure <math>\mu$ such that the Fourier-Stieltjes transformation $\hat{\mu}$ is in $\mathscr{D}^{1/p'}$, $\frac{1}{p} + \frac{1}{p'} = 1$, then W yields

$$W(\mu * f) = \hat{\mu} \cdot W(f), \quad f \in \mathscr{M}^p$$

In particular, if μ satisfies $\int_{\mathbf{R}} |x| d |\mu| < \infty$, then $\hat{\mu} \in \mathcal{D}^{1/p'}$ and the above equality holds.

In § 4, the results of § 3 are used to prove a Tauberian theorem on \mathcal{M}^2 . If μ is a bounded regular Borel measure on R such that $\hat{\mu} \in \mathcal{D}^{1/2}$ and $\hat{\mu}(u) \neq 0 \quad \forall u \in \mathbb{R}$, and if $f \in \mathcal{M}^2$ satisfies

$$\|\mu * f\|_{\mathscr{M}^2} = \lim_{T \to \infty} \left(\frac{1}{2T} \int_{-T}^{T} |\mu * f|^2 \right)^{1/2} = 0,$$

then for any continuous measure $\nu \in M$ such that $\hat{\nu} \in \mathcal{D}^{1/2}$,

$$\|\nu * f\|_{\mathcal{M}^2} = \lim_{T \to \infty} \left(\frac{1}{2T} \int_{-T}^{T} |\nu * f|^2 \right)^{1/2} = 0.$$

This improves a result of Wiener [15, Theorem 29].

K.-S. LAU

2. The Convolution Operators.

Let \mathcal{M}^p , \mathcal{V}^p be defined as above. When there is no confusion, we will use the same notation $f \in \mathcal{M}^p(\mathcal{V}^p)$ to denote the function f on R as well as the equivalence class of functions in $\mathcal{M}^p(\mathcal{V}^p)$, respectively) whose difference from f has zero norm.

Let Φ be a bounded linear operator from a Banach space X into X and let $\|\Phi\|_{X}$ denote the norm of Φ on X.

PROPOSITION 2.1. — Let X be a closed subspace of \mathcal{M}^p such that $L^p \subseteq X$ and let $\Phi : X \longrightarrow X$ be a linear map. Suppose Φ satisfies the following conditions:

i) the restriction of Φ on L^p defines a bounded linear operator $\Phi: L^p \longrightarrow L^p$,

ii) for each
$$f \in X$$
, $\lim_{T \to \infty} \frac{1}{2T} \int_{R} |(\chi_T \Phi - \Phi \chi_T) f|^p = 0$.

Then $\|\Phi\|_{\mathbf{X}} \leq \|\Phi\|_{\mathbf{L}^p}$.

Proof. - Let
$$f \in X$$
. Then
 $\left(\frac{1}{2T}\int_{-T}^{T} |\Phi(f)|^{p}\right)^{1/p}$
 $\leq \left(\frac{1}{2T}\int_{R}^{T} |\Phi \cdot \chi_{T}f|^{p}\right)^{1/p} + \left(\frac{1}{2T}\int_{R}^{T} |(\chi_{T}\Phi - \Phi\chi_{T})f|^{p}\right)^{1/p}$
 $\leq \|\Phi\|_{L^{p}} \cdot \left(\frac{1}{2T}\int_{-T}^{T} |f|^{p}\right)^{1/p} + \left(\frac{1}{2T}\int_{R}^{T} |(\chi_{T}\Phi - \Phi\chi_{T})f|^{p}\right)^{1/p}$

Taking the limit supremum on T yields

$$\|\Phi(f)\|_{\mathcal{M}^p} \leq \|\Phi\|_{L^p} \cdot \|f\|_{\mathcal{M}^p}$$

and $\|\Phi\|_{\mathbf{X}} \leq \|\Phi\|_{\mathbf{L}^p}$.

Let M be the class of bounded, regular Borel measures on R and let M_1 be the dense subspace of $\mu \in M$ such that

$$\int_{\mathbf{R}} |x| d |\mu| < \infty.$$

In [2, p. 19], Bertrandias showed that for each $\mu \in M$, the convolution operator $\Phi_{\mu} : \mathscr{M}^{p} \longrightarrow \mathscr{M}^{p}$ can be defined as the \mathscr{M}^{p} -limit

229

of the functions $\int_{-A}^{B} f(x-y) d\mu(y)$ as $A, B \longrightarrow \infty$, $f \in \mathcal{M}^{p}$. Since $\mathcal{M}^{p} \subset \mathcal{M}^{1}$ and

$$\frac{1}{2T} \int_{-T}^{T} \int_{-\infty}^{\infty} |f(x-y)| d |\mu| (y) dx$$
$$= \int_{-\infty}^{\infty} \frac{1}{2T} \int_{-T}^{T} |f(x-y)| dx d |\mu| (y) < \infty,$$

the integral $\int_{-\infty}^{\infty} f(x-y) d\mu(y)$ exists for almost all x. We can write the pointwise expression of $\Phi_{\mu}(f)$ as

$$\Phi_{\mu}(f)(x) = (\mu * f)(x) = \int_{-\infty}^{\infty} f(x - y) \, d\mu(y) \, .$$

In the following, the convolution operators on the closed subspace \mathscr{M}_r^p of regular functions f (i.e. $\lim_{T \to \pm \infty} \frac{1}{T} \int_T^{T+a} |f|^p = 0$ for a > 0) in \mathscr{M}^p will be considered. Note that $f \in \mathscr{M}_r^p$ if and only if $\lim_{T \to \pm \infty} \frac{1}{T} \int_T^{T+1} |f|^p = 0$. Also $\mathscr{W}^p \subset \mathscr{M}^p$. It is easy to show that if $\mu \in \mathbb{M}$, $f \in \mathscr{M}_r^p$, then $\mu * f \in \mathscr{M}_r^p$.

