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MAXIMUM MODULUS SETS

byTh.DUCHAMP and E.L. STOUT (*)

Introduction.

Given a domain D in a complex manifold, call a subset E C bD
a maximum modulus set if there is a function /EA(D) with
| / |=1 on E, |/ |<1 on D\E _ where A(D) denotes the
algebra of functions continuous on D and holomorphic on D.
In general our domains will be strongly pseudoconvex. In the
one dimensional case, there is not much to be said as, e.g., if
D = A , the open unit disc, then every closed subset of T = 6 A
is a maximum modulus set. In the higher dimensional case things
are more complicated.

There is a close relation between maximum modulus sets and
peak sets, sets F C bD for which there is a function /EA(D)
with /= ! on F, |/|<1 on D\F. If / € A ( D ) has
E C bD as its maximum modulus set, then for each a G T
the fiber E^ = {p E E : f(p) = a} is the set on which the

function y a(/ + a) peaks, provided, of course, that E^ is

not empty.
Certain results about maximum modulus sets are clear. If

D is strongly pseudoconvex, then as bD can be made strictly
convex in a neighborhood of any of its points by a suitable choice
of local coordinates, slicing with complex lines shows that no
maximum modulus set in bD can contain an open subset of
bD. Sibony [31 ] has shown that if / is a nonconstant function
in A^D), the algebra of functions with pth order derivatives
in A(D), and if p > 2 , then the set E on which |/| takes
its maximum has finite N-dimensional Hausdorff measure if the

(*) Research supported in part by Grant (MCS) 78-02139 from the National
Science Foundation.
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ambient complex manifold is N-dimensional. This implies that
the topological dimension of E does not exceed N . It may be
well to recall that Tumanov [36] has constructed in 6B^ , B^ the
unit ball in CN , a peak set of Hausdorff dimension 2.5. Tumanov's
example is totally disconnected and perfect and so is homeomorphic
to the Cantor set; its topological dimension is therefore zero. One
of our results is that a maximum modulus set in the boundary of
a strongly pseudoconvex domain has topological dimension no
more than N.

In most of what follows, we shall be concerned with smooth
manifolds. Recall that the set of submanifolds of the boundary of
a strongly pseudoconvex domain which are peak sets admits a very
concise description. Let D be given by the strongly plurisubharmonic
characterizing function Q so that D = {Q < 0} and dQ ^= 0 on
bD. Let 77 = T?Q = d0 Q = i(9 - 3) Q. A Q1 submanifold
2 C bD has the property that each of its compact subsets is a
peak set(*) if and only if 1*17 = 0 where i: 2 —> bD is the
inclusion map [25]. This condition implies that 2 is totally real
and of dimension no more than N — 1 . We shall call submanifolds
satisfying this condition interpolation manifolds. In this connection,
see [8].

The one form 17 Q is real valued: If we take holomorphic
coordinates z ^ , . . . , z^ with underlying real coordinates
z. = x. + iy., then

^ 3Q , 3Q ,
^Q = - L 9- ̂ / - . ^/ •

/==! OYj O^j

We denote by T^(&D) the kernel of the map T?Q : Tp(&D) —> R
so that T^(6D) is the maximal complex subspace of T (&D).
If J is the given complex structure, T^(&D) = Tp(6D) n JTp(frD).
Interpolation manifolds admit the alternative description of being
those submanifolds 2 of bD that satisfy T^(2) C T^ (bD) for
each p E S .

We prove below that if 2 C bD is an N-dimensional
smooth submanifold which is the maximum modulus set of an

(*) And therefore a peak interpolation set, i.e., if K C 2 is compact and
^ee(K), then there is GCA(D) with G |K = g and |G(p)| < || g\\^ if
p G \ K . See [37].
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f^A2(D), then 2 is necessarily totally real and it must admit
a unique foliation by compact interpolation manifolds. There is
a semiglobal converse in the real analytic case, and we show by
example that there cannot be a global converse. We also prove
what amounts to a uniqueness theorem. Roughly put, two A2

functions with the same smooth N-dimensional manifold as
maximum modulus set are analytically related. Under a global
polynomial convexity hypotheses, they are polynomially related.

It is important for much of what we do that the form 7^0
is a contact form in that T?Q /\(d^)^~1 is a volume form on
bD. This implies the existence of a vector field { , the charac-
teristic vector field associated with 17, characterized by the
conditions that T?Q(S) == 1 and S - J A ? Q = O , i.e., that
^ Q ( S , O = O for every choice of vector field ^ on bD. The
forms T^Q and dr^Q are invariant under the flow generated by ^ .
For contact geometry see [4].

We are indebted to Josip Globevnik who proposed to one
of us the study of maximum modulus sets.

1. Necessity.

Fix a strongly pseudoconvex domain D with boundary of
class (or , 2 < r < a? in the complex manifold OTL, OTc not neces-
sarily Stein. Set D = {Q < 0} with Q defined and of class Q ' and
strictly plurisubharmonic on a neighborhood of bD, dQ ̂  0 on
bD. Let 2 C bD be a closed submanifold of OH of dimension N ,
of class (° s , 2 < s < a?, and assume there to be a function,
/GA^D) with |/|<1 on D\S, |/| = 1 on 2. Put
T? =^0 = i(9 - 3)Q.

The form df has coefficients in A^D); our first lemma implies
that df does not vanish at any point of 2 .

LEMMA 1.1. -If p G2 , then dlog |/| + 0 at p.

Proof. - This follows from the Hopf Lemma. The function
log I/| is of class (°2 near the point p , it is subharmonic and
negative on D, and it takes the value zero at p .
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The lemma implies, since / satisfies the Cauchy-Riemann
equations, that not only is df^O at p , but also that d(f\bD)^0
at p.

LEMMA 1.2. — The manifold 2 is totally real.

Proof. — Fix a point p € 2 , and suppose that Tp(£) contains
a complex line. Choose holomorphic coordinates Z ^ , . . . , Z N ^ar
p so that p is the origin, so that T^(&D) is the complex hyperplane
Zi = 0 and so that the complex line z^ = 73 = z^ = • • • = z^ = 0
is tangent to 2 at the origin.

The function / is of class A^D), so it can be extended to
a neighborhood U of 0 in the ( z ^ , . . . , z ^ ) space as a (°2 function
and in such a way that df^O on U. Since df^=0 but |/| takes

a/ a/
its maximum at 0 (on D) it follows that, at 0, —— = . . . = = —— == Qay °z2 ^N
and — =5^= 0. Consequently if we set w = log/== ^i + ix^, then

oz!

w , Z 2 , . . . , Z N ls a set °^ complex-valued e2 coordinates in a
neighborhood of 0, and 2 is contained in the real hyperplane
^ = 0 .

Near 0, the x^ -direction is transverse to &D, so, near 0,
bD can be described by an equation

Q(w,z ' )=^ - F ( ^ , z ' ) = 0

where z ' = (z^ , .. . , z ^ ) .
We shall compute the Levi form of bD with respect

to the defining function Q at the point 0. First note that
88w = 99x^ = 99x^ = 0 on D H U since w is holomorphic
on U H D and of class (°2 on U. For the same reason,

9x^ = — — dw and 9x^ = — dw on D 0 U. Therefore, at 0

we have

2 / a 3 Q = 2 / O a X i -33F)
N a2? _ » g2?

