Annales de l'institut Fourier

Antonio Cordoba

B. LOPEZ-MELERO

Spherical summation: a problem of E.M. Stein
Annales de l'institut Fourier, tome 31, no 3 (1981), p. 147-152
http://www.numdam.org/item?id=AIF_1981__31_3_147_0
© Annales de l'institut Fourier, 1981, tous droits réservés.
L'accès aux archives de la revue «Annales de l'institut Fourier» (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

SPHERICAL SUMMATION :
 A PROBLEM OF E. M. STEIN

by A. CÓRDOBA and B. LÓPEZ-MELERO

In this paper we present a proof of a conjecture formulated by E.M. Stein [1], page 5, about the spherical summation operators. We obtain a stronger version of the Carleson-Sjölin theorem [2] and, as a corollary, we obtain a.e. convergence for lacunary Bochner-Riesz means.

With $\lambda>0$ let T_{R}^{λ} denote the Fourier multiplier operator given by

$$
\left(\mathrm{T}_{\mathrm{R}}^{\lambda} f\right)^{\wedge}(\xi)=\left(1-|\xi|^{2} / \mathrm{R}^{2}\right)_{+}^{\lambda} \hat{f}(\xi) \quad \text { for } \quad f \in \wp\left(\mathbf{R}^{2}\right), \quad \text { and } \text { let }
$$ $\left\{\mathrm{R}_{j}\right\}$ be any sequence of positive numbers.

Theorem 1. - Given $\lambda>0$ and $\frac{4}{3+2 \lambda}<p<\frac{4}{1-2 \lambda}$ there exists some positive constant $\mathrm{C}_{\lambda, p}$ such that

$$
\left\|\left.\left.\left|\sum_{j}\right| \mathrm{T}_{\mathrm{R}_{j}}^{\lambda} f_{i}\right|^{2}\right|^{1 / 2}\right\|_{p} \leqslant \mathrm{C}_{\lambda, p}\left\|\left.\left.\left|\sum_{j}\right| f_{i}\right|^{2}\right|^{1 / 2}\right\|_{p} .
$$

Let $\mathrm{T}_{*} f=\sup _{j}\left|\mathrm{~T}_{2}^{\lambda} f\right|$. The methods developed to prove Theorem 1 yield, as an easy consequence, the following result.

Theorem 2. - For $\lambda>0$ and $\frac{4}{3+2 \lambda}<p<\frac{4}{1-2 \lambda}$ there exists some constant $C_{\lambda, p}^{\prime}$ such that

$$
\left\|\mathrm{T}_{*}^{\lambda} f\right\|_{p} \leqslant \mathrm{C}_{\lambda, p}^{\prime}\|f\|_{p} .
$$

As a result we have, for $f \in \mathrm{~L}^{p}\left(\mathbf{R}^{2}\right)$

$$
f(x)=\lim _{j} \mathrm{~T}_{2 j}^{\lambda} f(x) \quad \text { for a.e. } \quad x \in \mathbf{R}^{2}
$$

As part of the machinery in the proofs of Theorems 1 and 2 we shall make use of the two following results, whose proofs can be found in [3] and [4].

Given a real number $N>1$ consider the family B of all rectangles with eccentricity N and arbitrary direction, and let M be the associated maximal operator

$$
\mathrm{M} f(x)=\sup _{x \in \mathrm{R} \in \mathrm{~B}} \frac{1}{|\mathrm{R}|} \int_{\mathrm{R}}|f(x)| d x
$$

Theorem 3. - There exist constants C, α independent of N such that

$$
\|\mathrm{M} f\|_{2} \leqslant \mathrm{C}|\log \mathrm{~N}|^{\alpha}\|f\|_{2}
$$

Consider a disjoint covering of \mathbf{R}^{n} by a lattice of congruent parallelepipeds $\left\{Q_{\nu}\right\}_{\nu \in Z^{n}}$ and the associated multiplier operators

$$
\left(\mathrm{P}_{\nu} f\right)^{\wedge}=\chi_{\mathrm{Q}_{\nu}} \hat{f}
$$

Theorem 4. - For each $s>1$ there exists a constant C_{s} such that, for every non negative, locally integrable function ω and every $f \in \mathscr{S}\left(\mathbf{R}^{n}\right)$ we have

$$
\int_{\mathbf{R}^{n}} \sum_{\nu}\left|\mathrm{P}_{\nu} f(x)\right|^{2} \omega(x) d x \leqslant \mathrm{C}_{s} \int_{\mathbf{R}^{n}}|f(x)|^{2} \mathrm{~A}_{s} \omega(x) d x
$$

where $\mathrm{A}_{s} g=\left[\mathrm{M}\left(g^{s}\right)\right]^{1 / s}$ and M denotes the strong maximal function in \mathbf{R}^{n}.