LEMMA 2.2. - Let $\mu \in \mathbf{M}_1$ and let $\Phi_{\mu} : \mathcal{M}_r^p \longrightarrow \mathcal{M}_r^p$ be the convolution operator. Then Φ_{μ} satisfies

$$\lim_{\mathbf{T}\to\infty} \frac{1}{2\mathbf{T}} \int_{\mathbf{R}} |(\boldsymbol{\chi}_{\mathbf{T}} \boldsymbol{\Phi}_{\boldsymbol{\mu}} - \boldsymbol{\Phi}_{\boldsymbol{\mu}} \boldsymbol{\chi}_{\mathbf{T}}) f|^{p} = 0, \quad f \in \mathcal{M}_{r}^{p}.$$

Proof. – Let $f \in \mathscr{M}_{r}^{p}$ and let $||\mu|| = 1$. For any $\epsilon > 0$, there exists an a > 0 such that

$$\int_{\mathbb{R}\setminus[-a,a]} |y| \, d \, |\mu| < \epsilon$$

and a $T_0 > 1$ such that for $|T| > T_0$,

$$\frac{1}{2\mathrm{T}} \int_{\mathrm{T}}^{\mathrm{T}+a} |f|^{p} < \epsilon$$

and for $T > T_0$,

$$\frac{1}{2T} \int_{-T}^{T} |f|^{p} \leq ||f||_{\mathcal{M}^{p}}^{p} + \epsilon.$$

Now for $T > T_0$,

$$\int_{-\infty}^{\infty} |(\chi_{\mathrm{T}} \Phi_{\mu} - \Phi_{\mu} \chi_{\mathrm{T}}) f|^{p}$$

$$= \int_{-\infty}^{\infty} |\int_{-\infty}^{\infty} (\chi_{\mathrm{T}}(x) - \chi_{\mathrm{T}}(x - y)) f(x - y) d\mu(y)|^{p} dx$$

$$\leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |(\chi_{\mathrm{T}}(x) - \chi_{\mathrm{T}}(x - y)) f(x - y)|^{p} d|\mu|(y) dx$$

$$= \iint_{\mathrm{E}} |f(x - y)|^{p} d|\mu|(y) dx$$

where $E = E_1 \cup E_2 \cup E_3 \cup E_4$ with

$$E_{1} = \{(x, y) : -T \le x \le T, x + T \le y\},\$$

$$E_{2} = \{(x, y) : -T \le x \le T, y \le x - T\},\$$

$$E_{3} = \{(x, y) : T \le x, x - T \le y \le x + T\},\$$

and

$$\mathbf{E}_{4} = \{(x, y) : x \leq -T, x - T \leq y \leq x + T\}.$$

On the region E_1 , we have

$$\begin{split} & \int \int_{\mathbf{E}_{1}} |f(x-y)|^{p} d |\mu| (y) dx \\ & \leq \int_{0}^{a} \int_{-\mathbf{T}}^{y-\mathbf{T}} |f(x-y)|^{p} dx d |\mu| (y) \\ & + \int_{a}^{\infty} \int_{-\mathbf{T}}^{\mathbf{T}} |f(x-y)|^{p} dx d |\mu| (y) \\ & \leq \left(\int_{0}^{a} d |\mu| \right) \left(\int_{-\mathbf{T}-a}^{-\mathbf{T}} |f(z)|^{p} dz \right) \\ & + \int_{a}^{\infty} \int_{-(\mathbf{T}+y)}^{\mathbf{T}+y} |f(z)|^{p} dz d |\mu| (y) . \end{split}$$

This implies that

$$\frac{1}{2T} \iint_{E_1} |f(x-y)|^p d |\mu| (y) dx$$

$$\leq \epsilon + (||f||_{\mathcal{M}^p}^p + \epsilon) \int_a^\infty \frac{T+y}{T} d |\mu| (y)$$

$$\leq \epsilon + 2(||f||_{\mathcal{M}^p}^p + \epsilon) \epsilon. \qquad (2.1)$$

Similarly, we can show that the inequality (2.1) also holds for E_i , i = 2, 3, 4. This completes the proof.

It follows from Proposition 2.1 and Lemma 2.2 that

$$\|\Phi\|_{\mathscr{M}^p_r} \leq \|\Phi\|_{L^p}.$$

To obtain the reverse inequality, the following is required.

230

~

LEMMA 2.3. Let $\mu \in M_1$ and let $f \in L^p$. For any $\epsilon > 0$, there exists an $\tilde{f} \in \mathcal{M}_r^p$ such that

- i) $\|\widetilde{f}\|_{\mathscr{M}^{p}}^{p} \leq \|f\|_{L^{p}}^{p} + \epsilon$,
- ii) $\|\mu * \widetilde{f}\|_{\mathcal{M}^p}^p \ge \|\mu * f\|_{L^p}^p$.

Proof. – Without loss of generality, we may assume that supp $f \subseteq [-A, A]$, supp $\mu \subseteq [-B, B]$ and A, B > 1. Let C = A + B, then supp $(\mu * f) \subseteq [-C, C]$.