= - 2^' S. r"̂ ~ - dz! Ad^ ~ ̂  TT d^ A rfvv
;.fc=2 az/^ 2 ^J

N . g2p _ 92? __ v
+ y (— , — dw A dz. + dz, A rfw ).

f=2 v ^^2^z/• ^;C2^Z /



MAXIMUM MODULUS SETS 41

Since T^(6D) is in the kernels of Av and dw, it follows that at
0 the Levi form is the restriction to T^(&D) of the form

N Q2?
-2i I r^—W^/®^-,,r=2 ^,9^ 7 fc

We shall show that this form is degenerate, contradicting the
strong pseudoconvexity of 6D. To this end, introduce (°2 coor-
dinates t ^ , . . . , t^ in 2 near 0 so that 0 is the origin of the
r-coordinate system and so that the z^ -coordinate axis is the

b2?(r^ , r^-plane (in To(2)). We compute the derivatives ———(0).
These must be zero since F = 0 on 2 . We have i ^tl

9F.
9t.

2^ 3F ^
<^2 ^a ^i

and so
a'F ^F 9^9^N ^F_ 92^ N

^< Sv a/^.a/^ ^a^a/, ^2 a^ ar/.a/, ,̂ a^a^ ar, ar;
We restrict i and 7 to the values 1 and 2 (independently) and
evaluate at 0. Since rfF(O) = 0, the only surviving terms are
those in the second sum. But also, as the ( / i , ^)-plane in T()(S)
is the z,-coordinate axis on which x^ and x ^ , . . . , x ^ all
vanish, we get

a2? 4
0=T——(0)= 1

a2?
a/y ar, a, 0=3 a^a-x^ W-^W^CO).a/, ar,

Thus we have the matrix equation

r a2?
Qxo = ^3

a/, (0) —- (0)
Oti

9xy Qxy
a2?

9x^ a^3

(0)

(0)

a'F
a^3 a^4

a2?
a^4 a^4

(0)

(0)

Qx,
ax,
a^
a :̂,

(0)

(0)

Since the ( t ^ , ^)-plane in T(,(S) is the same as the ( X y , ̂ -plane,

the vectors (—c3 (0), -c± (0)) , ;• = 1, 2, are linearly independent.
ux! Ul, ' ^2^UA, U(, B'FWe may conclude that the derivatives

9x^ 9xp -(0), a, ^=3,4,
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a2?
all vanish. This implies that -———(0) vanishes contradicting

8z^ 9^2
the strong pseudoconvexity of bD and proving the lemma.

COROLLARY 1.2. - Let dim 2 = N. // t : 2 —> bD is the
inclusion, 1*7? vanishes at no point of 2 .

Proof - For p G 2 , the kernel of r? : Tp(6D) —^ R is
the space T^(&D), an (N — 1 )-dimensional complex space. This
space cannot contain the totally real N-dimensional space T (2).

COROLLARY 1.3. -If /s = / |2 , then f^ is a regular map
from 2 to T, i.e., df^ = 0 at no point of 2.

Proof — The Cauchy-Riemann equations, 3/ = 0, imply
that the form df is of type (1,0) on bD. Therefore, since 2 is
a totally real submanifold of CN , df is determined by its restriction,
df^ , at each point p G 2 . We know that d/ vanishes at no point
of 2 , so df^ can vanish at no point of 2 .

COROLLARY 1.4. — On 2 , the equation r]^ A d^ = 0 holds.

Proof. — Since f^ is regular, the closed real form

id log f^ = — df^ defines a foliation whose leaves are the compact
J - L

submanifolds f^(oc) for a G T . As mentioned in the introduction,
/^(a) is an interpolation manifold and therefore an integral ma-
nifold of r\. Hence kerr^ =ker idlog/^ and, since 77^ and
id log f^ are both nowhere zero, there is a function g on 2 with
gr]^ = id log /^ . The result now follows since

r]^ A d^ = ^-1 rf log /s A (id^-1 A d log /^) = 0.

The following theorem summarizes what we have done so far.

THEOREM 1.5. - Let D be a strongly pseudoconvex domain
in a complex manifold, OTI, bD of class (or, 2 < r < o o . Let
2 C bD be a submanifold of Oil of dimension N and class Q5,
2 < 5 < c o . If there is feA2(D) mth |/ |<1 o/i D\2 wd
1 / 1 = 1 on 2, r/z^i ^ /orm 17 vanishes at no point of 2,
T? A dr? = 0 0/2 2, flTirf 2 J5 foliated by compact integral mani-
folds of the form 77.
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For the theory of fbliations, see [18,24,33].

Remark 1.6. - We also know that 2 is totally real, lemma 1.2.
It is of interest to notice that the condition rf.\dr] = 0 on 2
together with 17 zerofree on 2 implies total reality: If XETp(2)
satisfies JX E Tp (2) and Y E Tp (2) satisfies T?(Y) ^ 0, then
since T? annihilates T^(6D) = Tp(6D) 0 JTp(&D), we find that
T? A A?(Y , X, JX) == 17 (Y) dr](X, JX). This is supposed to be zero,
so as T ? ( Y ) ^ O , d 7 ? ( X , J X ) = 0 , and as dr\ = AfQ = 2 f a 3 Q ,
strict pseudoconvexity implies that X = 0. Thus, 2 is totally real
as claimed.

COROLLARY 1.7. -// dim01c= 2, r/z^ 2 ^ torus or a Klein
bottle.

Proof. - If 311 = C2 and 2 is orientable, the result follows
from the fact proved by Wells [38] that the only orientable compact
totally real manifold in C2 is a torus.

The general case follows from the Hopf Index Theorem (or
Poincare-Hopf Theorem) [20]. Since T? is nowhere zero on 2,
2 has a nowhere vanishing vector field and so its Euler characte-
ristic is zero. Thus 2 is a torus or Klein bottle.

Example 1.8. - Denote by BN the open unit ball in C^
and, for r E ( 0 , o o ) , let rB^ = { r z : z E BN }. If we define
^o : C N — ^ C by <po(z) = z ^ . . . Z N , then l<^ol=l on
TN = { ( e 6 1 , . . . , e16^) : 0,, . . . , 6^ real} and )^ | < 1 on
y^B^XT1^ . Thus, the torus TN is the maximum modulus set
for <^o. It is totally real and if we define Q(z) = [z |2 - N so
that Q is a strongly plurisubharmonic defining function for V^BN ,
then the form 17 is given by

N

7? = ; S z/ d^! - ~Zj ̂ , .
/=1

^ u ̂  - ^ u^

In terms of the parameters 0 ^ , . . . , 0^ , this is seen to be

T? = 2(rf@i 4- • • . + d0^)

which vanishes at no point of T1^ . On TN dr\ = 0 and so, a
fortiori, r] A dr] = 0. The leaves of the foliation of TN defined
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by 17 are the fibers ^^(a), \a\ = 1 , i.e., cosets of the subgroup
(^o^O) in J^ . They are connected.

It is worthwhile to pursue this particular example beyond our
immediate needs for it serves to motivate and clarify some of our
subsequent work. In particular, we have the following result.

LEMMA 1.9. -If f E A(\/HBN ) satisfies \ f\ = 1 on T1^
and | / |<1 on V^KN^ » then there is a f1^6 Blaschke
product b such that / = & ° ^ o ' i ' e ' > f(2) = b ( z ^ . . . z ^ ) .

Proof. — W e have assumed only that /GAC^/NB^) but as
| / |=1 on T1^ , the edge-of-the-wedge theorem [26] implies that
/ is holomorphic on a neighborhood of T1^ . The function / has
the Fourier expansion

/(^...,^)= S ^..^^•••^
7 i , . . . , / N > 0

which converges absolutely and uniformly on T1^ . Unless / is
constant, the differential df does not vanish on TN as follows
from Lemma I.I. (Or, more simply in this case, it follows by noting

that — / ( ^ Z o ) ^ 0 if z.eT^. Each of the fibers /^(a),ds
\0(.\ = 1 , is an integral manifold of the form 17, s o / i s constant
on each fiber ^pQi(a), \a\ = 1 . This implies the existence of a
function F : T —^ C with / = F o ̂  on TN . The function
F is clearly continuous. Let it have the Fourier expansion

F- ^ A,^70.
——00

As F o (?Q = /, a comparison of this Fourier series with that of /
shows that Ay = 0, / < 0, and a- . . ., = = 0 unless /i = • • • = = /N •
The former fact implies that F is the boundary value function of
an element of A(A), call it b, and as | F | = 1 on bA, b must
be a finite Blaschke product. The equality / = b o <^?o holds on T14,
and so it must hold on all of \/NBN , as we wished to prove.

