C. GORDON

Transitive riemannian isometry groups with nilpotent radicals

Annales de l'institut Fourier, tome 31, nº 2 (1981), p. 193-204 http://www.numdam.org/item?id=AIF 1981 31 2 193 0>

© Annales de l'institut Fourier, 1981, tous droits réservés.

L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Fourier, Grenoble **31**, 2 (1981), 193-204.

TRANSITIVE RIEMANNIAN ISOMETRY GROUPS WITH NILPOTENT RADICALS

by Carolyn GORDON (¹)

1. Introduction.

This paper addresses the problem of describing the full isometry group I(M) of a homogeneous Riemannian manifold M in terms of a given connected transitive subgroup G. This problem has been investigated by several authors in case G is compact – see in particular Oniščik [6] and Ozeki [7] – and by the present author [3] for G semisimple or at least reductive with compact radical. Less is known for solvable G, although Wilson [8] has recently established the normality of G in I(M) when G is nilpotent. In this contribution, we utilize these results on compact, semisimple, and nilpotent groups to study the case in which G is any connected Lie group with nilpotent radical. We will restrict our attention to $I_0(M)$, the identity component of I(M).

We reformulate the problem in a slightly more general context. For G and M as above, $I_0(M)$ is the product $I_0(M) = GL$ of G with the isotropy subgroup L at a point of M. L is compact and contains no normal subgroups of $I_0(M)$. We will describe all connected Lie groups of the form A = GL, G connected with nilpotent radical and L compact, omitting the latter condition on L.

The main results appear in Sections 2 and 3. In Section 2 we describe the Levi factors of A, establishing that the noncompact parts of suitable Levi factors of G and A coincide. A weaker relationship is obtained between the compact parts. We then examine in Section 3 the structure of the Lie algebra of A, paying particular attention to its radical.

Section 4 extends these results in case $G \cap L$ is trivial. In terms of our original problem, this is the case of a simply transitive isometry action of G

^{(&}lt;sup>1</sup>) Research performed as a Lady Davis Fellow at the Technion-Israël Institute of Technology, Technion Preprint series n° HT-487.

CAROLYN GORDON

on a manifold M. Finally as a consequence of the results of Sections 2 and 3, we note in Section 5 a sufficient condition on the structure of G to insure normality of G in A.

2. Description of the Levi factors.

Notation (2.1). – Given connected Lie groups A and G with $G \subset A$, choose Levi factors G_{ss} and A_{ss} of G and A with $G_{ss} \subset A_{ss}$ (see Jacobson [5], pp. 91-93). Denote by \mathfrak{a} , \mathfrak{g} , \mathfrak{a}_{ss} , and \mathfrak{g}_{ss} the Lie algebras of A, G, A_{ss} , and G_{ss} , respectively. Write

$$\mathfrak{a}_{ss} = \mathfrak{a}_{nc} \oplus \mathfrak{a}_{c}$$
 and $\mathfrak{g}_{ss} = \mathfrak{g}_{nc} \oplus \mathfrak{g}_{c}$

where a_{nc} and g_{nc} are semisimple of the noncompact type, i.e., all simple ideals of a_{nc} and g_{nc} are noncompact, and a_c and g_c are compact. Let A_{nc} , A_c , G_{nc} and G_c be the connected subgroups of A with Lie algebras a_{nc} , a_c , g_{nc} , and g_c . We have Levi decompositions

$$A = (A_{ss}) (rad(A))$$
 and $G = (G_{ss}) (rad(G))$

with $A_{ss} = A_{nc}A_c$ and $G_{ss} = G_{nc}G_c$.

THEOREM (2.2). – Let the connected Lie group A be a product A = GLof a connected subgroup G with nilpotent radical and a compact subgroup L. Then in the notation (2.1), $A_{nc} = G_{nc}$.

Proof. – We need only show that $a_{nc} = g_{nc}$. Let

 π_{nc} : $\mathfrak{a} \to \mathfrak{a}_{nc}$ and π_c : $\mathfrak{a} \to \mathfrak{a}_c$

be the homomorphic projections relative to the decomposition

$$\mathfrak{a} = \mathfrak{a}_{nc} + \mathfrak{a}_{c} + \mathrm{rad}(\mathfrak{a}).$$

 $\pi_c(g_{nc}) = \{0\}$ since \mathfrak{a}_c contains no noncompact semisimple subalgebras, so $g_{nc} \subset \mathfrak{a}_{nc}$.