Let $T_1 = C$ and let $f_1 = f$. Suppose that T_{n-1} , f_{n-1} have been chosen, choose T_n such that

$$\Gamma_n > T_{n-1} + 2nC$$
, $\frac{\Gamma_n}{T_n + 2nC} \ge \left(1 - \frac{\Gamma_n}{n}\right)$

and

$$\frac{1}{\mathrm{T}_n-\mathrm{C}}\int_0^{\mathrm{T}_n}|\sum_{m=1}^{n-1}f_m|^p<\frac{\epsilon}{2}$$

Let

$$f_n = \frac{\mathrm{T}_n}{n} \sum_{k=0}^{n-1} g_k \,,$$

where

$$g_k(x) = f(x - T_n - 2kC).$$

Since each f_n is composed of *n* disjoint copies of *f* and all of the f_n 's are disjoint, it follows that the sequence $\{\mu * f_n\}$ has the same property. Let

$$\widetilde{f} = 2^{1/p} \sum_{n=1}^{\infty} f_n \, .$$

To see that $\widetilde{f} \in \mathcal{M}_{r}^{p}$, observe that \widetilde{f} is supported by

$$E = \bigcup_{n=1}^{\infty} [T_n - C, T_n + (2n - 1)C],$$

and that

$$\overline{\lim_{\mathbf{T}\to\infty}} \ \frac{1}{2\mathbf{T}} \ \int_{-\mathbf{T}}^{\mathbf{T}} \ | \ \widetilde{f} \ |^{p} = \overline{\lim_{\substack{\mathbf{T}\to\infty\\\mathbf{T}\in\mathbf{E}}}} \ \frac{1}{2\mathbf{T}} \ \int_{-\mathbf{T}}^{\mathbf{T}} \ | \ \widetilde{f} \ |^{p} \ .$$

If n_0 is such that $\frac{T_{n_0}}{T_{n_0} - C} \| f \|_{L^p}^p \le \| f \|_{L^p}^p + \frac{\epsilon}{2}$, then for $n > n_0$ and for $T \in [T_n - C, T_n + (2n - 1)C]$,

$$\frac{1}{2T} \int_{-T}^{T} |\widetilde{f}|^{p} \leq \frac{1}{T} \int_{-T}^{T} \left| \sum_{m=1}^{n} f_{m} \right|^{p}$$

$$\leq \frac{1}{T} \int_{-T}^{T} |f_{n}|^{p} + \frac{\epsilon}{2}$$

$$\leq \frac{T_{n}}{nT} \int_{-T}^{T} \sum_{k=0}^{n-1} |g_{k}|^{p} dx + \frac{\epsilon}{2}$$

$$\leq \frac{T_{n}}{T_{n} - C} ||f||_{L^{p}}^{p} + \frac{\epsilon}{2}$$

$$\leq ||f||_{L^{p}}^{p} + \epsilon.$$

Moreover, for any T such that $T_n - C \le T \le T_{n+1} - C$,

$$\frac{1}{2\mathrm{T}} \int_{\mathrm{T}}^{\mathrm{T}+1} |\widetilde{f}| \leq \frac{\mathrm{T}_n}{n\mathrm{T}} \|f\|_{\mathrm{L}^p}^p \leq \frac{1}{n} \cdot \frac{\mathrm{T}_n}{\mathrm{T}_n - \mathrm{C}} \|f\|_{\mathrm{L}^p}^p$$

Hence $\widetilde{f} \in \mathscr{M}_{r}^{p}$ and satisfies i). To prove ii), we let $T = T_{n} + (2n - 1) C.$

Then

$$\frac{1}{2T} \int_{-T}^{T} |\mu * \widetilde{f}|^{p} = \frac{1}{2T} \int_{-T}^{T} \left| \sum_{m=1}^{n} \mu * f_{m} \right|^{p}$$

$$\geq \frac{1}{2T} \int_{-T}^{T} |\mu * f_{n}|^{p}$$

$$\geq \frac{T_{n}}{T_{n} + (2n - 1)C} ||\mu * f||_{L^{p}}^{p}$$
so that

This implies that

$$\|\mu * \widetilde{f}\|_{\mathcal{M}^p}^p \ge \|\mu * f\|_{L^p}^p.$$

THEOREM 2.4. - Let $1 \le p < \infty$ and let $\mu \in \mathbf{M}$. Then the convolution operator $\Phi_{\mu} : \mathcal{M}_{r}^{p} \longrightarrow \mathcal{M}_{r}^{p}$ satisfies $\|\Phi_{\mu}\|_{\mathcal{M}_{r}^{p}} = \|\Phi_{\mu}\|_{L^{p}}$.

Proof. – It follows from Proposition 2.1, Lemma 2.2 and Lemma 2.3 that $\|\Phi_{\mu}\|_{\mathcal{M}^{p}_{r}} = \|\Phi_{\mu}\|_{L^{p}}$ for $\mu \in M_{1}$. For $\mu \in M$, there exists a sequence $\{\mu_{n}\}$ in M_{1} which converges to μ . Since

$$\|\Phi_{\mu}-\Phi_{\mu_n}\|_{\mathscr{M}^p_r} \leq \|\Phi_{\mu}-\Phi_{\mu_n}\|_{\mathscr{M}^p} \leq \|\mu-\mu_n\|,$$
 it follows that

$$\|\Phi_{\mu}\|_{\mathcal{M}^{p}_{r}} = \lim_{n \to \infty} \|\Phi_{\mu_{n}}\|_{\mathcal{M}^{p}_{r}} = \lim_{n \to \infty} \|\Phi_{\mu_{n}}\|_{L^{p}} = \|\Phi_{\mu}\|_{L^{p}}.$$

Let $\mathscr{I}_{\mathcal{M}_{r}^{p}}(\mathscr{I}_{L^{p}})$ denote the norm closure of the class of convolution operators on $\mathscr{M}_{r}^{p}(L^{p})$, respectively), Theorem 2.4 implies that $\mathscr{I}_{\mathcal{M}_{r}^{p}}$ and $\mathscr{I}_{L^{p}}$ are isometrically isomorphic. However, under the strong operator topologies, the two classes of operators are different (Theorem 2.6).

LEMMA 2.5. – Let $\{\Phi_{\mu_n}\}\$ be a sequence in $\mathcal{I}_{\mathcal{M}_r^p}$. Suppose $\{\Phi_{\mu_n}\}\$ converges to zero under the strong operator topology. Then $\{\Phi_{\mu_n}\}\$ converges to zero under the norm topology.