Theorem 2.4 of [27] assures us a priori that the function / of
the lemma is rational and of a particular form, but the present lemma
does not seem to follow immediately from the earlier result.
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COROLLARY 1.10. — The union of two disjoint maximum
modulus sets need not be a maximum modulus set.

Proof. — Let $ be a holomorphic automorphism of \/NBN
such that ^CT^nT^^. If /GA(V^BN) has 4> (T1^) U ̂
as it maximum modulus set, then /(z) = b(z^ . . . z^) as in the
lemma, and this implies that | / |<1 on ^/NBNV^ , contra-
dicting | / | =1 on $(7^.

We have seen in Theorem 1.6 that necessary conditions for
a manifold 2 to be a maximum modulus set are that 17 vanish
nowhere on 2 and that 17 A dr\ vanish identically on 2. An
extreme way in which the latter condition can be satisfied is for
dr] = 0 on 2, i.e., for 17 to be a closed form on 2 . This occurs
in Example 1.9 above. It turns out that by a suitable choice of
defining function for the domain, this can always be achieved.

LEMMA 1.11. -// D, 2 and f are as in Theorem 1.6, then
there is a defining function Q for D such that if ff^d0^,
then 'T] is closed on 2 .

Proof. — The real forms 17 and id log/ have the same kernel
on each tangent space T-(2), p E 2 . Accordingly, there is a

Mzero-free real valued function g on C such that gr^^ = idlog/^
on 2 . This implies that the forms ± gr}^ are closed. As^ is zero-
free, we may suppose that g is positive. The function Q = gQ is
a defining function for D, and dcQ= gd^ + Qd^ . As Q = 0
on bD, we see that on 2 , J^Q = gr^ .

We should remark explicitly that since g is one degree less
differentiable than either Q or /, we have lost one degree of dif-
ferentiability in constructing Q. Also, in general, Q will not be
strongly plurisubharmonic.

That in general 17 will not be closed on a maximum modulus
manifold is illustrated by the following example-.

Example 1.12. - Given e > 0, define Q on C2 by
Q ( z ) = = ( l + e \ z , + Z 2 l 2 ) ( i z | 2 - 2 ) = A ( z ) ( | z | 2 -2) so that
Q < 0 defines the ball \/2B^. The function Q is strongly pluri-
subharmonic near ^/7lB^ if e is small. We know that the torus
T2 is a maximum modulus set for A(-^2B^), but the form dcQ
is not closed on T2 .
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Write T2 = {(e161, e162) : 0^ ̂  real}, and compute dd'Q
in terms of 0^ and 0^ . We have

ArQ==d {( |z | 2 -2)dch + hd0 |z|2}
=d(|z|2 ^AcTA+dzl 2 - ^ A T A + d A A ^ j z l 2 +AAr|z|2 .

On T 2 , |z|2 - 2 = 0 and dd°|z|2 = 0, soon T2 ,
cteTQ = d h ^ d c |z|2 .

We know from Example 1.9 that d° \z\2 =2(d6^ +d0^). Also,
on T2 ,
A ( z ) = l + e ( Z i -r-z^Kz^ + Z 2 ) = 1 + 2 e + e ( Z i 7 2 +^^3)

= 1 + 26 + 2ezs in (0 i -6^) ,

so on T 2 , d h = 2 € i c o s ( 9 ^ - 6 ^ ) ( d e ^ - d e ^ ) . This means that
on T 2 , rf^Q == 4efcos(@i - 0^) d6 ^ / \ d 9 ^ . As this is not the
zero form, fi^Q is not closed on T2 .

Of course, we have seen in Example 1.9 that if we use the usual
defining function i z ]2 — 2 for \/2B^ , then the associated form
r] is closed on T2 .

2. Existence.

We can prove, in the real analytic case, a semiglobal converse
to Theorem 1.6.

THEOREM 2.1. — Let D be a strongly pseudoconvex domain
in the ^-dimensional complex manifold 31Z . Let 2 C bD be an
^-dimensional totally real, real analytic closed submanifold of OTc
that admits a real analytic foliation by (N — 1 ̂ -dimensional inter-
polation manifolds each leaf of which is compact. There is a neigh-
borhood Sl of 2 in Oil on which there is defined a holomorphic
function F such that | F | = 1 on £ , |F |<1 on t2n D\£ .

Proof. — Let 17^ be as in section I and recall that 77^ never
vanishes since 2 is totally real and 17^ A dr]^ = 0. Therefore,
the form 77^ defines a global orientation for the normal bundle
of the foliation, i.e., the foliation is transversally oriented by 17^ .
We may assume, without loss of generality, that 2 is connected.
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As 2 and all the leaves of the foliation are compact, there is a (°00

fibration of 2 over the circle whose fibers are the leaves of the folia-
tion [24, B.III.3, p. 136]. Moreover, since the foliation is real analytic,
there are real analytic coordinates (x^, . . . ,x^) : U^ —^ R with
2 == U U^, U^ open in 2 , such that the foliation is locally given
by the equation x^ = constant and on the intersection U^ H IL,
x^ is an analytic function of x1 only. Therefore, the locally
defined functions x^ descend to the circle to induce a real analytic
structure on the circle for which the submersion defining the folia-
tion is analytic. Hence the foliation is given by a real analytic map
/: 2 —> T. The total reality of 2 implies that / extends
holomorphically to a neighborhood n of 2 in M. Call this
extension F.

We shall show that if S2 is small enough, then either |F| or
11/F| is of modulus less that one on Sl H D\2 . For this purpose,
notice that by the Cauchy-Riemann equations, d log |F | is zero
at no point of 2. Thus, if Sl is a sufficiently small neigh-
borhood of 2 , the form d log | F | vanishes nowhere in Sl, so
V = [z G^2 : log |F| = 0} is a real analytic hypersurface in Sl
which contains 2. We may write ^l == ^.+ U V U ^l~ with
n* = { z e n : ± i o g | F | <o}.

If we choose Sl small enough then it is a complexification
of 2 and by [6 ], each of the fibers F ~ l ( a ) , a E ^ , is a complexi-
fication of the fiber 2^ =/ - l(a). Moreover, in a sufficiently small
neighborhood of 2^, the fiber F~1 (a) meets D only along 2^
[6]. This means that near 2 , the hypersurface V is fibered by the
manifolds F~ l (a) and so near 2 , V H D = 2 . That is, if we
choose fl small enough, then V is disjoint from ^2 H D. Thus,
log | F | is of a single sign on D near 2 , and it follows that
|F| < 1 on D U f t orelse |F| > 1 on D H Sl.

The theorem is proved.
It is interesting to notice that the function F just constructed

plays a certain universal role.

LEMMA 2.2. -// GGA(D) , | G | = 1 on 2 and |G |<1
near 2 in D, then G = ^ o F for some function {p holomorphic
on a neighborhood of T in C, unimodular on T.
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Proof. — The function G is necessarily constant on the leaves
of the foliation, so there is a function < / ? : T —^ T with G = ̂  o F
on T. The function ^p is easily seen to be real analytic. As
/ : 2 —^ T is regular and real analytic, if we fix ?o E T and
ZoG/'"1^), then there is a real analytic map a from a
neighborhood of ?o in T to 2 with / (o(?))=?. We have
then G(a(?)) = <^(F(a(?))) whence <^(?) = G(or(?)) : Locally,
<^ = G o a and so is real analytic.

