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THE CLASS OF CONVOLUTION OPERATORS
ON THE MARCINKIEWICZ SPACES

by Ka-SmgLAU(*)

1. Introduction.

Throughout the paper, the functions we consider will be complex
valued, Borel measurable on R. For l < p < o ° , we will let

^^l/: n/ii^= ̂ (^-/^ i r^T <°°j
and

^=^11^= ^^(—f^\g(^+e)--g(^--e)\pdu)llp <

The space ^p is called the Marcinkiewcz space. The space ̂ p was
introduced by Hardy and Littlewood [3] in order to study the frac-
tional derivatives and is called the integrated Lipschitz class. By iden-
tifying functions whose difference has zero norm, it was proved that
both ^p and ^ p are Banach spaces [4], [8]. These spaces have
also been studied in detail in [2], [3], [7], [10], [ I I ] , [12]. Let ̂
denote the class of functions f in ̂ p such that

.^-^/^l 'T-:oo 2^-^ '

exists; then ^p is a "non-linear" closed subspace of ^F . In [13],
Wiener introduced the integrated Fourier transformation g = W(/)
of an / in i^2 as

1 / /—i /<o^ e-1^
^^^rU "U )fw——^27r ^-oo ^i / — ix

1 /.i e-iux _ ^
+ — J / W — — — : — — d x . (1.1)27r J-1 — ix

(*) Partially supported by the NSF grant MCS7903638.
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We call this transform the Wiener transformation. By using a deep
Tauberian theorem, he showed that

1 1 / 1 1 ^ 2 -IIWCOII^, /e^r2.
Recently, this result has been extended by Lee and the author [8]
to include the fact that the Wiener transformation W : ^2 —> "2

is a surjective isomorphism. Moreover, the exact isomorphic constants
have also been obtained. The theorem is an analog of the Plancherel

theorem in the classical L2 case. For 1 < p < 2 , — + -y = 1 ,
P P

W also defines a bounded linear operator from jy? into ^ p l .
It is the purpose of this paper to study the convolution oper-

ators on the Marcinkiewicz space ^p, ! < ^ < o o , and on the
closed subspace ^p. of regular functions / (i.e.,

1 /»T+a
lim - j \f\P = 0

T-^±oo 1 ^T

for a > 0). Some results related to this subject can be found in
[2L[H],[15].

In [2], Bertrandias showed that for each bounded regular Borel
measure p. on R, the convolution operator 4> : ^ p —> ^ p

given by ^( / )=^i*/ is well defined and l l^j l p < 11^11.
In § 2, we show that if JLA satisfies / | ^ | d ] ^ | < o o then the

"R
restriction map ^ '.^p. ——> ^(^ satisfies

lim -1- f KXT^ -$ y T ) / l p = 0
T-^oo 2T ^R JLt -^^T^./ I ^»

where XT ls ^e characteristic function of [ — T , T ] . This is used
to prove that for any bounded regular Borel measure ^,

ll^ll^p = 1 1 ^ 1 1 ^

where || $^ || p is the norm of the convolution operator $ on
L^(= IfW) (Theorem 2.4).

Let J D (^ p) denote the norm closure of the family of convo-
*/w Y j_,

lution operators on c^f (If , respectively). It follows from the result
mentioned above that y^p is isometrically isomorphic to f „ .

•^r L-
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However, under the strong operator topologies, the structures of
the two spaces are quite different. We prove that in ^p , the strong
operator sequential convergence and the norm convergence coincide
(Theorem 2.6).

In § 3 , we consider the convolution operator under the Wiener
transformation W : ^p——^p', l < p < 2 . One of the diffi-
culties in defining the multiplication operators on ̂ p is that even
for a very "nice" function h, the pointwise multiplication

( h ' g ) ( u ) = h ( u ) ' g ( u ) , g^T? (1.2)
does not give a function in ^p. Let