Proof – If the lemma were not true, then it follows from Theorem 2.4 and by passing to subsequence, we can assume that there exists a sequence $\{f_n\}$ in L^p and an a > 0 such that

$$\|f_n\|_{L^p} = 1 \quad \text{and} \quad \|\mu_n * f_n\|_{L^p}^p > a \quad \forall n \in \mathbb{N}$$

ill construct an $\widetilde{f} \in \mathscr{M}_r^p$ such that
 $\|\mu_n * \widetilde{f}\|_{\mathscr{M}_r^p}^p \ge a \quad \forall n \in \mathbb{N}.$

This contradicts the hypothesis that $\{\Phi_{\mu_n}\}\$ converges to zero under the strong operator topology.

Without loss of generality assume that for each n,

 $\operatorname{supp} f_n \subseteq [-A_n, A_n], \quad \operatorname{supp} \mu_n \subseteq [-B_n, B_n],$

and $\{A_n\}$, $\{B_n\}$ are increasing. Let $C_n = A_n + B_n$. In the following, we will define two sequences $\{T_n\}$ and $\{h_n\}$. Let $T_1 = C_1$, $h_1 = f_1$. Given T_{n-1} , h_{n-1} , choose T_n such that

$$T_{n} > T_{n-1} + 2nC_{n-1} + C_{n}, \quad \frac{T_{n}}{T_{n} + (2n+1)C_{n}} \ge \left(1 - \frac{1}{n}\right)$$

and
$$\frac{1}{T_{n}} \int_{0}^{T_{n}} \left|\sum_{m=1}^{n-1} h_{m}\right|^{p} < 1.$$

Let

We w

$$h_n(x) = \frac{T_n}{n} \sum_{k=1}^n f_k(x - T_n - 2(k-1)C_n)$$

and let

$$\widetilde{f} = 2^{1/p} \sum_{n=1}^{\infty} h_n ,$$

then the same proof as in Lemma 2.3 shows that $\tilde{f} \in \mathscr{M}_r^p$ and $\|\mu_n * \tilde{f}\|_{\mathscr{M}_r^p} \ge a$.

The following theorem follows immediately from Lemma 2.5.

THEOREM 2.6. – Let $\mathcal{I}_{\mathcal{M}_r^p}$ be the closure of the family of convolution operators on \mathcal{M}_r^p . Then $\mathcal{I}_{\mathcal{M}_r^p}$ is a Banach algebra such that the strong operator sequential convergence and the norm convergence coincide.

Note that under the strong operator topology, $\mathcal{J}_{L^{p}}$ is metrizable on bounded sets, hence Theorem 2.6 does not hold for $\mathcal{J}_{L^{p}}$.

3. The Multipliers.

In this section, we will consider the convolution operator under the Wiener transformation. First, we will define the operators on \mathscr{V}^{P} of multiplying by scalar functions. We need the following proposition which was proved in [8].

PROPOSITION 3.1. - Let $1 . Then for any <math>g \in \mathscr{V}^p$, there exists a $g' \in \mathscr{V}^p \cap L^p$ such that $||g - g'||_{\mathscr{V}^p} = 0$.

The proposition amounts to saying that by identifying functions whose difference has zero norm, each equivalence class has a representation in L^{p} .

For each $t \in \mathbb{R}$, we use τ_t to denote the translation operator defined by $(\tau, g)(u) = g(t + u)$

where g is a function on R. For each
$$g \in \mathscr{V}^p$$
, we can rewrite the definition of $||g||_{\mathscr{V}^p}$ as

$$\|g\|_{\gamma^p} = \overline{\lim_{\epsilon \to 0^+}} (2\epsilon)^{-1/p} \|\tau_{\epsilon} g - \tau_{-\epsilon} g\|_{L^p} = \overline{\lim_{\epsilon \to 0^+}} \epsilon^{-1/p} \|\tau_{\epsilon} g - g\|_{L^p}.$$

Let $\mathcal{D}^{1/p}$ be the class of bounded functions on R such that

$$h(u + \epsilon) - h(u) = o(\epsilon^{1/p})$$

uniformly on u. Let $h \in \mathcal{D}^{1/p}$, let $g \in \mathscr{V}^p \cap L^p$ and let $h \cdot g$ be the pointwise multiplication of h and g. Then

$$\epsilon^{-1/p} \| \tau_{\epsilon}(h \cdot g) - h \cdot g \|_{L^{p}} \leq \epsilon^{-1/p} \| h \cdot (\dot{\tau}_{\epsilon} g - g) \|_{L^{p}}$$

+
$$\epsilon^{-1/p} \| (\tau_{\epsilon} h - h) \cdot \tau_{\epsilon} g \|_{L^{p}} .$$
(3.1)

Note that

$$\lim_{\epsilon \to 0^+} \epsilon^{-1/p} \| (\tau_{\epsilon} h - h) \cdot \tau_{\epsilon} g \|_{L^{p}}$$

$$= \| \lim_{\epsilon \to 0^+} \epsilon^{-1/p} (h - \tau_{-\epsilon} h) \cdot g \|_{L^{p}} \quad \text{(by the dominated convergence theorem)}$$

$$= 0. \quad (3.2)$$

Hence, (3.1) and (3.2) imply

$$\|h \cdot g\|_{\mathcal{P}} \leq \|h\|_{\infty} \cdot \|g\|_{\mathcal{P}}.$$

It also follows from the above argument that if g and g' are in $\mathscr{V}^p \cap L^p$, then $h \cdot g = h \cdot g'$ in \mathscr{V}^p . We define for $h \in \mathscr{D}^{1/p}$ and for each $g \in \mathscr{V}^p$, the multiplication operator $\Psi_h(g)$ to be the equivalence class in \mathscr{V}^p containing $h \cdot g'$ where $g' \in \mathscr{V}^p \cap L^p$ and $||g - g'||_{\mathcal{D}^p} = 0$. We still use $h \cdot g$ to denote $\Psi_h(g)$.