The function a extends holomorphically into a neighborhood
of T in C. It follows that near 2 , we have G == </? o F.

In this connection, recall Example 1.8 and Lemma 1.9.
The theorem above is stated in a semiglobal way: We do not

assort that there is F E A(D) with 2 as its maximum modulus
set. This is not merely a peculiarity of the proof.

Example 2.3. — Let D C C2 be a strongly pseudoconvex
domain that is a union D = \/^B^ U V where V is a thin neigh-
borhood of the straight line segment connecting the point

(^/T,0)e 6(^/782) with the point ( l , — ) . For an explicit

construction of such domains, one may consult [21 ].
Notice that & D D T 2 and that near T 2 , bD and b(^/2B^)

agree. The torus T2 is foliated by compact interpolation manifolds
but there is no /EA(D) with T2 as its maximum modulus set.
By Lemma 1.9 such an / would be of the form b(zw) for a finite

Blaschke product b, and so /(2, ^-) = |&(1)| = 1 . As

(2 , —) E D, the maximum principle shows that / assumes values
of modulus greater than one.

A moment's reflection shows that there is also a local version
of Theorem 2.1.

THEOREM 2.4. — Let D C C1^ be a strongly pseudoconvex
domain, let 2 CbD be a closed totally real, real analytic subma-
nifold of an open set ft in C^ . Assume 2 to admit a real analytic
foliation by (N-l )-dimensional interpolation manifolds. If p G 2 ,
there is a neighborhood U of p in C^ on which there exists a
holomorphic function F with \ F | = 1 on 2 H U but
|Fp| <1 on Up H(D\2).



MAXIMUM MODULUS SETS 49

Proof. - The foliation hypothesis implies that we can choose
real analytic coordinates ^, . . ., t^ in a neighborhood of p in
2 so that locally the leaves are given by t^ = constant. If g is a
function holomorphic near p and agreeing on 2 with ^, then
F = e18 is holomorphic near p and of modulus one on 2 . The
local geometric analysis in the proof of Theorem 2.1 applies, mutatis
mutandis, to show that in D near p , |F |<1 or else | F | > 1 ,
and the result follows.

f fi ifi
Thus, for instance, in b(2B^), the torus T^ = (a^e 1 ,a^e 2)

with a2 + aj = 4 and o^/aj irrationnal is foliated by interpolation
curves that are dense in T^. Accordingly, T^ is not a maximum
modulus set. Locally, however, it is. Near any point of T^, a suitable

locally defined branch of the function z2^7, 7 = 2/—2-^ , takes
its maximum modulus along 2 . al

Theorem 2.4 is generally applicable in the two-dimensional case.

COROLLARY 2.5. — 7/ 2 C bB^ is a totally real two-dimensional
real analytic submanifold, then locally 2 is a maximum modulus set.

Locally is here understood in the sense of the conclusion of
Theorem 2.4.

Proof-The total reality of 2 implies that 77 = d° \z\2

vanishes at no point of 2 , and as 77 A drf is a 3-form, it is the zero
form on 2. Thus 2 is foliated by integral curves of 17, and
Theorem 2.4 applies.

We conclude this section by exhibiting an extensive class of
examples.

Examples 2.6. - We know that not every manifold of real di-
mension N can be realized as the maximum modulus set of a func-
tion on a domain in an N-dimensional manifold, for we have seen
that maximum modulus manifolds can be fibered over the circle.
It turns out that this is the only obstruction.

Thus, let 2 be a compact real analytic manifold and let
r : 2 —^ T be a real analytic, regular map. Let OTI be a Stein
complexification of 2 chosen small enough that r extends
holomorphically to the element FG©(OTc), F zero-free. The
manifold 2 is totally real in J1Z and so [23] is the zero set of a
nonnegative (S00 strongly plurisubharmonic function Q.
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Let JT6' = {z G J]Z : |F(z) | < 1} so that 2 C b OTT . The
function | F | is real analytic on JTc, and d \ F 1 =^ 0 at each point
of 2 . To see this, let p G 2 and choose a real analytic map

V/ : (- 1 , 1) —^ 2 with V/(0) = p and —(r o V/) zero-free.
a^

Then ^/ extends holomorphically to a neighborhood U of ( — 1 , 1 )

in C, and F o ^/ is holomorphic on U. Since — F o \b is zero-
dz

free at each point of (-1,1), it follows that r f | F | ¥ = 0 at p .
For a suitable small e > 0, the function Q^ = Q + e | F |

is strongly plurisubharmonic on OTI — we may need to shrink OTI a
b i t — a n d rfQg is not zero on 2 (because rfQ is and d|F| is not).
By shrinking OTc further if necessary, we may suppose that dQ^
is zero-free on OTc . The domain D^ = {z € OFc : Q^ < e} has
strongly pseudoconvex, possibly noncompact, <000 boundary. The
manifold 2 is contained in 6D^, and the function F satisfies
I F I = 1 on 2, |F(z)| <1 on D^\2 .

Since the manifold 2 is totally real, it has a fundamental
neighborhood basis consisting of strongly pseudoconvex domains.
Let D' be such a domain. Then D^ H D' is a relatively compact
domain with & ( D ^ n D ' ) smooth except at 6 D ^ n 6 D \ It is
possible to smooth b(D^^}Df) near 6 D ^ H f r D ' to obtain a
smoothly bounded domain D C Dp H D' with bD = &Dg near
2 . (For the details of this kind of smoothing process, see [35]).

The upshot is that D is a strongly pseudoconvex domain in
a Stein manifold JTl, dim 3TC = N = dim 2 , with 2 C bD, and
FG©(D) has 2 as its maximum modulus set.

As a corollary of this construction, it follows that every compact
(real analytic) manifold of real dimension N — 1 can be realized
as an interpolation manifold in the boundary of a strongly pseudo-
convex domain an N-dimensional manifold. Given 2^ with
dimR 2o = N - 1 , the manifold 2 = 2^ x T fibers over T with
2^ as fiber.

For some related material on interpolation manifolds, see [11].

3. Some interpolation sets.

We can apply the preceding ideas to exhibit certain peak inter-
polation sets.
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Fix a strongly pseudoconvex domain D in a complex manifold
c^, and suppose that bD admits a real analytic strongly plurisub-
harmonic defining function Q.

THEOREM 3.1. - Let ^ be the characteristic vector field of
the contact form 17 = d^Q. Let ^ : R x bD —> bD be the
flow generated by { , and let 2 C bD be a real analytic (N - 1)-
dimensional interpolation manifold. If E C R is a closed set of
measure zero, then every compact subset of ^(E x 2) is a peak
interpolation set for A(D).

Proof. — Closed countable unions of peak interpolation sets
are peak interpolation sets as are closed Subsets [34], so it suffices
to prove that if PQ = (^ ,?o) E E x 2 , then there is a compact
neighborhood V^ of PQ in E x 2 such that ^(V^) is a peak
interpolation set.

Recall that the forms 17 and drf are both invariant under
the flow </?. This implies that for any interpolation manifold 2'
and for any choice of r , the manifold 2 ^ = { < ^ ( r , s) : s G 2'} is
an interpolation manifold.

The property 17 (0 = 1 shows that ^ is everywhere transverse
to the spaces T^(&D), and as Tp(2)CT^(6D) for each p ^ b D ,
it follows that the map </? is regular from R x 2 into bD. Thus
there is an open set UQ in R x 2 containing P^ that is carried
by (p bianalytically onto a (closed) real analytic submanifold
</?(Uo) of a neighborhood UQ of P^ =</?(Po).

Let g : ̂ (Vo) —^ R be the real analytic map given by
gWt.P)) = t.