^l/p = {h : h(u + e) - h(u) = o(ellp) uniformly on u},

it is shown that if gC^ H If and AE^^ , then (1.2) defines
a function in V^ . In [8, Theorem 3.3], it was proved that for each
gCTP, there exists a g ' €^ H If such that \\g - g'\\^p = 0.
Hence, for the above h, h ' g can be defined to be the equivalence
class in ̂ p containing h ' g ' (defined by (1.2)) where g^ ^P H If
and || g — gf\\-^p = 0. The main result of this section is that for
1 < p < 2 and for any bounded regular Borel measure H. such that
the Fourier-Stieltjes transformation A is in Ofllp , — + — = 1,
then W yields

wo^n^-w^), /e^.
In particular, if ^ satisfies f \x\ d \ii\ < oo, then ^G^17^ and
the above equality holds. R

In § 4, the results of § 3 are used to prove a Tauberian theo-
rem on jy2. If ji is a bounded regular Borel measure on R such
that piE^172 and jji(u) ̂  0 V ^ E R , and if /e^2 satisfies

||̂  f\\^ ^^m^/^ l^ / l^^^O,

then for any continuous measure i /GM such that ?e^^2,

III'*/11^ ̂ (^.O^'T'0-
This improves a result of Wiener [15, Theorem 29].
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2. The Convolution Operators.

Let ^p , ̂ p be defined as above. When there is no confusion,
we will use the same notation f^::^p(i^p) to denote the function
/ on R as well as the equivalence class of functions in ^ p (^p,
respectively) whose difference from / has zero norm.

Let <& be a bounded linear operator from a Banach space X
into X and let l|4>||x denote the norm of $ on X.

PROPOSITION 2.1. - Let X be a closed subspace of jy? such
that If C X and let $ : X —> X be a linear map. Suppose $
satisfies the following conditions:

i) the restriction of <& on If defines a bounded linear oper-
ator <& : If —> If ,

ii)foreach /EX, lim —/ I(XT ̂  - ̂ Xr)/^ = 0.
T-» oo ^ J[ R

Then ||$||x < II <N p .
Lt

Proof. -Let /GX. Then
/ 1 /IT \1"'(^/^(/)^)

/ 1 r ^ / 1 r ^
"(zr^ ^-^/l") +(2T/ , Kx^-^)/^)

/ 1 /.T \VP / 1 /• vVP

^"^'^•(^•/-T^1 ' ') ''(if^ I^T^-^XT)/!") .

Taking the limit supremum on T yields
wnii^p < 1 1 $11^ •n / iî

and ||<&Hx<ll<&ll^. D

Let M be the class of bounded, regular Borel measures on R
and let M^ be the dense subspace of ^ E M such that

[ |;c|d|jLi|<oo.
"R

In [2, p. 19], Bertrandias showed that for each ^ E M , the convo-
lution operator ^ :̂  ——> ̂ p can be defined as the ^ p -limit
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of the functions f_^f(x - y)d{M(y) as A , B — " oo, /e^T.
Since ̂ p C^1 and A

TT f-rt-^ {f(x -y^d\^Ji\(y)dx

= jC»2T f_^f(x-y)\dxd\v-\(y)<^,

the integral f_ f(x - y ) d n ( y ) exists for almost all x . We can
write the pointwise expression of ^ (/) as

W) (x) = (^ * /) (x) = f_^ f(x - y) dfi(y) .

In the following, the convolution operators on the closed sub-

space ^f of regular functions / (i.e. lim -1- />T+a |/|P = Q
T-^± oo T* J T

for a > 0 ) in ^p will be considered. Note that /e^? if and

only if ̂  ^ ^T+l I/)/ ' = o. Also^ Cjy . It is easy to

show that if ju € M. /£^ , then ^ * /G^P .

LEMMA 2.2. - Let ^GMi and fc/ ^ :^?——»• ̂ ^ 6e
rte convolution operator. Then $ satisfies

1 /.
A" 2f4 1 ( X T ^ - ^ X T ) / ^ P = 0 , /e^.

Proo/ - Let /G^ and let ||/x|| = 1. For any e > 0, there
exists an a > 0 such that

L, , , \y\d\tt\<€K\ l—a, f l ]

and a To > 1 such that for I T| > T^,
1 /*T+a

2T/, \f\"<^
and for T > T(, ,

^/^ 1/1" < 11/11^+e.
Now for T > To ,
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IL KXT^-^XT)/^

= r \r (Xr(x) - \r(x - y)) f(x - y) d{ji(y)\1'dx
w— oo *' — oe

^jd £1 KxTW-XT^-^/^-^f^lMKj ')^

=// l /Oc- jOl^ lMlOOdx

where E = Ei U E^ U E3 U £4 with

EI = { ( x . y ) : - T < x < T , x + T < ^ } ,
E; = { (x ,y ) : - T < x < T , y<x - T} ,
£3 = { (^ ,^ ) : T < x , x - T < > / < x +T},

and
£4 = { ( x , y ) : x <-T, x - T < > ' < ^ + T } .