Remark. – For an arbitrary $g \in \mathscr{V}^p$, the pointwise multiplication $h \cdot g$ is not necessary a function in \mathscr{V}^p . For example, let $h(u) = e^{iu}$ and let g(u) = 1, $u \in \mathbb{R}$, then the pointwise multiplication $h \cdot g$ is not in \mathscr{V}^p .

PROPOSITION 3.2. - Let $1 and let <math>h \in \mathcal{D}^{1/p}$. Then the operator $\Psi_h : \mathcal{V}^p \longrightarrow \mathcal{V}^p$ defined above is a bounded linear operator with $\|\Psi_h\|_{\mu,p} \leq \|h\|_{\infty}$. Moreover,

$$\|\Psi_h(g)\|_{\gamma^p} = \overline{\lim_{\epsilon \to 0^+}} \epsilon^{-1/p} \|h \cdot (\tau_{\epsilon} g - g)\|_{L^p}.$$

Proof. – We need only prove the last formula. The expressions (3.1) and (3.2) imply that

$$\left\|\Psi_{h}(g)\right\|_{\mathcal{V}^{p}} \leq \overline{\lim}_{\epsilon \to 0^{+}} \epsilon^{-1/p} \left\|h \cdot (\tau_{\epsilon} g - g)\right\|_{L^{p}}.$$

The reverse inequality is obtained by interchanging the first two terms of (3.1) and applying (3.2) again.

For each $\mu \in M_1$, it follows that

$$\hat{\mu}'(u) = \lim_{\epsilon \to 0^+} \frac{\hat{\mu}(u+\epsilon) - \hat{\mu}(u)}{\epsilon} = \lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_{-\infty}^{\infty} (e^{-i(u+\epsilon)x} - e^{-iux}) d\mu(x)$$
$$= -i \int_{-\infty}^{\infty} e^{-ixu} \cdot x d\mu(x) .$$

Hence, $\hat{\mu}(u + \epsilon) - \hat{\mu}(u) = o(\epsilon^{1/p})$ uniformly in u, i.e. $\hat{\mu} \in \mathscr{D}^{1/p}$.

COROLLARY 3.3. – Let $1 and let <math>\mu \in M$ such that $\hat{\mu} \in \mathcal{D}^{1/p}$. Then the operator $\Psi_{\hat{\mu}} : \mathcal{V}^p \longrightarrow \mathcal{V}^p$ is a bounded linear operator with $\|\Psi_{\hat{\mu}}\|_{\mathcal{V}^p} \leq \|\hat{\mu}\|_{\infty}$. In particular, if $\mu \in M_1$, then μ satisfies the inequality.

Let W be the Wiener transformation defined by (1.1).

THEOREM 3.4 [8]. – The Wiener transformation W defines a bounded linear operator from \mathcal{M}^{p} into $\mathscr{V}^{p'}$, 1 , $<math>\frac{1}{p} + \frac{1}{p'} = 1$.

In particular, if p = 2, then W is an isomorphism from \mathcal{M}^2 onto \mathcal{V}^2 with

$$\|\mathbf{W}\| = \left(\int_0^\infty h(x) \, dx\right)^{1/2}, \quad \|\mathbf{W}^{-1}\| = \left(\max_{x \ge 0} x \widetilde{h}(x)\right)^{-1/2}$$

where

$$h(x) = \frac{2 \sin^2 x}{\pi x^2} \quad and \quad \widetilde{h}(x) = \sup_{t \ge x} h(x), \ x \ge 0.$$

LEMMA 3.5. - Let $1 and let <math>h \in \mathcal{D}^{1/p}$. Suppose $g \in \mathscr{V}^{p}$ and $g' \in \mathscr{V}^{p} \cap L^{p}$ are such that $||g - g'||_{\mathscr{V}^{p}} = 0$. Then

$$\lim_{\epsilon \to 0^+} \epsilon^{-1/p} \|h \cdot (\tau_{\epsilon} g - \tau_{-\epsilon} g) - (\tau_{\epsilon} (h \cdot g') - \tau_{-\epsilon} (h \cdot g'))\|_{L^p} = 0$$

(where the involved multiplications are pointwise multiplication).

Proof. - Observe that

$$\begin{split} \overline{\lim_{\epsilon \to 0^+}} \ \epsilon^{-1/p} \ \|h \cdot (\tau_{\epsilon} g - \tau_{-\epsilon} g) - \tau_{\epsilon} (h \cdot g') - \tau_{-\epsilon} (h \cdot g'))\|_{L^{p}} \\ & \leq \overline{\lim_{\epsilon \to 0^+}} \ \epsilon^{-1/p} \ \|h \cdot (\tau_{\epsilon} (g - g') - \tau_{-\epsilon} (g - g'))\|_{L^{p}} \\ & + \overline{\lim_{\epsilon \to 0^+}} \ \epsilon^{-1/p} \ \|(\tau_{\epsilon} h - h) \cdot \tau_{\epsilon} g'\|_{L^{p}} \\ & + \overline{\lim_{\epsilon \to 0^+}} \ \epsilon^{-1/p} \ \|(\tau_{-\epsilon} h - h) \cdot \tau_{-\epsilon} g'\|_{L^{p}}. \end{split}$$

The first term is not greater than

$$\|h\|_{\infty} = \lim_{\epsilon \to 0^+} \epsilon^{-1/p} \|\tau_{\epsilon}(g-g') - \tau_{-\epsilon}(g-g')\|_{L^p}$$

which is equal to $||h||_{\infty} \cdot ||g - g'||_{\gamma p}$ and by hypothesis, it equals

zero. By an argument similar to (3.2), the second and the third term are also zero. This completes the proof of the lemma.