Let $A' = A/(A_c \operatorname{rad}(A))$ and let $\pi : A \to A'$ be the natural projection For any subgroup H of A, we will denote $\pi(H)$ by H'. The Lie algebra of A' may be identified with a_{nc} and the differential $(d\pi)_e$ with π_{nc} . G'_{nc} then has Lie algebra g_{nc} . Letting N = rad(G),

(1)
$$\mathbf{G}' = \mathbf{G}'_{nc}\mathbf{G}'_{c}\mathbf{N}'$$

with N' nilpotent, and A' = G'L'.

Modding out a discrete normal subgroup if necessary, we may assume A' has finite center. Let U' be a maximal compact subgroup of A' containing G'_c . A conjugate of L' lies in U', so

$$\mathbf{A}' = \mathbf{G}'\mathbf{U}' = (\mathbf{G}'_{nc}\mathbf{N}')\mathbf{U}'$$

by (1). Under a left-invariant Reimannian metric, A'/U' is a symmetric space of non-positive sectional curvature with no Euclidean factor (see Helgason [4], pp. 241-253) on which $G'_{nc}N'$ acts transitively and effectively by isometries. We now use the characterization by Azencott and Wilson of isometry groups transitive on manifolds of non-positive sectional curvature. By [1], Proposition (2.5), given any Iwasawa subgroup S'_1 of G'_{nc} , there exists a closed subgroup S'_2 of N', normal in $G'_{nc}N'$, such that $S'_1S'_2$ is a closed simply-connected solvable subgroup of A' acting simply transitively on A'/U'. The Lie algebra $g_{nc} + s'_2$ of $G'_{nc}S'_2$ is a « basic isometry algebra » (see [2], pp. 27-29), so Theorem (4.6) and Proposition (5.3), part (i), of [2] together contradict the nilpotency of s'_2 , unless $s'_2 = \{0\}$. Hence S'_1 and consequently G'_{nc} act transitively on A'/U', and $A' = G'_{nc}U'$. Since both A' and G'_{nc} are semisimple of the noncompact type, $A' = G'_{nc}$ ([3], Proposition (3.3)) and $a_{nc} = g_{nc}$.

We now describe a_c . For L_{ss} the (unique) Levi factor of L, $hL_{ss}h^{-1} \subset A_{ss}$ for some $h \in A$. Note that $A = G(hLh^{-1})$, so there is no loss of generality in assuming that $L_{ss} \subset A_{ss}$.

Notation (2.3). – If u is a compact Lie algebra, the unique Levi factor [u,u] of u will be denoted u_{ss} .

PROPOSITION (2.4). – Let the connected Lie group A be a product A = GL of a connected subgroup G with nilpotent radical and a compact subgroup L with Lie algebra denoted by 1. Using notation (2.1) and (2.3),

(2)
$$a_c = g_c + \pi_c(l_{ss})$$

where $\pi_c : a \to a_c$ is the projection along $a_{nc} + rad(a)$. Replacing L by a conjugate so that $l_{ss} \subset a_{ss}$,

(3)
$$a_{ss} = g_{ss} + I_{ss}.$$

Proof. – Since $a_c = \pi_c(g) + \pi_c(l)$ and a_c is compact and semisimple, we have

(4)
$$\mathfrak{a}_c = (\pi_c(\mathfrak{g}))_{ss} + (\pi_c(\mathfrak{l}))_{ss}$$

(see Oniščik [6], Theorem (1.1)).

$$[\mathfrak{g}_c, \mathfrak{a}_{nc}] = \{0\} \text{ by Theorem (2.2), so}$$
$$\mathfrak{g}_c \subset \mathfrak{a}_c \quad \text{and} \quad \pi_c(\mathfrak{g}) = \mathfrak{g}_c + \pi_c(\mathrm{rad}(\mathfrak{g})).$$

 $\pi_c(\operatorname{rad}(g))$ is a solvable ideal in the compact algebra $\pi_c(g)$, hence is central. Thus $(\pi_c(g))_{ss} = g_c$ and (4) now implies (2). (3) follows from (2) and Theorem (2.2).

We note that the work of Oniščik [6] on decompositions of compact Lie algebras may be applied to (2) to further analyze a_c .

3. Description of the radical.

THEOREM (3.1). – Let the connected Lie group A be a product A = GLof a connected subgroup G and a compact subgroup L, and suppose the radical of G is nilpotent. We use notation (2.1) and denote the radicals of a and g by s and n, respectively. Then :

(a) n is the sum of ideals $n = n_1 \oplus n_2$ where $n_1 := n \cap a_{ss}$ is central in g and $[g,n] \subset n_2$.