LEMMA 3.2. - The form (p*dr] is zero.
We defer the proof of this lemma for the moment.
The lemma implies that dr\ is the zero form on the (immersed)

manifold (^?(R x 2 ) , and thus that this manifold is totally real.
Consequently, the function g can be extended holomorphically
into a neighborhood of Ug in the ambient complex manifold.
Call the extension G. Our geometric analysis shows that near
PO in D, ImG is of a single sign, and so if we set F = ^ ± I G ,
then ]F| = 1 on U^ and, if we choose the correct sign, |F| < 1
on the part of D near UQ .
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Suppose now that VQ is a compact neighborhood of P^ in
E x 2 , Vo C Uo. Under the map F, the set <^(Vo) goes onto
a closed set, say S, of measure zero in the circle T. The classical
theorem of Fatou [15, p. 80] implies the existence of an A E A ( A )
with S as its zero set. The function h o F is holomorphic on
F'^A), it has continuous boundary values along the part of bD
near U^, and it vanishes on (/?(Vo). The work of Weinstock [37]
implies that compact subsets of ^(V^) are peak interpolation sets
for A(D) and the proof is complete, subject only to the verification
ofthelemma(*).

/^ /^
Proof of the lemma. — Let X and Y be local vector fields on

^ a ^ a
R x 2 . They can be expressed as X = a — + X and Y = & — + Y

6t of
where X and Y are vector fields tangent to 2 . As <^ is the flow

a
generated by { , we have <^ — = $, so

6t
^dr](X. Y) = rfrKaf + <^X, b^ + ̂ Y).

We have S J r f 7 ? = 0 , so this is rfi7(<^X,<^Y) which is zero since
<^X and (^Y are tangent to 2^. Thus <^di? = 0 as claimed.

In the case that D = B^ C C^ and we take the standard
defining function Q(z) = |z|2 — 1 , the characteristic vector field

S is given by Sp(/) = — (f(eit p))\^Q, and the flow ^ is given
by ^ ( t , p ) = e i t p .

Certain potential extensions of the result just proved come
to mind. First, it is reasonable to wonder whether, in the context
of the preceding result, the interpolation manifold 2 can be re-
placed by an arbitrary interpolation set.

Example 3.3. - Let SC [0,1] be the usual Cantor middle

third set. The set E = (—— e1^, —_ e1"6) : 60S CbB^ has

(*) There is a slight problem about applying Weinstock*s results in the present
context, for he is working on domains in CN . The extension to arbitrary strongly
pseudoconvex domains offers only technical resistance. One way to proceed is as
follows: Blow the maximal compact subvarieties of D down to points [13 p. 232]
to obtain a Stein domain D'. We have that D' and D have the same structure
at their boundries. Embed D' as a variety D" in a strictly convex domain C in
C1^ by the imbedding theorem given in [12]. If we use the fact that in this setting,
elements of A(D^) extend to elements of A(C) [ 12] every thing follows.
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zero linear measure and so is a peak interpolation set [9](*). Since,
however, S + S = {s 4- t : s , t^ S} = [0,2], [40, p. 235], the

set U { ^ E : 0 G S } is the circle j (——^,——^ 1 0 ) :0E[0 ,27r] !
which is not a peak interpolation set. v v

The second point that arises naturally is this: Might it be possible
to replace the flow ^ of the theorem by an arbitrary flow subject
only to the condition that it be transverse to the complex directions?
Such a generalization is not possible because in general, such a flow
will not carry interpolation manifolds to interpolation manifolds.

4. Uniqueness.

In this section we shall develop in more detail the matters
introduced in Lemmas 1.9 and 2.2.

We fix a strongly pseudoconvex domain D in a complex
manifold JH and in bD a (°3 submanifold S of dimension
N = dim 3Tc. Briefly put, the content of this section is that there
are very few functions /EA^D) with 2 as maximum modulus
set: Any two such functions are necessarily analytically related.

THEOREM 4.1. -Assume DCC^ and that D is polynomially
convex. If f,gEA2(D) have 2 as their maximum modulus set,
then there is a polynomial P in two complex variables such that
P(f.g)= 0 on D.

The proof of this will depend on some facts about the coho-
mology of Runge domains. According to Andreotti and Narasimhan
[2], if W C C14 is a Runge domain, then the integral homology
groups H^(W,Z) vanish when r > N and H N _ I ( W , Z ) is torsion
free. It follows that if, in addition, W is strongly pseudoconvex,
the cohomology groups H''(W, Z) vanish for r > N(**). Our applica-
tion of this fact is by way of the following lemma.

(*) The present example is simple enough that it is easy to see directly,
without appeal to Davie-^ksendal, that E is a peak interpolation set.

(**) The universal coefficient theorem yields the exact sequence
0 —^ Ext(H^ (W, Z), Z) —> H'W . Z) —^ Hom(H^(W, Z), Z) —> 0.

Since H^_i(W,Z) is torsion-free and finitely generated, it is free, and so
Ext(HN_i(W, Z), Z) = 0. Hence, Ext(H^_i(W, Z), Z) = Hom(H^(W, Z), Z) = 0
for r > N whence the result.
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LEMMA 4.2. — No compact ^-dimensional topological manifold
in C^ is polynomially convex.

Browder's theorem [5] covers the orientable case. The proof
given below is simply a rewriting of the earlier proof, using the result
of Andreotti and Narasimhan.

Proof. — If 2 is a compact, polynomially convex set, then
00

2 = H V, with V, D V , , . . . . each V, a Runge domain.
7 = 1

Accordingly, H N ( V y , Z ) = 0 , so by a theorem of Cartan [7] on
the continuity of cohomology, H N ( 2 , Z ) = = 0 . If 2 is an N-
dimensional topological manifold, V^(Z , Z) ¥= 0.

We now take up the proof of the Theorem.
Define $ : D—> C2 by $ (p) = ( f ( p ) , g ( p ) ) . The set

7 == <&(2) is a compact subset of the torus T2 with finitely many
components.

Set /^ == /12 and g^ = g \ 2 . By Lemma 1.4, df^ and
dg^ are both zero-free on 2. Also, at each point p of 2 , they
have the same kernel, viz., Tp(2) H T^(bD). Thus, the map
<1>^ = 4> 12 has real rank constantly one on 2. By [19, Theo-
rem 13.2], 7 is an immersed (01 curve in T2. In particular, it
has finite length, i.e., one-dimensional Hausdorff measure.

The set 7 is not polynomially convex. Assume, for the sake
of contradiction, that it is. By the Oka-Weil and Stone-Weierstrass
theorems, ^(7) = (°(7) if %(7) denotes the algebra of functions
uniformly approximable on 7 by polynomials. Consequently,
%(2) ^ $*(°(7) = {(^?o $ : <^e 6(7)} because, by polynomial
convexity and the fact that ®(D) is dense in A(D), the functions
/ and g are uniformly approximable on D by polynomials. Ac-
cordingly, the maximal sets of antisymmetry for the algebra %(2)
are contained in the fibers ^'^p), p ^ j . Each of these fibers
is contained in a set of the form f~l(a), a € T , and as this /-fiber
is a peak interpolation set, it follows from Bishop's generalized Stone-
Weierstrass theorem [3,34] that %(2)=(°(2) . This implies that
2 is polynomially convex. However, by the lemma above, C^
contains no compact polynomially convex N-dimensional manifolds.

As 7 is a set of finite length with finitely many components,
a theorem of Alexander [1] implies that 7, the polynomially convex
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hull of 7, has the property that 7X7 is a purely one-dimensional
analytic subvariety of C2^. Set E = 7X7.