On the region E,, we have

[ f \f(x -y)\t>d\|Ji\(y)dx
J «/E^ -

</3 F \f(x-y)\pdxd\^Ji\(y)
^0 -'-1 /.« /.T

+ ^ J_^ \f(x-y)f dxd\ui\(y)^u^^^r/.jAz)^^
- 'A ia^1^1^^^1^-

This implies that

— ff \f(x-y)\p d\vi\(y)dx
2T ^-lE^

<^+(l l / l l^p+€)^00 T-y3'dlMlW

<6+2(| | / | |^p + € ) € . (2.1)

Similarly, we can show that the inequality (2.1) also holds for E/,
i = 2,3,4. This completes the proof, a

It follows from Proposition 2.1 and Lemma 2.2 that

1 1 ^ 1 1 p < II ^11 p .
•^r L

To obtain the reverse inequality, the following is required.
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LEMMA 2.3^-Let ^€MI and let f<EV. For any e>0,
fAere e^wfa an 7 G-^? sucA /Aa/

i) imi^pOI/Tp+e,

ii) llM*7ll^p >llM*/rp .

Proof. - Without loss of generality, we may assume that
supp/C[-A,A] , supp/ iC[-B,B] and A , B > 1 . Let
C = A + B , then supp(/z * /) £[-C, C].

Let TI = C and let /, = /. Suppose that T,, _ i , /„ _i have
been chosen, choose T,, such that

^-^•TT1^1-^

T-^r'£'/-i'<t--n -^ " w=l 2

Let
j. n-l

fn--^ Z ^,
't A:=0

where
8kW=f(x -T^ -2A:C).

Since each /„ is composed of n disjoint copies of / and all of the
/^'s are disjoint, it follows that the sequence {fji * /„} has the same
property. Let

7=2^ i /,.
n=l

^ /^/
To see that / € ̂ p., observe that / is supported by

E = G [T , -C^+(2^-1)CL
and that n-1

-T— 1 /IT ~ —— 1 /•T ~^nL^f^^-^L^f^
TGE

T
If n, is such that ————— H / 11% < 1 1 / 1 1 % + ̂  then for ^ > n,

-»»o ~
and for TG [!„ - C, T, + (2M - 1) C],
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riy^1/,-L r7

2T ^-T
ir1
T •'-T

n
V /•Z^ ->m

m=l
1 /»T e7/,1/j'^
T, /•T —1I />T " -A .;^/, 1: 1^1^+1-A Z 1 -T i,^^ Z^^ -i fc==o

T1

< —-zl—n/r + (L
T^ -C "• /"LP 2

< 1 1 / 1 1 ^ + 6 .

Moreover, for any T such that T^ - C < T < T ^ + ^ -C,
1 /•T+I

2T ^T
J^r1
^T ./T

/I _L || ^]|P
^T 1 1 / "L P

1 T- . —-"—\\f\\P
n T^ -C l l / j lLP •

Hence /^^? and satisfies i). To prove ii), we let
T = T ^ + ( 2 n - l ) C .

Then
T | "/»T ,̂ 1 /•

/-T1^1"-^
-L f
2T ^-T y u*/Z-i /" ^yM2T ^-T

1 /•T

2rJ_T ^ i18 ^̂J"

————"———— II jn * fll^
T. +(2^ - 1 ) C • " LP '

This implies that
ll^*/ll^>ll^*/ll;p.