Proof of Theorem 1. - Suppose that $\phi: \mathbf{R} \longrightarrow \mathbf{R}$ is a smooth function supported in $[-1,+1]$, and consider the family of multipliers S_{j}^{δ} defined by

$$
\left(\mathrm{S}_{j}^{\delta} f\right)^{\wedge}(\xi)=\phi\left(\delta^{-1}\left(\mathrm{R}_{j}^{-1}|\xi|-1\right)\right) \hat{f}(\xi)
$$

and also, for a fixed $\delta>0$, consider the family

$$
\left(\mathrm{T}_{j}^{n} f\right)^{\wedge}(\xi)=\psi_{n}(\arg (\xi))\left(\mathrm{S}_{j}^{\delta} f\right)^{\wedge}(\xi)
$$

where the ψ_{n} are a smooth partition of the unity on the circle,

$$
1=\sum_{n=1}^{N} \psi_{n}
$$

ψ_{n} is supported on $\left|\frac{\mathrm{N}}{2 \pi} \theta-n\right| \leqslant 1$ and $\mathrm{N}=\left[\delta^{-1 / 2}\right]$, so that the support of $\left(T_{j}^{n} f\right)^{\wedge}$ is much like a rectangle with dimensions $\mathrm{R}_{j} \delta \times \mathrm{R}_{j} \delta^{1 / 2}$.

There are three main steps in our proof.
a) The same argument of ref. [3] allows us to reduce theorem 1 to prove the following inequality

$$
\begin{equation*}
\left\|\left.\left.\left|\sum_{j}\right| S_{j}^{\delta} f_{j}\right|^{2}\right|^{1 / 2}\right\|_{4} \leqslant C|\log \delta|^{\beta}\left\|\left.\left.\left|\sum_{j}\right| f_{j}\right|^{2}\right|^{1 / 2}\right\|_{4} \tag{1}
\end{equation*}
$$

b) With adequate decompositions of the multipliers and geometric arguments, we prove

$$
\begin{equation*}
\left\|\left.\left.\left|\sum_{j}\right| \mathrm{S}_{j}^{\delta} f_{j}\right|^{2}\right|^{1 / 2}\right\|_{4} \leqslant \mathrm{C}^{\prime}|\log \delta|\left\|\left.\left.\left|\sum_{j, n}\right| \mathrm{T}_{j}^{n} f_{j}\right|^{2}\right|^{1 / 2}\right\|_{4} \tag{2}
\end{equation*}
$$

c) An estimate of the kernels of T_{j}^{n}, together with theorems 3 and 4 yields,

$$
\begin{equation*}
\left\|\left.\left.\left|\sum_{j, n}\right| \mathrm{T}_{j}^{n} f_{j}\right|^{2}\right|^{1 / 2}\right\|_{4} \leqslant \mathrm{C}^{\prime \prime}|\log \delta|^{\alpha}\left\|\left.\left.\left|\sum_{j}\right| f_{j}\right|^{2}\right|^{1 / 2}\right\|_{4} \tag{3}
\end{equation*}
$$

We refer to [3] for a) and begin with part b).
Fixed $\delta>0$, we select just one dyadic interval $2^{k}<\mathrm{R} \leqslant 2^{k+1}$ out of each $\left|\log _{2} \delta\right|$ correlative intervals, and we allow in the left hand side of (2) only those indices j for which R_{j} lays in a selected interval. Also we only take one T_{j}^{n} for each 4 correlative indices n, and only those supported in the angular sector $|\sin \theta| \leqslant 1 / 2$. All these operations will contribute with the factor $24\left|\log _{2} \delta\right|$ to the inequality (2).

The left hand side of (2) is less than the 4th rooth of twice

$$
\begin{equation*}
\sum_{\mathrm{R}_{j}<\mathrm{R}_{k}} \int\left|\left(\sum_{n} \mathrm{~T}_{j}^{n} f_{j}\right)\left(\sum_{m} \mathrm{~T}_{k}^{m} f_{k}\right)\right|^{2} \tag{4}
\end{equation*}
$$

and now we only have two kinds of pairs (j, k) : either $\mathrm{R}_{j} \leqslant \mathrm{R}_{k} \leqslant 2 \mathrm{R}_{j}$ or $\mathrm{R}_{j} \leqslant \delta \mathrm{R}_{k}$. Let's denote Σ^{I} and Σ^{II} the two corresponding halves of (4). We have

$$
\begin{aligned}
& \Sigma^{\mathrm{I}}=\Sigma^{\mathrm{I}} \int\left|\sum_{n, m}\left(\mathrm{~T}_{j}^{n} f_{j}\right)^{\wedge} *\left(\mathrm{~T}_{k}^{m} f_{k}\right)^{\wedge}\right|^{2} \\
& \leqslant 4 \Sigma^{\mathrm{I}} \int\left|\sum_{n<m}\left(\mathrm{~T}_{j}^{n} f_{j}\right)^{\wedge} *\left(\mathrm{~T}_{k}^{m} f_{k}\right)^{\wedge}\right|^{2}
\end{aligned}
$$