(b) \mathfrak{s} is a vector space direct sum $\mathfrak{s} = \mathfrak{u} + \mathfrak{n}'_2$ of an abelian subalgebra \mathfrak{u} , compactly imbedded in \mathfrak{a} , and an ideal \mathfrak{n}'_2 containing $[\mathfrak{g},\mathfrak{n}]$.

(c) $[\mathfrak{a},\mathfrak{s}] \subset \mathfrak{n}'_2$ and $[\mathfrak{g}_{ss},\mathfrak{s}] = [\mathfrak{g}_{ss},\mathfrak{n}]$.

(d) There exists an isomorphism

$$\psi: \mathfrak{g}_{ss} + \mathfrak{n}_1 + \mathfrak{n}_2' \to \mathfrak{g}$$

which maps n'_2 onto n_2 and restricts to the identity map on $[g,g] + n_1$.

Remarks (3.2). $-(1) \mathfrak{n}_1$ is in general non-trivial. For example, the unitary group G = U(n) acts transitively on the sphere SO(2n)/SO(2n-1). U(n) has non-trivial radical whereas A = SO(2n) is semisimple. Hence $\mathfrak{n}_1 = \mathfrak{n} \neq \{0\}$.

Theorems (2.2) and (3.1) imply $g_{nc} \oplus n'_2$ is an α -ideal isomorphic to $g_{nc} \oplus n_2$. Thus one might also ask whether n_1 can be non-zero when $g_c = \{0\}$. The answer is again yes. Let H be a connected semisimple Lie group of the noncompact type containing a connected compact semisimple subgroup K. Set

$$A = H \times K$$
$$G = H \times N$$

196

where N is a non-trivial connected abelian subgroup of K, and

$$\mathbf{L} = \{(h,h) \in \mathbf{A} : h \in \mathbf{K}\}.$$

Then G is transitive on A/L and again $n_1 = n \neq \{0\}$.

(2) By part (b), $n'_2 = n_2$ in case [g,n] = n. However, in the proof of Proposition (5.2), we will construct a class of examples in which $n'_2 \neq n_2$.

Proof of Theorem (3.1). — The center of a Lie algebra \mathfrak{h} will be denoted $z(\mathfrak{h})$. We will make frequent use of the fact that if \mathfrak{u} is a compactly imbedded subalgebra of \mathfrak{a} , then the operators $\mathrm{ad}_{\mathfrak{a}}X$, $X \in \mathfrak{u}$, are all skew-symmetric relative to some inner product on \mathfrak{a} and are consequently semisimple.

Let

$$P: \mathfrak{a} \to \mathfrak{a}_{ss}$$
 and $Q: \mathfrak{a} \to \mathfrak{s}$

be the projections relative to the Levi decomposition $a = a_{ss} + s$. $P = \pi_{nc} + \pi_c$ where as before $\pi_{nc} : a \to a_{nc}$ and $\pi_c : a \to a_c$ are the projections relative to $a = a_{nc} + a_c + s$. By Theorem (2.2), $a_{nc} = g_{nc}$, so $\pi_{nc}(n) = \{0\}$ and $P(n) = \pi_c(n)$. In particular, $n_1 = n \cap a_{ss} \subset a_c$ and ad_an_1 consists of semisimple operators. Hence the elements of ad_gn_1 are semisimple as well as nilpotent, i.e. $n_1 \subset z(g)$. Moreover

(1)
$$P([g,n]) = [P(g), P(n)] = [P(g), \pi_c(n)] = \{0\},\$$

the last equality following from the proof of Proposition (2.4), so $\mathfrak{n}_1 \cap [\mathfrak{g},\mathfrak{n}] = \{0\}$. Letting \mathfrak{n}_2 denote any complement of \mathfrak{n}_1 in \mathfrak{n} which contains $[\mathfrak{g},\mathfrak{n}]$; (a) follows.

Let

$$g_{nc} = f + p$$

be a Cartan decomposition with f compactly imbedded in g. Since the connected subgroup of Int(a) with Lie algebra $ad_{a}g_{nc}$ is a semisimple matrix group, it has finite center and hence f is compactly imbedded in a (see Helgason [4], pp. 252-253). $f + a_c$ lies in a maximal compactly imbedded subalgebra w of a. $P(w) = f + a_c$, $f + a_c$ being maximal compact in a_{ss} , so $w = (f + a_c) + (w \cap s)$ with $(w \cap s) \subset z(w)$. After replacing L by a conjugate subgroup of A, we may assume that $I \subset w$. Thus a = w + g and $s = (w \cap s) + Q(n)$. Let u be a complement of

 $\mathfrak{w} \cap Q(\mathfrak{n})$ in $\mathfrak{w} \cap \mathfrak{s}$ and set

(2)
$$v = u + t + a_c$$
.