THEOREM 2.4. - £er 1 < p < oo fl^rf fcr ^ e M. TACT the convo-
lution operator ^ : ̂ —)-^r^ satisfies || $J|M ' ^ Pr̂ .,

= 1 1 $c", p •
Proof. - It follows from Proposition 2.1, Lemma 2.2 and Lemma

2.3 that || $j| p = || ̂  || p for M € Mi . For 1̂ G M, there exists
uW y S-1

a sequence {^} in M^ which converges to ^Lt . Since

"^ - ̂  'Lr? ^ "^ - ̂ J'^P < "^ - ̂ " ?

it follows that

" ̂  iî p = ""i 11 ̂  iî  = ̂ m " ̂  ii,p = 11 ̂  n,p • °
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Let J.,p ( * ^ n ) denote the norm closure of the class of convo-•^r L"
lution operators on ^^(IF , respectively), Theorem 2. 4 implies
that J^p and jr p are isometrically isomorphic. However, under
the strong operator topologies, the two classes of operators are
different (Theorem 2.6).

LEMMA 2.5. — Let {<& } be a sequence in /..p . Suppose^n M y
{4> } converges to zero under the strong operator topology. Then

^n
{<3> } converges to zero under the norm topology.

•^n

Proof. — If the lemma were not true, then it follows from
Theorem 2.4 and by passing to subsequence, we can assume that there
exists a sequence {/„} in If and an a > 0 such that

l l / J p = l and ll^/J^fl V / 2 E N .
L L

We will construct an / ̂ ^p. such that

11^ ̂ ^p>a V ^ C N .

This contradicts the hypothesis that {4^ } converges to zero under
the strong operator topology.

Without loss of generality assume that for each n,
supp /„ c [- A^ , AJ, supp ̂  C [- B^ , BJ ,

| and {A^}, {B^} are increasing. Let C^ = A^ 4- B^. In the follow-
ing, we will define two sequences {T^} and {/^}. Let Ti = C ^ ,
AI == /i . Given T^_i , h^_^ , choose T^ such that

T^>T , . ,+2^_ ,+C, , ————-^—————>fl - - )
T . 4 - f 2 ^ + n C V ^ /

and
1 /•T., "-1 P— / " y ^ < i .T «/o ^d wT "o ^^ I m=l

Let

-T"——>(i-i
T»+(2n+l)C« V n

and let

^W^^ i 4(x-T,-2(/;-!)€„)
" k = l

7=2^ i /»„,
then the same proof as in Lemma 2.3 shows that / £^^ and
\\Hn*7\\^p>a. a
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The following theorem follows immediately from Lemma 2.5.

THEOREM 2.6. — Let J^p be the closure of the family ofconvo
'M r

lution operators on ^p. . Then ^p is a Banach algebra such that
the strong operator sequential convergence and the norm convergence
coincide.

Note that under the strong operator topology, J ^ p is metrizable
on bounded sets, hence Theorem 2.6 does not hold for f^p .

3. The Multipliers.

In this section, we will consider the convolution operator under
the Wiener transformation. First, we will define the operators on
^p of multiplying by scalar functions. We need the following pro-
position which was proved in [8].

PROPOSITION 3.1. - Let 1 <p < oo. Then for any ^ey^,
there exists a g ' GY^ H If such that \\ g - g ' \\ p == 0.

The proposition amounts to saying that by identifying functions
whose difference has zero norm, each equivalence class has a repre-
sentation in If .

For each t G R, we use r^ to denote the translation operator
defined by (^) (.) = ̂  + .)

where g is a function on R. For each g G.V1', we can rewrite the
definition of \\g\\ - as

llgll p= lim (2e)-l/p||T^-T_^|l - iim e^lr \\r,g - g\\
T e-i-O'1' L e-'-O* L

Let ^l/p be the class of bounded functions on R such that
h(u + e) -h(u) = 0(6^)

uniformly on u. Let AG^P , let ge-r" OV and let h • g be
the pointwise multiplication of h and g . Then

e-1'" \\r,(h- g) - h- g\\^ < e-1/? ||A • (T,g-g)\\^

+€-ll'>\\(T,h-h)•T,Lg\\ p .
L (3.1)
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Note that
lim e^\\(T,h-h)'T,g\\

e->0' ^

= II lim e-1^ (h - r_, h) ' g\\ (by the dominated
e-^O L

convergence theorem)
= 0 . (3.2)

Hence, (3.1) and (3.2) imply

11^ ̂ p< HAIL -ll^p.
It also follows from the above argument that if g and g ' are in
^01^, then h ' g ^ h ' g ' in ^p. We define for AE^^ and
for each ^ ̂ .irp, the multiplication operator ^ (^) to be the
equivalence class in ^p containing h - g ' where g ' E^ H L^ and
11^ - ̂ 11 p = 0. We still use h ' g to denote ^(^).