Now an easy geometric argument shows that, for fixed j, k, the supports of $\left(\mathrm{T}_{j}^{n} f_{j}\right)^{\wedge} *\left(\mathrm{~T}_{k}^{m} f_{k}\right)^{\wedge}$ are disjoint for different pairs $n \leqslant m$, so that we have
with

$$
\begin{gather*}
\Sigma^{\mathrm{I}} \leqslant 4 \int \Sigma^{\mathrm{I}} \sum_{n \leqslant m}\left|\left(\mathrm{~T}_{j}^{n} f_{j}\right)^{\wedge} *\left(\mathrm{~T}_{k}^{m} f_{k}\right)^{\wedge}\right|^{2} \leqslant 4 \mathrm{~A} \tag{5}\\
\mathrm{~A}=\left\|\left.\left.\left|\sum_{j, n}\right| \mathrm{T}_{j}^{n} f_{j}\right|^{2}\right|^{1 / 2}\right\|_{4}^{4}
\end{gather*}
$$

For the pairs (j, k) in $\Sigma^{\text {II }}$ we have

$$
\phi=\operatorname{supp}\left|\left(\mathrm{T}_{j}^{n_{1}} f_{j}\right)^{\wedge} *\left(\mathrm{~T}_{k}^{m_{1}} f_{k}\right)^{\wedge}\right| \cap \operatorname{supp}\left|\left(\mathrm{T}_{j}^{n_{2}} f_{j}\right)^{\wedge} *\left(\mathrm{~T}_{k}^{m_{2}} f_{k}\right)^{\wedge}\right|
$$

if $m_{1} \neq m_{2}$, because $R_{j} \leqslant \delta R_{k}$, so that

$$
\begin{align*}
\Sigma^{\mathrm{II}} & =\Sigma^{\mathrm{II}} \int \sum_{m}\left|\left(\sum_{n} \mathrm{~T}_{j}^{n} f_{j}\right) \mathrm{T}_{k}^{m} f_{k}\right|^{2} \\
\leqslant & \left|\int\left(\sum_{j}\left|\sum_{n} \mathrm{~T}_{j}^{n} f_{j}\right|^{2}\right)^{2}\right|^{1 / 2}\left|\int\left(\sum_{k, m}\left|\mathrm{~T}_{k}^{m} f_{k}\right|^{2}\right)^{2}\right|^{1 / 2} \\
& \leqslant \sqrt{2}\left|\Sigma^{\mathrm{I}}+\Sigma^{\mathrm{II}}\right|^{1 / 2} \mathrm{~A}^{1 / 2} \tag{6}
\end{align*}
$$

From (5) and (6) we obtain (2).
Now we come into part c).
First we observe that for each fixed j it is possible to choose two grids of parallelepipeds as the one in theorem 3 and such that each of the multipliers T_{j}^{n} is supported within one of the parallelepipeds, let's call it Q_{j}^{n}. If $\left(\mathrm{P}_{j}^{n} f\right)^{\wedge}=\chi_{\mathrm{Q}_{j}^{n}} \hat{f}$ is the corresponding multiplier operator, we have

$$
\mathrm{T}_{j}^{n} f_{j}=\mathrm{T}_{j}^{n} \mathrm{P}_{j}^{n} f_{j}
$$

Furthermore, an integration by parts arguments shows that each of the kernels of the T_{j}^{n} is majorized by a sum

$$
\mathrm{C} \sum_{\nu=0}^{\infty} 2^{-\nu} \frac{1}{\left|\mathrm{R}_{\nu, j}^{n}\right|} \chi_{\mathrm{R}_{\nu, j}^{n}}
$$

where the $\mathrm{R}_{\nu, j}^{n}$ are rectangles with dimensions $2^{\nu} \delta^{-1} \times 2^{\nu} \delta^{-1 / 2}$ and C is independent of n, j or $\delta>0$. Therefore in order to
estimate A we only have to estimate uniformly in ν the L^{4}-norm of

$$
\left.\left.\left|\sum_{j, n}\right| \frac{1}{\left|\mathrm{R}_{\nu, j}^{n}\right|} \chi_{\mathrm{R}_{\nu, j}^{n}} *\left(\mathrm{P}_{j}^{n} f_{j}\right)\right|^{2}\right|^{1 / 2} .
$$