Note that $u \subset z(v)$. We have vector space direct sums

(3)
$$\mathfrak{a} = \mathfrak{v} + \mathfrak{p} + \mathfrak{n}_2$$
 and $\mathfrak{s} = \mathfrak{u} + Q(\mathfrak{n}_2)$.

Denote by \mathfrak{s}_0 the 0-eigenspace in \mathfrak{s} of $\mathrm{ad}_a \mathfrak{v}$. Since \mathfrak{v} lies in the compactly imbedded subalgebra \mathfrak{w} , $\mathfrak{s} = \mathfrak{s}_0 + [\mathfrak{v},\mathfrak{s}]$.

 $\mathfrak{s}_0 = \mathfrak{u} + (\mathfrak{s}_0 \cap Q(\mathfrak{n}_2))$. Set

(4)
$$\mathfrak{n}_2' = [\mathfrak{v},\mathfrak{s}] + (\mathfrak{s}_0 \cap Q(\mathfrak{n}_2)).$$

Then $\mathfrak{s} = \mathfrak{u} + \mathfrak{n}'_2$ and $\mathfrak{v} \cap \mathfrak{n}'_2 = \{0\}$.

 $P(\mathfrak{n}_2) \subset \mathfrak{a}_c \subset \mathfrak{v}$, so (2) and (3) imply $\mathfrak{s} \subset \mathfrak{n}_2 + \mathfrak{v}$ with $\mathfrak{n}_2 \cap \mathfrak{v} = \{0\}$. For $X \in \mathfrak{s}$, write

 $X = X_{\mathfrak{v}} + X_{\mathfrak{n}} \quad X_{\mathfrak{v}} \in \mathfrak{v}, \quad X_{\mathfrak{n}} \in \mathfrak{n}_{2}.$

Claim. - For $X \in \mathfrak{n}'_2$, $[X_{\mathfrak{v}},\mathfrak{s}] = \{0\}$.

For
$$H \in v$$
, $Y \in n_2$, write

 $[H,Y] = \rho(H)Y - \phi(Y)(H), \qquad \rho(H)Y \in \mathfrak{n}_2, \qquad \phi(Y)H \in \mathfrak{v}.$

To prove the claim, it suffices to show that $\rho(X_v) = 0$, since then

 $[X_{\mathfrak{v}},\mathfrak{s}] \subset \mathfrak{v} \ \cap [\mathfrak{v},\mathfrak{s}] \subset \mathfrak{v} \ \cap \mathfrak{n}_2' = \{0\}.$

Let v_0 be the maximal $(v+n_2)$ - ideal in v and

 $\pi : \mathfrak{v} + \mathfrak{n}_2 \to (\mathfrak{v} + \mathfrak{n}_2)/\mathfrak{v}_0$

the projection. $\pi(\mathfrak{n}_2)$ is nilpotent, $\pi(\mathfrak{v})$ contains no ideals of $\pi(\mathfrak{v}+\mathfrak{n}_2)$ and $\pi(\mathfrak{n}_2) \cap \pi(\mathfrak{v}) = \{0\}$. Hence (Wilson [8]), $\pi(\mathfrak{n}_2)$ is an ideal in $\pi(\mathfrak{v}+\mathfrak{n}_2)$. i.e. for $Y \in \mathfrak{n}_2$, $\phi(Y)(\mathfrak{v}) \subset \mathfrak{v}_0$ and

(5)
$$\rho(\varphi(\mathbf{Y})\mathbf{H}) = 0, \quad \mathbf{H} \in \mathfrak{v}, \ \mathbf{Y} \in \mathfrak{n}_2.$$

We suppose first that $X \in \mathfrak{s}_0 \cap Q(\mathfrak{n}_2)$. Since $X \in \mathfrak{s}_0$, $[\mathfrak{a}_c, X] = \{0\}$ and for $H \in \mathfrak{a}_c$,

$$0 = [H,X]_{\mathfrak{v}} = [H,X_{\mathfrak{v}}] - \phi(X_{\mathfrak{n}})H$$

Thus by (5)

$$\rho([\mathbf{H}, \mathbf{X}_{\mathfrak{v}}]) = \{0\}, \qquad \mathbf{H} \in \mathfrak{a}_c$$

But $X_{\nu} = -P(X_{\nu}) \in \mathfrak{a}_{c}$ since $X \in Q(\mathfrak{n}_{2})$. Noting that ker $\rho|_{\mathfrak{a}_{c}}$ is an ideal in the semisimple algebra \mathfrak{a}_{c} , it follows that $\rho(X_{\nu}) = 0$.