Since 7 C T2 , E C A2 where A2 is the closed unit bidisc
in C2 . Let the decomposition of E into global branches be

E = (E\ U E; U . . .) U (E'/ U E^ U . . .) = E' U E"

where each of the branches E. meets AA^T2 and none of the
branches Ej' does. If p = (a, j3)GEj with, say |a| = 1 , |^| < 1 ,
then by the maximum principle, E^'C {(a,^) : |^| < 1}, and,
indeed, Ej must be this disc. As 7 has finite length and contains
&EJ, it follows that there are at most finitely many E^(*). It
follows that there is a polynomial P' of the form

Hz, w) = (z - a,) . . . (z - a,) (w - j3 i ) . . . (w - j3,)
that vanishes on E\

The set E'^ is closed in A^T2 , for if not there is a sequence
{^(JiT^i °f points in E" with q^ —> ^E^A^T2 . Each E^
is closed in C2^ and disjoint from AA^T2 , so if < 7 f i ^ E ' ^ ,
the sequence {/(£)}^=i contains infinitely many distinct integers
and we reach a contradiction to the local finiteness of the family
of global branches of E.

Thus E^ is purely one dimensional subvariety of A2 with
A E ^ C T 2 . A theorem of Tomehave [30] yields a polynomial P"
with E" the part of the zero set of P" contained in A2 . The
product P = P'P" is a polynomial vanishing on 7X7.

If P = 0 on 7, we are done, for then P o $ is an element
of A^D) that vanishes on the N-dimensional totally real manifold
2 C & D . A theorem of Pinchuk [22] implies that P o < & vanishes
identically on D, and the theorem is proved.

It is not obvious that P vanishes identically on 7. It is clear,
though, that P vanishes on 6E. This is a closed subset of 7, and
it must have positive length: If the one-dimensional Hausdorff
measure of E\E is zero, then by [27, Cor. 4.2], there is A € A(A2)
with h = 0 on E\E and h vanishing nowhere else on A2 . The
function h violates the maximum principle on the variety E.

(*) In fact, there are no E- , but that is irrelevant for our purposes.
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If p ^ 7 , then the fiber ^~l(p) is an (N — 1 )-dimensional
submanifold of 2 and so has positive (N — 1 )-dimensional Hausdorff
measure. As $ is of class (°1, an inequality in the theory of
Hausdorff measures [10, 2.10.25] implies that ^(EXE) has
positive (N-dimensional) measure. As P o < & vanishes on ^"^(EXE),
a strengthened version of Pinchuk's theorem given in [28,17] implies
that P o $ vanishes identically, so the theorem is proved.

The preceding theorem hypothesizes the global condition of
polynomial convexity, and the polynomial convexity was involved
at several turns in the proof. It is easy to give an example showing
the necessity of this hypothesis.

Example 4.3. — Let ^ be a function holomorphic on a neigh-
borhood of the unit circle T, of modulus one on T, and trans-
cendental. (For example, let ^ be a conformal map of the annulus
^1/2 = {?^^ : 1/2 <^ 1?1 <^ 1} onto an annular domain G bounded
by i ? I = 1 and a simple closed nonalgebraic curve J in the unit
disc with ^ ( T ) = = T . By the Schwarz reflection principle, f
continues analytically to a function ^ holomorphic on a neigh-
borhood of T). Let D C \/2B^ be a strongly pseudoconvex domain
with T2 C bD and so small that if f(z , w) == zw , then /(D) C R^ .
Then / and g = </? o / both lie on (9(D) and both have the torus
T2 as their maximum modulus set. Since ^ is not algebraic, / and
g cannot be polynomially related.

However, even in the general case, we have analytic dependence
near 2 as our next result shows.

THEOREM 4.4. — Let D be a strongly pseudoconvex domain
in the complex manifold OTc, bD of class (or, 3 < r < o o . Let
2 C b D be a closed submanifold of dimension N = dim OTI, 2
of class (33, that is the maximum modulus set of the functions
f, geA2(D). If $ = (f,g) : D —> C2, then there is a neigh-
borhood V of $(2) in C2 and on V a nonconstant holomorphic
function h such that h o $ vanishes on D near 2.

The proof of this theorem depends on finding certain analytic
discs that abut 2 at prescribed points.

LEMMA 4.5.-// 2 o C & D is a ^, 3 < k < r , totally real
submanifold of dimension N in an open subset of & D , and if
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p ^ 2o » r/z^ ^<^ ^ ^ holomorphic map ^: A —> D such that
(^-2) E LipJT) for an a E (0,1) and such that ^ ( l ) = p and

(^)e2o if \6\< ^-.

This lemma is not essentially new; we relegate its discussion
to Appendix B.

Proof of the theorem. - The manifold 2 is totally real, so
we may invoke Lemma 4.5: If p € 2 , there is a holomorphic
map < / ? : A —> D with continuous boundary values such that

^ ( l ) = p and <^(^)e&D for \e\<L The functions ?=fo^

and ? = g o ^ lie in A (A) and have boundary values of modulus

one along the arc A = { e 1 6 : |0| < L} Accordingly, they continue

analytically across A. Let W' be a connected open set in C contain-
ing A and into which / and ? both continue analytically. Neither
df nor dg vanishes at any point of A. Thus, if W is a small disc
in C^ centered at 1, W C W', then the map $ : W —> C2 given
by ^ = (/ , f) carries W onto a complex submanifold of a neigh-
borhood Vp ^ f ^ > ( l ) = 0 ( p ) . By choosing FC©(Vp) a defining
function for $(W), we have F o $ = 0 whence F o $ vanishes
on <^?(A). It follows from the functional dependence of /|2 and
g 12 that a neighborhood of p in 2 is mapped into $(A).

We have shown then that the set $(2) has the structure of
a one-dimensional real analytic set and, moreover, that it is locally
a finite union of analytic arcs. It follows [7, pp. 88 and 95] that
$(2) is a coherent real analytic set, and consequently [39], 4>(2)
has a complexification in C2: There is a complex variety E in a
neighborhood V^ of $(2), dim E = 1 , that is a complexification
of <&(E). In particular, E H T2 = 0(2).

We may take the neighborhood V^ to be a connected domain
of holomorphy, say a product of two annuli, so that there is certainly
a function h E ©(V^), h not identically zero, with h = 0 on E.
Then h o $ vanishes on 2 , and so on each component of ^"^(V )
that meets 2 , for by Pinchuk [22] 2 is a uniqueness set.

The theorem is proved.

It is possible to refine the analytic dependence of the last theorem
to algebraic dependence if we impose certain additional geometric
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conditions. Our treatment will be based on a theorem contained in
[32]. (See also [32a].)

Let OTc be a complex manifold. It is possible to assign to
each nonconstant /G ©(OTc) a Riemann surface Ry, a surjective
holomorphic map oy : OTc —^ Ry and a function FE ©(Ry) so
that

( 1 ) / = F o o y .
(2) The induced map oy* :7r^(OTl) —>t Tr^(Ry) of funda-

mental groups is surjective.
(3) Given ^E(£)(OTc) with df A dg = 0, there is a biholo-

morphic map x ^ R/ —^ ^g with Og = \o a^.
Consider now Oil, D, 2, /, ^, and $ as in Theorem 4.4,

and assume £ connected. The nowhere vanishing form rf^ defines
a codimension one foliation of 2 by compact manifolds. Fix a
smooth simple closed curve 7 in 2 that is transverse to the leaves
and meets each leaf exactly once.

Denote by [ 7 ] G H ^ ( 2 , Z ) the homology class of 7, and
let Me be the image of [7] in Hi(D, Z) ^ H^(D, Z)_ under
the map of homology induced by the inclusion of 2 in D. The
homology class [7] is never trivial, but [j}^ may or may not be
trivial.

THEOREM 4.6. — // [7][) is trivial, then there is a nonzero
polynomial P in two variables with f(f,g) = 0. Moreover, if the
curve 7 is homo topically trivial in D, then there is ^EA(D)
with 2 as its maximum modulus set and with the further property
that if h € A2 (D) has 2 as its maximum modulus set, then
h = B o <^ for some finite Blaschke product.

Remark. — The function ^ is essentially unique, for if ^/ has
the same property, it is clear that ^ == X ° ^» X an automorphism
of the disc.