Or, what amounts to the same, the L^{2}-norm of its square. If $\omega \geqslant 0$ is in $L^{2}\left(R^{2}\right)$ we have

$$
\begin{aligned}
& \sum_{j, n} \int\left|\frac{1}{\left|\mathrm{R}_{\nu, j}^{n}\right|} \chi_{\mathrm{R}_{\nu, j}^{n}} *\left(\mathrm{P}_{j}^{n} f_{j}\right)(x)\right|^{2} \omega(x) d x \\
& \leqslant \sum_{j, n} \int\left|\mathrm{P}_{j}^{n} f_{j}(y)\right|^{2}\left[\frac{1}{\left|\mathrm{R}_{\nu, j}^{n}\right|} \chi_{\mathrm{R}_{\nu, j}^{n}} * \omega\right](y) d y \\
& \leqslant \sum_{j, n} \int\left|\mathrm{P}_{j}^{n} f_{j}(y)\right|^{2} \mathrm{M} \omega(y) d y \\
& \leqslant 2 \mathrm{C}_{s} \sum_{j} \int\left|f_{j}(y)\right|^{2} \mathrm{~A}_{s}(\mathrm{M} \omega)(y) d y \\
& \leqslant \mathrm{C}_{s}^{\prime}\left\|\left.\left.\left|\sum_{j}\right| f_{j}\right|^{2}\right|^{1 / 2}\right\|_{4}^{2}\|\mathrm{M} \omega\|_{2} \\
& \leqslant \mathrm{C}|\log \delta|^{\alpha} \mathrm{C}_{s}^{\prime}\left\|\left.\left.\left|\sum_{j}\right| f_{j}\right|^{2}\right|^{1 / 2}\right\|_{4}^{2}\|\omega\|_{2}
\end{aligned}
$$

by successive applications of theorems 4 and 3. This estimate proves (3).

Proof of Theorem 2. - With the same notations of the preceding proof, let now $\mathrm{R}_{j}=2^{j}$. We have

$$
\begin{aligned}
\mathrm{T}_{*}^{\lambda} f(x) \leqslant \sup _{j}\left|\overline{\mathrm{~T}_{j}^{\lambda}} f(x)\right|+\sup _{j} \mid\left(\mathrm{T}_{j}^{\lambda}\right. & \left.-\overline{\mathrm{T}_{j}^{\lambda}}\right) f(x) \mid \\
& \leqslant\left.\left.\left|\sum_{j}\right| \overline{\mathrm{T}_{j}^{\lambda}} f(x)\right|^{2}\right|^{1 / 2}+\mathrm{C} f^{*}(x)
\end{aligned}
$$

where $\mathrm{T}_{j}^{\lambda}-\overline{\mathrm{T}_{j}^{\lambda}}$ stands for a C^{∞} central core of the multiplier T_{j}^{λ} and f^{*} is the Hardy-Littlewood maximal function.

By the same arguments of part a) in the preceding proof we may reduce ourselves to prove

$$
\begin{equation*}
\left\|\left.\left.\left|\sum_{j}\right| S_{j}^{\delta} f\right|^{2}\right|^{1 / 2}\right\|_{4} \leqslant C|\log \delta|^{\alpha}\|f\|_{4} \tag{7}
\end{equation*}
$$

for some constants C, α, independent of $\delta>0$.

We define the operators U_{j} by

$$
\mathrm{U}_{j}^{\wedge} f(x, y)=\chi_{\left\{2^{j-1} \leqslant x \leqslant 2^{j}\right\}} \hat{f}(x, y),
$$

and apply the methods in parts b) and c) above to obtain the inequality

$$
\left\|\left.\left.\left|\sum_{j}\right| \mathrm{S}_{j}^{\delta} f\right|^{2}\right|^{1 / 2}\right\|_{4} \leqslant \mathrm{C}|\log \delta|^{\alpha}\left\|\left.\left.\left|\sum_{j}\right| \mathrm{U}_{j} f\right|^{2}\right|^{1 / 2}\right\|_{4}
$$

which yields (7) by the classical Littlewood-Paley theory.

BIBLIOGRAPHY

[1] E.M. Stein, Some problems in harmonic analysis, Proc. Sym. Pure Math., Volume XXXV, Part. 1, (1979).
[2] L. Carleson and P. SJölin, Oscillatory integrals and a multiplier problem for the disc, Studia Math., 44 (1972), 288-299.
[3] A. Cordoba, The Kakeya maximal function and the spherical summation multipliers, Am. J. of Math., Vol. 99, n ${ }^{\circ}$ 1, (1977), 1-22.
[4] A. Cordoba, Some remarks on the Littlewood-Paley theory, To appear, Rendiconti di Circolo Mat. di Palermo.
[5] C. Fefferman, The multiplier problem for the ball, Annals of Math., 94 (1971), 330-336.

Manuscrit reçu le $1^{\text {er }}$ décembre 1980.
A. Cordoba \& B. Lopez-Melero,

Facultad de Ciencias
Matemáticas
Universidad Autónoma de Madrid Madrid (Espagne).