For an $f \in L^p$, $1 , we will use <math>\hat{f}$ to denote the Fourier transformation of f in $L^{p'}$. It is well known that for the above f,

$$\left(\int_{\mathbf{R}} |\hat{f}(u)|^{p'} \frac{du}{\sqrt{2\pi}}\right)^{1/p'} \leq \left(\int_{\mathbf{R}} |f(x)|^{p} \frac{dx}{\sqrt{2\pi}}\right)^{1/p}$$

THEOREM 3.6. - Let $1 , <math>\frac{1}{p} + \frac{1}{p'} = 1$. Then for any $f \in \mathcal{M}^p$, $\mu \in M$ such that $\hat{\mu} \in \mathcal{D}^{1/p'}$,

$$W(\mu * f) = \hat{\mu} \cdot Wf$$
 in $\mathscr{V}^{p'}$

Proof. – First consider the case that μ has bounded support, say, supp $\mu \subseteq [-A, A]$. Without loss of generality assume that $\|\mu\| = 1$ and let

$$W(f) = g$$
 and $W(\mu * f) = g_1$.

In view of Lemma 3.5, it suffices to show that

$$\overline{\lim_{\epsilon \to 0^+}} \, \epsilon^{-1/p'} \, \| \, (\tau_{\epsilon} g_1 - \tau_{-\epsilon} g_1) - \hat{\mu} \cdot (\tau_{\epsilon} g - \tau_{-\epsilon} g) \|_{L^{p'}} = 0 \, .$$

Since $(\tau_{\epsilon} g - \tau_{-\epsilon} g)$ is the Fourier transformation of

$$h(x) = \sqrt{\frac{2}{\pi}} f(x) \frac{\sin \epsilon x}{x},$$

it follows that $(\tau_{\epsilon} g_1 - \tau_{-\epsilon} g_1)$ is the Fourier transformation of

$$h_1(x) = \sqrt{\frac{2}{\pi}} (\mu * f)(x) \frac{\sin \epsilon x}{x},$$

and both h_1 and h are in L^p (cf. [8, Theorem 5.5]). Hence $(2\epsilon)^{-1/p'} \| (\tau_{\epsilon} g_1 - \tau_{-\epsilon} g_1) - \hat{\mu} \cdot (\tau_{\epsilon} g - \tau_{-\epsilon} g) \|_{L^{p'}}$ $= (2\epsilon)^{-1/p'} \| (h_1 - h)^{\hat{}} \|_{L^{p'}}$ $= (2\epsilon)^{-1/p'} (\sqrt{2\pi} \int_{-\infty}^{\infty} |(h_1 - h)^{\hat{}}|^{p'} \frac{du}{\sqrt{2\pi}})^{1/p'}$ $\leq (2\epsilon)^{-1/p'} (2\pi)^{1/2p'} (\int_{-\infty}^{\infty} |h_1 - h|^p \frac{du}{\sqrt{2\pi}})^{1/p}$ $= (\frac{1}{\pi\epsilon^{p-1}} \int_{-\infty}^{\infty} |\int_{-A}^{A} f(x - y) (\frac{\sin\epsilon x}{x} - \frac{\sin\epsilon(x - y)}{x - y}) d\mu(y) |^p dx)^{1/p}$

$$\leq \left(\frac{1}{\pi\epsilon^{p-1}} \int_{-\infty}^{\infty} \int_{-A}^{A} |f(x-y)|^{p} \left| \frac{\sin\epsilon x}{x} - \frac{\sin\epsilon(x-y)}{x-y} \right|^{p} d|\mu|(y) dx \right)^{1/p}$$

$$\leq \left(\frac{1}{\pi\epsilon^{p-1}} \int_{-\infty}^{\infty} \int_{-A}^{A} |f(x-y)|^{p} \left(\frac{8\epsilon|y|}{|x|+|y|}\right)^{p} d|\mu|(y) dx \right)^{1/p}$$
(by [15, p. 157])
$$\leq 8\pi^{-1/p} \cdot \epsilon^{1/p} \left(\int_{y|<1}^{\infty} |f(x-y)|^{p} \frac{1}{|x|^{p}+1} dx d|\mu|(y) \right)$$

$$+ \int_{1<|y|$$

The fact that $\mathcal{M}^{p} \subseteq L^{p}\left(\mathbb{R}, \frac{dx}{|x|^{p}+1}\right)$ [8, Proposition 2.1] implies that the last two terms of the above inequality are bounded. Hence

$$\overline{\lim_{\epsilon \to 0^+}} \, \epsilon^{-1/p'} \, \| \, (\tau_e \, g_1 - \tau_{-\epsilon} \, g_1) - \mu \cdot (\tau_e \, g - \tau_{-\epsilon} \, g) \|_{L^{p'}} = 0 \, .$$

This completes the proof of the theorem for measures μ with bounded support. Now, for any $\mu \in M_1$, there exists a sequence of $\{\mu_n\}$ with bounded support such that $\|\mu_n - \mu\| \longrightarrow 0$ as $n \longrightarrow \infty$. Corollary 3.3 implies

$$\|\Psi_{\mu_n}-\Psi_{\mu}\|_{\mathscr{V}^{p'}} \leq \|\hat{\mu}_n-\hat{\mu}\|_{\infty} \leq \|\mu_n-\mu\|.$$

Hence

$$W(\mu * f) = \lim_{n \to \infty} W(\mu_n * f) = \lim_{n \to \infty} \hat{\mu}_n \cdot W(f) = \hat{\mu} \cdot W(f) . \Box$$

Let $\mu \in \mathbf{M}$ and define the multiplication operator $\Psi_{\hat{\mu}}$: $\mathscr{V}^p \longrightarrow \mathscr{V}^p$ as the limit of Ψ_{μ_n} , $\mu_n \in \mathscr{D}^{1/p}$.

COROLLARY 3.7. - Let $1 , <math>\frac{1}{p} + \frac{1}{p'} = 1$. For each $\mu \in \mathbf{M}$, let Φ_{μ} be the convolution operator of μ on \mathcal{M}^{p} and let $\Psi_{\hat{\mu}}$ be the multiplication operator on \mathscr{V}^{p} . Then for any $f \in \mathscr{M}^{p}$,

$$W(\Phi_{\mu}f) = \Psi_{\hat{\mu}}(W(f)).$$

Let $\mathscr{V}_r^2 = W(\mathscr{M}_r^2)$, then the following result follows from Theorem 2.4, Corollary 3.3, Theorem 3.4 and Theorem 3.6.