Proof. — Assume [7]^ trivial. By the preceding theorem, we
know that df/\dg==0 near 2, and so, as D is connected,
df A dg = 0 throughout D. The result quoted above yields a
Riemann surface R, holomorphic functions F, GG©(R) and
a surjective holomorphic map a : D —> R with / = F o a ,
g == Go or.
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The map a induces a surjection of fundamental groups, so
TT^(R) is finitely generated. We may, therefore, assume that R is
a domain in a compact Riemann surface R* with bR a finite set
of points together with a finite family of analytic simple closed
curves.

LEMMA 4.7. — The map a extends continuously to D U 2 .

Proof. — By connectedness, all the limit points of a at 7 lie
in a single component, S, of b R.

The component S is not a point, for if it were, then by the
Riemann removable singularity theorem F would continue holo-
morphically through the point and from / = F o a would follow
that / is constant on 7.

Put a smooth metric on OTc and, with respect to this metric,
let Hp denote the unit inner normal to bD at p G f t D . Let
To : T —^ 7 be a diffeomorphism, and define

r : T x [0,eo] -^ DU7

by r(^0 , r ) = To((?10) + r^^A?). If CQ > 0 is small enough,
then T carries T x [0, ej diffeomorphically onto a thin ribbon
W in D U 7 abutting 7. As / :7 —> T is a covering map,
/ o r will carry an annular domain A in T x [ 0 , e J as a X-
sheeted cover onto an annular domain A" = {z E C : r^ < | z [ < 1}
in A . As / = F o a , it follows that a o r takes A onto an annular
region A' in R as a X'-sheeted cover, and F carries A' onto A"
as a X" sheeted cover, X ' X " = X . One boundary component of
A' is S, and we see that | F | —> 1 at S .

Consequently, as S is an analytic curve, F continues analy-
tically across S - this follows from the edge-of-the wedge theorem
[26]. In the same way G continues across S .

Since F continues analytically across S and dF ^ 0 on S,
we can use local inverses of F together with the equation F o a = /
to see that, in fact, a extends continuously to D U 2 , as we wished
to show.

Notice that since /: 7 —> T is a covering map, the map
a : 7 —^ S is also a covering map of degree X'.
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The map a induces a map of homology a^ :
H , ( D U 7 , Z ) -^ H , ( R U S , Z ) ,

and as MD == °. it follows that (^(Mo) = 0- Since H i ( R U S , Z )
is free abelian, this implies that the homology class [S] is zero since
M[7]D)=^[S] is zero.

The exact homology sequence of the pair ( R U S , S ) includes
the segment H^RUS.S .Z) —^ Hi(S ,Z) J^ H i ( R U S , Z ) .
As Hi (S ,Z) = Z and ^ = 0 because [S] is trivial, it follows that
H^ (R U S , S, Z) =^ 0. This group is isomorphic to H^ ((R U S)/S, Z)
if (R U S)/S denotes the space obtained from R U S by collapsing
S to a point. However, (R U S)/S is a 2-dimensional manifold which
must be closed as it has nonzero second integral homology.

We now have that b R consists of a single component, S, and
we see that we may take for the surface R* the double of R with
anticonformal involution /x : R* —> R* that has S as its fixed
point set. As F and G take modulus one along S, they continue
meromorphically to R* by the Schwarz reflection principle. Since
compact Riemann surfaces are algebraic, there is a polynomial
relation P(F, G) == 0 whence P(F o a . G o a) = 0, so that
P(/» g) = 0 as claimed.

This proves the first part of the theorem (subject to the veri-
fication of Lemma 4.5).

Let us now take up the more restrictive hypothesis that the
curve 7 be homo topically trivial in D (and hence, in D U ^ ) . In
this case the boundary component S considered above is homoto-
pically trivial in R U S, and this implies that R is itself simply
connected. Thus, we may assume R = A so that R* is the
Riemann sphere.

Suppose given h G A2 (D) with S as its maximum modulus
set. We have that h = B o a for some B £ ©(A), and the function
B extends holomorphically across 6 A . As | B | = 1 on &A, B
is a finite Blaschke product.

The one remaining point is to see that a€EA(D) . We know
that a€©(D) and that it extends continuously to D U 2 . Choose
an h € A2 (D) with 2 as its maximum modulus set and write
A = B o a . Since for each ? ^ A , the fiber B"^) consists of
only finitely many points, o extends continuously to D.
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Remark. — If we write B~1 o h = a, a local equation valid
for a suitable branch of B~1 , we see that, in fact, a has <°2

boundary values off a-^^C A :JB'(?)) = 0}). In particular, a
has (°2 boundary values near 2 in D.

5. The dimension of maximum modulus sets.

The context of this section is somewhat more general than that
of the preceding sections in that we relax all smoothness hypotheses.
Our result is this :

THEOREM 5.1. — / / D is a strongly pseudoconvex domain in
the ^-dimensional complex manifold OTC and if E C bD is the
maximum modulus set of an f G A(D), then dim E < N.

Notice that we do not assume any smoothness on E, and we
do not assume the continuity of the derivatives of / a t bD.

The dimension of E is understood in the topological sense.
See [16] for dimension theory.

COROLLARY 5.2. — The dimension of a peak set in bD does
not exceed N.

Rudin [25] conjectured that a peak set has dimension no more
that N - 1 .

The proof of the theorem requires some lemmas. Fix a function
/o^A(D) with l / o l ^ 1 on E and l / o l < 1 on D\E' Fix also
a domain D, DCCDC01Z with C(D) dense in A(D). Fo ra
subset S of the circle T. let Eg =/^(S) C E.

LEMMA 5.3. —If S is a proper closed subset of T, then Eg
is ©(D) convex, and 0(D)\E is dense in e(E).

Proof. — Denote by CXg the closure of the algebra ©(D^Eg
in <°(Eg). We have /o |EE(S tg , so since /o(Eg) C S is a proper
subset of T, it follows that % (f^ (Eg)) = e (/^ (Eg)). Thus,
^ g ^ { ( ^ ° / o : <^e <°(/Q(E))}, and thus the maximal sets of anti-
symmetry for C£g are contained in the fibers E/.i = /o"^?).
However, for ^ E S the fiber Er^. z, if not empty, is the zero



62 Th. DUCHAMP AND E.L. STOUT

set of a function in A(D), viz,, the function / — ?o> an(* so ls a

peak interpolation set for A(D) [37]. Thus A(D)|E^. = e(E^. ),
and Bishop's generalized Stone-Weierstrass theorem implies that
the subalgebra of (°(Es) generated by A(D) |Eg is dense in e(Eg).
As 0(D) is dense in A(D), we have (S£g == <°(E) as claimed.

In the same way, we see that if QLj is the subalgebra of
e(E) = <°(ET.) generated by © ( D ) | E and the reciprocal of
/ o l E , then S . r==<°(E) . (Of course, 0.^ == QLj if /o(E) is a
proper subset of T.)

In particular if D C C^ and D is polynomially convex,
say a ball or a convex domain, then E is rationnally convex,
and C%(E) ^ <°(E). In general, of course, a maximum modulus
set, even in bB^ , will not be polynomially convex.

LEMMA 5.4. — // X is a compact metric space "with the
00

property that X = U Y,, each Y. a closed subset such that
7=1 / /

<°(Y.) admits a system of N generators, then dim X < N.

Proof. — If E C Y. is closed, then 6(E) is generated by N
functions, say /i,. . . , /N • The set

E+ = {(f,(x\...,f^x)):xeE}
. 00

is polynomially convex so E' = n W^ , W^ a strongly pseudo-
f c = i --

convex Runge domain, W^ D W^ ^ ... Thus, H^E , Z) = 0.
Consequently, for each closed set E C Y y , the map

H^Y^-.Z)—> H^(E.Z) dual to the inclusion E C Yy is sur-
jective. If follows that dim Y, < N [16, p. 151]. The Sum Theorem
[16, p. 30] implies dim X < N , and the lemma is proved.