Remark. - For an arbitrary ^ EY^, the pointwise multipli-
cation h ' g is not necessary a function in ^p. For example, let
h(u) = e1" and let g(u) = 1 , i ^ G R , then the pointwise multi-
plication h • g is not in ̂ p .

PROPOSITION 3.2. - Let 1 < p < oo a^rf /^ h^.^1^. Then
the operator ^ ̂ ^ —^y^ de/med above is a bounded linear
operator mth ||̂ || p < ||A||^ . Moreover,

11^(^)11 . = Tim 6-^ \\h'(r,g-g)\\ .
r e-^O"1' L

Proof. - We need only prove the last formula. The expressions
(3.1) and (3.2) imply that

11^)11 „< lIm6-^||A.(r^-^)|| ^ .
y e-^O- L

The reverse inequality is obtained by interchanging the first two terms
of (3.1) and applying (3.2) again, n

For each ^ E M ^ , it follows that

A'(M) = lim ^+6)-^) ̂  i^ 1 r° ^-,(^e)^ _ ^-^x) ̂ ^)
e-^ e e-^0'^ e J-00

= - z / e-1^ - x d ^ ( x ) .

Hence, A(^ + e) - ^(M) = (^(e1^) uniformly in u, i.e. /xE ^ l /p.
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COROLLARY 3.3. -Let K p < o o and let J L ^ G M such that
fie Q^. Then the operator ^ :̂  —>i-P is a bounded linear
operator with II ̂ ll^, < ||AIL . In particular, if ^ E M , , then
IJi satisfies the inequality.

Let W be the Wiener transformation defined by (1.1).

THEOREM 3.4 [8]. - The Wiener transformation W defines
a bounded linear operator from ^ p into ^p', l < p < 2 ,

f —' •L •p p
In particular, if p = 2, then W is an isomorphism from ^ 1

onto T'1 with

II W || = ( /" h (x) dx )'2 , || W-11| = ( max xh(x) \~1'2 ,
0 / \jc >0 /

^here
2 sin2 x r^

h(x) = ——^— and h (x) = sup h(x), x > 0 .7rx r>x

LEMMA 3.5. - Let 1 <p < oo ^fif let h E ^^ . Suppose
g ^ r ^ and g ' ^ ^ n u are such that \\g-g\\ =0 Then

__ ^p

^ e-^ \ \ h ' ( r , g - T _ , g ) - ( r ^ h ' g 9 ) - r_,(h •^))||^ == 0
(where the involved multiplications are pointwise multiplication).

Proof. - Observe that

m^ e-^ || h ' (r,g - r_,g) - r,(h .^) - r_,(h ' g'))^

< ̂  C^IP || h . (r^ - g') - r.,(g - ̂ ))||̂

+ Hm ' e-^\\(r,h - h ) ' r , g ' \ \ ^
e-»-0 L-

+J^^~l"'\\(T.,h-h)•T_,gl\\^.

The first term is not greater than

IIAII, H^ e-^ ||r,(^ - g') -r_,(g- g')\\ p

which is equal to ||/z|L • 11^ - ̂ '11 p and by hypothesis, it equals



THE CLASS OF CONVOLUTION OPERATORS 237

zero. By an argument similar to (3.2), the second and the third
term are also zero. This completes the proof of the lemma, o

For an f^lf, l < p < 2 , we will use / to denote the
Fourier transformation of / i n L? . It is well known that for the
above /,

/ r , du \l/pl / r dx x^
(/ \f(u)\p'——) <(f \f(xW——) :
^R V^ R V27T7

THEOREM 3.6. - Let 1 < j9 < 2, — + — = 1 . Then for any
f^jyP , JL IEM suchthat jjiC^P', p p

W(^( * /) = j j i • W/ in -r^ .

Proof. — First consider the case that ^ has bounded support,
say, supp p. C [— A, A]. Without loss of generality assume that
H j L x l l = 1 and let

W(/)=^ and W0i* / )==^.