COROLLARY 3.8. – For each $\mu \in M$, we have

$$\mathbf{C}^{-1} \| \Phi_{\mu} \|_{\mathcal{M}_{r}^{2}} \leq \| \Psi_{\hat{\mu}} \|_{\mathcal{M}_{r}^{2}} \leq \| \Phi_{\mu} \|_{\mathcal{M}_{r}^{2}} = \| \hat{\mu} \|_{\infty}$$

where $C = ||W|| \cdot ||W^{-1}||$.

4. A Tauberian Theorem.

In [15, Theorem 29], Wiener proved a Tauberian theorem on \mathcal{M}^2 . In this section, by making use of his idea and the results in the previous section, we can simplify his argument and extend the theorem.

LEMMA 4.1. - Let $\mu \in M$ such that $\hat{\mu} \in \mathcal{D}^{1/2}$ and $\hat{\mu}(u) \neq 0$ for all u in R. If $f \in \mathcal{M}^2$ is such that $\|\mu * f\|_{\mathcal{M}^2} = 0$. Then g = W(f) satisfies

$$\overline{\lim_{\epsilon\to 0^+}} \frac{1}{\epsilon} \int_{-C}^{C} |g(u+\epsilon) - g(u)|^2 du = 0 \quad \forall C > 0.$$

Proof. – Since $\hat{\mu}$ is continuous and $\hat{\mu} \neq 0$, there exists a Q > 0 such that $|\hat{\mu}(u)| > Q$ for all $u \in [-C, C]$. Hence

$$\overline{\lim_{\epsilon \to 0^+}} \frac{Q^2}{\epsilon} \int_{-C}^{C} |g(u+\epsilon) - g(u)|^2 du$$

$$\leq \overline{\lim_{\epsilon \to 0^+}} \frac{1}{\epsilon} \int_{-\infty}^{\infty} |\hat{\mu}(u)|^2 |g(u+\epsilon) - g(u)|^2 du$$

$$= ||W(\mu * f)|_{\sqrt{2}}^2 \quad \text{(by Proposition 3.2 and Theorem 3.6)}$$

$$\leq ||W||^2 \cdot ||\mu * f||_{\sqrt{2}}^2$$

$$= 0.$$

LEMMA 4.2. – Let ν be a continuous measure in M such that $\hat{\nu} \in \mathcal{D}^{1/2}$. Let $f \in \mathcal{M}^2$ and let g = W(f). Then

$$\lim_{C\to\infty} \overline{\lim_{\epsilon\to 0^+}} \frac{1}{\epsilon} \left(\int_{-\infty}^{-C} + \int_{C}^{\infty} \right) |\hat{\nu}(u)|^2 |g(u+\epsilon) - g(u)|^2 = 0.$$

Proof. – We will estimate the following limit :

$$\lim_{\eta \to 0^+} \overline{\lim_{\epsilon \to 0^+}} \frac{1}{\epsilon} \int_{-\infty}^{\infty} \left| 1 - \frac{e^{iu\eta} - 1}{iu\eta} \right|^2 |\hat{\nu}(u)|^2 |g(u + \epsilon) - g(u)|^2.$$

Since ν is a continuous measure, $\lim_{|u| \to \infty} \hat{\nu}(u) = 0.$ Also note that $\left| 1 - \frac{e^{iu\eta} - 1}{iu\eta} \right|$

is bounded, and for any A > 0,

K.-S. LAU

$$\lim_{\eta \to 0^+} \left| 1 - \frac{e^{iu\eta} - 1}{iu\eta} \right| = 0 \text{ uniformly for } u \in [-A, A]$$

For $\epsilon_0 > 0$, there exists A_0 such that for $A \ge A_0$, $|\hat{\nu}(u)| \le \frac{\epsilon_0}{K_1}$ where $K_1(>1)$ is the bound of $\left|1 - \frac{e^{iu\eta} - 1}{iu\eta}\right|$. There exists η_0 such that for $0 < \eta < \eta_0$

$$\left|1-\frac{e^{iu\eta}-1}{iu\eta}\right| < \frac{\epsilon_0}{\mathrm{K}_2}, \quad u \in [-\mathrm{A}_0, \mathrm{A}_0],$$

where K_2 (>1) is a bound of $\hat{\nu}$ in $[-A_0, A_0]$. Hence, for $0 < \eta < \eta_0$,

$$\left|1-\frac{e^{iu\eta}-1}{iu\eta}\right|\cdot|\hat{\mu}(u)|<\epsilon_0\,,\quad u\in\mathbb{R}\,,$$

and

$$\frac{\prod_{\epsilon \to 0^+} \frac{1}{\epsilon} \int_{-\infty}^{\infty} \left| 1 - \frac{e^{iu\eta} - 1}{iu\eta} \right|^2 |\hat{\nu}(u)|^2 |g(u+\epsilon) - g(u)|^2 \leq \epsilon_0 ||g||_{\varphi^2}.$$
This implies

This implies

$$\lim_{\eta \to 0^+} \overline{\lim_{\epsilon \to 0^+}} \frac{1}{\epsilon} \int_{-\infty}^{\infty} \left| 1 - \frac{e^{iu\eta} - 1}{iu\eta} \right|^2 |\hat{\nu}(u)|^2 |g(u+\epsilon) - g(u)|^2 = 0.$$

Since $\left| 1 - \frac{e^{iu\eta} - 1}{iu\eta} \right| > \frac{1}{2}$ for any $u\eta > 4$, we have
$$\lim_{\eta \to 0^+} \overline{\lim_{\epsilon \to 0^+}} \frac{1}{\epsilon} \left(\int_{-\infty}^{-4/\eta} + \int_{4/\eta}^{\infty} \right) |\hat{\nu}(u)|^2 |g(u+\epsilon) - g(u)|^2 = 0.$$