Of course if we replace (3(E) by the algebra <°R(E) of real-
valued continuous functions, the corresponding statement is trivial,
granted the Sum Theorem.

Proof of the Theorem. - Let p e E, and let Wp C B be a
neighborhood that is mapped biholomorphically onto a ball in
C^ by the coordinates z ^ , . . . , z^ .

By Lemma 5.3, there is an open subset Ep of E with Ep C Wp
and with 6)(D)|Ep dense in C(Ep). As W p C D , ©(Wp) |Ep is,
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a f onion, dense in <°(Ep), so Q(~Ep) is generated by z ^ , . . . , Z N .
By Lemma 5.4 the dimension of E cannot exceed N.

Appendix A.
Intersections of strongly pseudoconvex domains.

We now revert to the proof of Lemma 1.2 to show that the
method used there yields the following result.

THEOREM. — // D^ and D^ are disjoint strongly pseudoconvex
domains in a complex manifold OTI such that D^ H D^ = 2 , 2
a (°2 submanifold of OTI then 2 is totally real.

This settles a question left open in [35]. We refer to that paper
for a discussion of this and related matters.

Proof. — Let p G 2 and suppose 2 is not totally real at p .
Choose holomorphic coordinates Zy = ^2/-i + ^if near P so

that p is the origin of the z-coordinate system, so that
T^(6D^) = T^(bD^) is the complex subspace z^ == 0 and so that
the x^ -direction is normal at 0 to bD^ (and so to bD^). Thus,
replacing z^ by — z ^ if necessary, we may assume that near 0,
D^ is given by x ^ < F ( x ^ , z ' ) , z ' = = ( z ^ , . . . , z ^ ) and D^ is
given by x ^ > G ( x ^ , z ' ) where F < G . Finally, as 2 is
assumed not to be totally real at 0, we can assume that the line
z^ = Z3 = • • • = ZN == 0 is tangent to 2 at 0.

As in the proof of Lemma 1.2, choose coordinates ^ , . . . , t^
in 2 near 0, k = dim 2 , so that the (^ , ^)-space in To (2)
is the same as the z^ -space.

Since 2 C bD^ H & D ^ , we have F = G on 2, so far all
a'F a'G

1 9 ] ' ^ ^ = iTTT at each point of 2 •Otf Ot, Otf Of,

But also, we again have

a^ _ ^ J^L.^^ ^ a^ a^a^
ar,3r, ^2 3^a 3^^ a, ̂ =2 3^^a ^/ 3^

with a corresponding equation involving the derivatives of G.
Restrict i and / to the values 1 and 2 and evaluate at 0 to get
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-q^o), i ''•L (o)^(o)^(o)
H-^i a,^=3 ^a9-^ 8f/ ^

and

^(0)» i -q- (0)^(0)^(0).ar, ar, ^=3 a^ a^ ar, ar,

As the ^-derivatives of F and G agree, and as the matrix (—OL)
^bti " i -=1,2

B^G B2? a=3'4
is nonsingular, it follows that -—-— (0) = ——-— (0), a, (3 = 3,4.9x^ 9x^ 9x^ 9x^

a2? a2G
Thus, ———— (0) == ————— (0).

oz^ oz^ az^ Bz,
a2? B2G

By strict pseudoconvexity, -——— (0) < 0 and ——— (0) > 0.^ , . . . ,. ,. oz» oz^ oz^oz^This is a contradiction. 2 2 2 2
Thus, 2 is totally real.

Appendix B.
Proof of the Lemma 4.5.

Lemma 4.5 is essentially contained in Pinchuk's work [22].
The proof given below follows Pinchuk closely but uses the splendid
innovation of Hill and Taiani [14] of basing this kind of result on the
implicit function theorem,

Given p € So , choose holomorphic coordinates z ^ , . . . , z^
on C^ so that p is the origin, so that

To(2o)== "^ {(^...^N)^ ^.....x^R}
and so that near p , D is described by

D = { ^ N <G(^, . . . , X N , ^ I , . . . ,^N-1)}
for some function G of class (f with dG(0) = 0. Near 0 the
manifold SQ can be represented as a graph

So = {x ^ih(x) i x E R 1 ^ }
for some (3^ function h : R^ —> R^ with h(0) = 0, dh(0) = 0.

Denote by e^fT.R^ the set of all Revalued functions
on T whose k^ -derivatives satisfy a Holder condition of order a,
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a G ( 0 , l ) , and denote by e^CT^R^ the subspace consisting
of those functions taking the value 0 at 1 € T .

Define an operator T by the condition that for a function /
on the unit circle, T/ is the (boundary value of the) conjugate
Poisson integral of /. Thus, / + Hf is the boundary value of a
function holomorphic on the unit disc and real at the origin. It is
clear that we can let T act on Revalued functions. A theorem of
Privaloff (see [14]) shows that T acts as a bounded linear operator
from (^(T^) to itself.

The map / —> /(I), call it E, is a continuous linear map
from e^CT.R^ onto R N , so if we regard RN as a subspace
of e^CT.R^, we may define S^^T.R^ —^e^CT.R^
by S(/)= T(/)-E(T(/)). Also, as h is of class (^, we can
define a map H : (^-^(T, R^ —^ (^-^(T , R14) by H / = = A o / .
Lemma 5.1 of [14] shows that H is of class Q1.

Fix a e°° function u^ : T —> R with u^(eie)=0 if
I 0 | < ^ , ^ (^ )<0 if Q ̂ (^^Y and define ^Ee^T.R")

by ^(^)=(0, . . . ,0 ,^(^)) .
For { G R , define F^ : ef-^O-, R^ —^ (^-^(T^) ^y

F^(x) =;c - S(Ao;c) - ^S^
=( I -SH)JC - ̂ Su.

If .v G e^ "^"(T , R^^) is a zero of F^, $ ¥= 0, that has small norm,
then .x + i(h o x + ^u) is the boundary value of a function
< ^ : A —> C^ holomorphic on A and of class Qk~2foi on A

such that <^(^)E&D when 0<1 and < ^ ( 1 ) = 0 . Moreover,

<^(?)eD when ? G A is near the right half on T. (Note that ^
is not constant, for the only constant in (^"^(T, R1^) is zero,
and zero is not a solution of F^ = 0 for { ^= 0).

Thus, we have to find small solutions of F. = 0 for $ =^ 0.
To do this, notice first that as S is linear and H of class <0 1 ,
F^ is of class Q1. Compute the derivative DF^. We have
DF^(x) = (I - So DH)x for all x . By referring to [14, proof
of Lemma 5.1] or by computing directly, we find that the differential
DH is the linear transformation ef-^Cr.R14) —^ e^^O-, R1^)
effected by the matrix
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DI A, ox . . . DN/ZI ox

D I / I N ° - < • • • O N ^ N " ^

so that for x and y in e^-2'"^, R14),

DHOc) ( jQ=(^ ( ( D , A i ) o x ) ^ , . . . , S ((D,/^)0^.).| 0

' 1 = 1 1 = 1
v .' — 1 » — 1 /

Since dh(0) == 0, it follows that DH(0) = 0, so by continuity,

if 11^11^2^ <5 then | | D ( S o H ) ( x ) | ^ _ ^ = I I S ° D H ( x ) | | < ^ .

According to [29 Corollary 1.19], the function
F o - F o O c ) = ; c - S o H ( ; c )

carries the ball of radius So in Q^'2^ (T, R1^) onto a set containing
c

the ball of radius —°-. For small { € R , — S;Su is in this ball, so

for small { G R\{0} there are solutions x of F^x) = 0 of small
e^'^-norm.

The lemma is proved.
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