In view of Lemma 3.5, it suffices to show that

lim' e-17^ ||(r î - r..̂ ) - A • (r,g - r^g)\\ p. = 0 .
6-+0 L

Since (Tg g — r _^ g) is the Fourier transformation of
sin ex

h(x)= /-f(x)
x

it follows that (r^g^ — r_^) is the Fourier transformation of
sin ex

h,(x)== /~ (A i * / )W x
and both h^ and h are in If (cf. [8, Theorem 5.5]). Hence

(2e)-l/p' || (T, g, - r_, g,) - ̂  . (r, g - r_, g)||^,
=(26)-1 /P ' | |(A^- /zfll^

/ /.oo , ^ \1^''

-^^^LI^-^^T^)
/ /l00 /Vyy ^^

<(2e)-^'(2ff)l^'(^|^-A|')^)

/ 1 /.» | /.A /sin ex sin e(jc - y)^ p \1

4——r / / f(x-y)l———-———————}d^(,y) dx)\^fe'>~l '/-~ "'-A v x x - v I '
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1 r°° M Isine^ s m € ( x - y ) \ p _ _ _ \1^/ i /*°° /•A sinejc sine^—j/) " y^i^U.i^-^'-r--,-— "I-K^)
-(-̂ r rS\ w-y)\'(.-^-}'wy^')"\^^P 1 ^-ooJ-A \ ;(• + ^ / /

(by [15, p.157])

<87r-^.6^(/^ ^|^_^iP^L^^d|^i(^)

+ /K,.,<A (£ î  -^r ̂ -ndx) i^'d i^^)
The fact that ^ p CL^fR , -————) [8, Proposition 2.1] implies^ |jc|p + I /
that the last two terms of the above inequality are bounded. Hence

lim e-1^ || (r^ - T_,^) - JLI • (r,g - r_,g)\\ . = 0 .
€->0 L

This completes the proof of the theorem for measures jn with bounded
support. Now, for any jn G M ^ , there exists a sequence of {^ } with
bounded support such that ||̂  — ^11 ——^ 0 as n —^ oo. Corollary
3.3 implies

Hence
^-^1^<11^-AIL < 1 1 ^ - ^ 1 1 .

W(^i » /) = Jim^ W(^ * /) = ^m A^ • W(/) = ix . W(/). n

Let / x G M and define the multiplication operator ^ :
y^p——^^P as the limit of ^ , ̂  E ^l/p .

COROLLARY 3.7. -Z^r l < p < 2 , ^ - + ^ 7 = 1 . For each
^ G M , /^ $ be the convolution operator of fi on ^ p and let
^ be the multiplication oqerator on ^ p . Then for any f^.^p,

W(^/)=^(W(/)).

Let ' r ^=W(^T^) , then the following result follows from
Theorem 2.4, Corollary 3.3, Theorem 3.4 and Theorem 3.6.

COROLLARY 3.8. — For each ^ G M, we have

C-1!!^!!. < 1 1 ^ 1 1 . < 1 1 $ «/A"^2 ' " A" ̂ 2 ^ II ^M11 ^2
r •'"r •^r

wAe^ C = ||W|| • | |W-i i
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4. A Tauberian Theorem.

In [15, Theorem 29], Wiener proved a Tauberian theorem on
^2 . In this section, by making use of his idea and the results in
the previous section, we can simplify his argument and extend the
theorem.

LEMMA 4.1. - Let JLI G M such that ix E @ l/2 and ji(u) ̂  0
for all u in R. // /C^2 is such that ||^*/|| 2 = 0 - Then

g = W(/) satisfies M

Urn }- f0 \g(u + €)-g(u)\2du=0 VOO.
e-^ 6 "-C

Proof. — Since [i is continuous and jj. ̂  0, there exists a
Q > 0 such that | ii(u) \ > Q for all u G [- C , C]. Hence

"m ^ f° \g^+e)-g(u)\2du
e-^O" C

< lim^ } j[^ \^u)\2\g(u+€)-g(u)\2du
e^O

= II W(/2 * /)||22 (by Proposition 3.2 and Theorem 3.6)