THEOREM 4.3. – Let $\mu \in M$ such that $\hat{\mu} \in \mathscr{D}^{1/2}$ and $\hat{\mu}(u) \neq 0$

for all u in R. Suppose $f \in \mathcal{M}^2$ satisfies

$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |\mu * f|^2 = 0.$$

Then for any continuous measure $\nu \in M$ such that $\hat{\nu} \in \mathcal{D}^{1/2}$,

$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |\nu * f|^2 = 0.$$

Proof. – Lemma 4.1 implies that for any C > 0,

$$\lim_{\epsilon\to 0^+} \frac{1}{\epsilon} \int_{-C}^{C} |\hat{\nu}(u)|^2 |g(u+\epsilon)-g(u)|^2 = 0.$$

240

Also by Lemma 4.2,

$$\lim_{C\to\infty} \lim_{\epsilon\to 0^+} \frac{1}{\epsilon} \left(\int_{-\infty}^{-C} + \int_{C}^{\infty} \right) |\hat{\nu}(u)|^2 |g(u+\epsilon) - g(u)|^2 = 0.$$

This implies that $\|\hat{\nu} \cdot g\|_{\ell^2} = 0$. By Theorem 3.4 and Theorem 3.6, $\|\nu * f\|_{\ell^2} = 0$.

5. Some Remarks.

In Section 2, we proved that the convolution operator $\Phi_{\mu} : \mathscr{M}_{r}^{p} \longrightarrow \mathscr{M}_{r}^{p}$ satisfies $\|\Phi_{\mu}\|_{\mathscr{M}_{r}^{p}} = \|\Phi_{\mu}\|_{L^{p}}$, we do not know whether or not $\Phi_{\mu} : \mathscr{M}^{p} \longrightarrow \mathscr{M}^{p}$ will satisfy the same equality. An operator $\Phi : L^{p} \longrightarrow \mathcal{M}^{p}$ is called a *multiplier* if $\Phi \tau_{t} = \tau_{t} \Phi$ for $t \in \mathbb{R}$. The relationship of multipliers and the equation $\Phi(f) = h \cdot f$ for some bounded function h on \mathbb{R} is generally well known. Also, the class of multipliers on L^{p} equals the strong-operator closure of the class of convolution operators. However, nothing is known for the multipliers on \mathscr{M}^{p} . It would be nice to have complete characterizations of the multiplier on \mathscr{M}^{p} , especially on \mathscr{M}^{2} .

In Section 4, we can only prove the Tauberian theorem on \mathcal{M}^2 (Theorem 4.3). For 1 , the Wiener transformation is welldefined. All the proofs in Section 4 will go through except the laststep in Theorem 4.3. It depends on the following statement whichhas to be justified:

For $1 , the Wiener transformation <math>W : \mathcal{M}^p \longrightarrow \mathcal{V}^{p'}$ is one to one.

Note that the statement is true for the Fourier transformation from L^{p} to $L^{p'}$, $1 \le p < 2$.

In our Tauberian Theorem, we have to assume that

$$\lim_{T\to\infty} \frac{1}{2T} \int_{-T}^{T} |\mu * f|^2 = 0.$$

We do not know whether the conclusion holds if we let $f \in \mathscr{W}^2$ and replace the zero by a positive number. Also, we do not know whether the condition on μ and ν in Theorem 4.3 can be relaxed.

BIBLIOGRAPHY

- [1] K. ANZAI, S. KOIZUMI and K. MATSUOKA, On the Wiener formula of functions of two variables, *Tokyo J. Math.*, (to appear).
- [2] J.P. BERTRANDIAS, Espaces de fonctions bornées et continues en moyenne asymptotique d'ordre p, Bull. Soc. Math. France, (1966), Mémoire 5.
- [3] J.P. BERTRANDIAS, Opérateurs subordinatifs sur des espaces de fonctions bornées en moyenne quadratique, J. Math. Pures et Appl., 52 (1973), 27-63.
- [4] H. BOHR and E. FØLNER, On some types of functional spaces, Acta Math., 76 (1944), 31-155.
- [5] G. HARDY and J. LITTLEWOOD, Some properties of fractional integrals, *Math. Zeit.*, 27 (1928), 564-606.
- [6] E. HEWITT and R. Ross, Abstract Harmonic Analysis II, Springer Verlag, Berlin, 1970.
- [7] K. LAU, On the Banach spaces of functions with bounded upper means, *Pacific J. Math.*, (1980), to appear.
- [8] K. LAU and J. LEE. On generalized harmonic analysis, *Trans. Amer. Math. Soc.*, 259 (1980), 75-97.
- [9] R. LARSEN, An introduction to the theory of multipliers, Springer Verlag, Berlin, (1971).
- [10] P. MASANI, Commentary on the memoire on generalized harmonic analysis [30a], Norbert Wiener: Collected Works, MIT Press, (1979), 333-379.
- [11] R. NELSON, The spaces of functions of finite upper *p*-variation, Trans. Amer. Math. Soc., 253 (1979), 171-190.

- [12] R. NELSON, Pointwise evaluation of Bochner integrals in Marcinkiewicz space, (to appear).
- [13] N. WIENER, Generalized harmonic analysis, Acta Math., 55 (1930), 117-258.
- [14] N. WIENER, Tauberian theorems Ann. of Math., 33 (1932), 1-100.
- [15] N. WIENER, The Fourier integral and certain of its applications, Dover, New York, 1959.

Manuscrit reçu le 15 décembre 1980.

Ka-Sing LAU,

University of Pittsburgh Faculty of Arts and Sciences Department of Mathematics & Statistics Pittsburgh, Pa. 15260 (USA).