^IIWII2-!^*/!!2^
=0 . a

LEMMA 4.2. — Let v be a continuous measure in M such that
i>e21/2. Let fe^2 and let ^ = = W ( / ) . FA^

lim iim 1 ( f"0 + 0 !W|2 |^(^ + e) - g(u)\2 == 0 .c-^oo ^_Q+ e v ^-oo ^c /

Proo/ — We will estimate the following limit :
^«n — 1 |2__ 1 /»<*

lim lim — /,^n+ .-.n+ e ^-< \V(u)\2]g(u +€)-g(u) |2.1 ~
iur]T] -»-0 C-^0

Since ^ is a continuous measure, lim ?(^) = 0. Also note that
lid-*'00

e1^ - 1
1 -

lurf
is bounded, and for any A > 0,
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lim |l
T?-^

e1^ - 1
= 0 uniformly for u E [— A, A].

lur]

For CQ > 0, there exists A^ such that for A > AQ , 1^(^)1 < -A

i giu'n _ p "-I
where Ki(> 1) is the bound of |1
such that for 0 < T? < 7^0 iur^

. There exists 170

e1^ - 1
<^—, ^e [ -Ao,AJ ,1 - ^r") ^ ' - l—^o '^oJ

K^̂2iur]
where K^ (> 1) is a bound of v in [ -Ao,Ao] . Hence, for
0 < r? < 7?o ,

^ - 1
• I A ( ^ ) l < € o . ^ E R ,

lUT]
and
i— 1 r00 i e ~lim — ; 1 — ————
.^n+ € J—oo zy./'ne-^0

e^ - 1
^T?

|i>(^)12 l^(M+6)-g(u)|2<eo||^||..-^z

This implies
__ i /.oo piu'r\ __ i 2

lim lim - - / 1-———— |^)|2 \g(u + e) -^(M)|2 == 0 .. /»+ - ./>,+ e »/—oo i»^r»r»-0+ €-0+ € "- iur]
e1^ - 1

iur\
Since 1 — > — for any 1̂7 > 4, we have

lim lim i ( f~^ + F ) \W\2 \g(u + c) - g(u)\2 =0 . n
r^-O-^ e-O-^ € vl/-~ J^/

THEOREM 4.3. - Let ^ E M ^cA rtar A G ® 1 / 2 ^^ jji(u)^0
for all u in R. Suppose /E^2 satisfies

T^^r^T 1^^ 2 ' 0 -
TTzCT /or a^ continuous measure v G M 5McA rftar i> E ^1/2 ,

^^r.i^/i^o.
Proo/ — Lemma 4.1 implies that for any C > 0,

lim -^ f0 |i>(^)|2 ]^(^ +e)-g(u)\2 =0 .
^o-^ 6 "-c
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Also by Lemma 4.2,

^lm Um^ ^ (/^c + jT) |^)|2 |̂  + e) - g(u)\2 = 0 .

This implies that \\v ' g\\ 2 = 0 - By Theorem 3.4 and Theorem 3.6,
1 1 ^ / 1 ^ = 0 . r D

5. Some Remarks.

In Section 2, we proved that the convolution operator
^ ^? ——^ ̂ ? satisfies || ̂  ||̂ ^ = || $^ || p , we do not know
whether or not <^ .'̂ p —^ ̂ p will satisfy the same equality.

An operator $ : If —^ If is called a multiplier if <&Ty = r^4>
for t E R. The relationship of multipliers and the equation
^(/) = A • / for some bounded function A on R is generally
well known. Also, the class of multipliers on If equals the strong-
operator closure of the class of convolution operators. However,
nothing is known for the multipliers on ^ p . It would be nice to
have complete characterizations of the multiplier on ^ p , especially
on ^2.

In Section 4, we can only prove the Tauberian theorem on ^2

(Theorem 4.3). For 1 < p < 2, the Wiener transformation is well
defined. All the proofs in Section 4 will go through except the last
step in Theorem 4.3. It depends on the following statement which
has to be justified:

For 1 <p < 2, the Wiener transformation W '.^p —^T?9

is one to one.
Note that the statement is true for the Fourier transformation

from if to I f ' , 1 <p <2 .
In our Tauberian Theorem, we have to assume that

T^ ^^ l^l2-0-
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We do not know whether the conclusion holds if we let /E ^2

and replace the zero by a positive number. Also, we do not know
whether the condition on /x and v in Theorem 4.3 can be relaxed.
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