Now let $v_1 = \{Y_v : Y \in [v,s]\}$. Then

(6)
$$[\mathfrak{v},\mathfrak{s}] = [\mathfrak{v}_1,\mathfrak{s}] + \{Y \in [\mathfrak{v},\mathfrak{s}] : [\mathfrak{v}_1,Y] = \{0\}\}.$$

Suppose X = [H,Y] for some $H \in \mathfrak{v}_1$, $Y \in \mathfrak{s}$. Then

$$X_{\mathfrak{p}} = - \varphi(Y_{\mathfrak{n}})H + [H, Y_{\mathfrak{p}}].$$

 $\mathfrak{v}_1 \subset P(\mathfrak{n}_2) + \mathfrak{u}$ by (3), $P(\mathfrak{n}_2)$ is abelian by (1), and $\mathfrak{u} \subset z(\mathfrak{v})$; hence \mathfrak{v}_1 is abelian and $[H, Y_{\mathfrak{v}}] = \{0\}$. Thus by (5), $\rho(X_{\mathfrak{v}}) = 0$.

In view of (4) and (6) it remains only to check the case $X \in [v,s]$ while $[v_1,s] = \{0\}$. Since [v,s] is contained in the nil radical of a (see Jacobson [5], p. 51), $ad_a X$ is nilpotent. $X_v \in v_1$, so $[X_v,X] = \{0\}$ and consequently $[X_n,X] = 0$. Thus if we show that $ad_a X_n|_s$ is nilpotent, it will follow that $ad_a X_v|_s (= ad_a (X - X_n)|_s)$ is nilpotent. Noting that $ad_a X_v|_s$ is also semisimple since $X_v \in w$, the claim will be established.

For $Y \in \mathfrak{s}$,

(7)
$$[X_n,Y] = [X_n,Y]_{n_2} + \varphi(X_n)Y_{\nu}.$$

Setting $Z = [X_n, Y]_n$, (5) and (7) inductively imply

$$(\mathrm{ad}_{\mathfrak{a}} X_{\mathfrak{n}})^{m}(Y) = (\mathrm{ad}_{\mathfrak{n}_{\mathfrak{n}}} X_{\mathfrak{n}})^{m-1}(Z) + (\varphi(X_{\mathfrak{n}}))^{m}(Y_{\mathfrak{n}}).$$

Since n_2 is nilpotent, $(ad_n, X_n)^{k-1} = 0$ for some k, so

$$(\mathrm{ad}_{\mathfrak{a}} X_{\mathfrak{n}})^{k}(\mathfrak{s}) \subset \mathfrak{v} \cap \mathrm{nil} \mathrm{rad}(\mathfrak{a}).$$

But $\mathfrak{v} \cap \operatorname{nil} \operatorname{rad} (\mathfrak{a}) \subset z(\mathfrak{a})$ since \mathfrak{v} lies in a compactly imbedded subalgebra of \mathfrak{a} , so $(\operatorname{ad}_{\mathfrak{a}} X_n)_{|_{\mathfrak{s}}}^{k+1} = 0$, i.e. $\operatorname{ad}_{\mathfrak{a}} X_n|_{\mathfrak{s}}$ is nilpotent. As noted above, the claim follows.

The claim implies

(8)
$$[X, Y] = [X_n, Y_n], \qquad X, Y \in \mathfrak{n}'_2.$$

Since $\mathfrak{s} = \mathfrak{u} + \mathfrak{n}'_2$ and $Q|_{\mathfrak{n}_2}$ is 1:1, $\{X_\mathfrak{n} : X \in \mathfrak{n}'_2\} = \mathfrak{n}_2$. Thus (8) and part (a) together imply

(9)
$$[\mathfrak{n}_2',\mathfrak{n}_2'] = [\mathfrak{n},\mathfrak{n}].$$

$$[v,n'_2] \subset n'_2$$
 by (4), so by (9)
(10) $[v,[n,n]] \subset [n,n].$

For $X \in \mathfrak{n}'_2$, $[\mathfrak{g}, X_\mathfrak{n}] \subset \mathfrak{s}$ by (1) and $[\mathfrak{g}, X] \subset \mathfrak{s}$, so $[X_\mathfrak{v}, \mathfrak{g}] \subset \mathfrak{s}$. But $[X_\mathfrak{v}, \mathfrak{s}] = \{0\}$ by the claim, and $\mathrm{ad}_\mathfrak{a} X_\mathfrak{v}$ is a semisimple operator. Hence $[X_\mathfrak{v}, \mathfrak{g}] = \{0\}$ and

(11)
$$[Y,X] = [Y,X_n], \qquad Y \in \mathfrak{g}, \quad X \in \mathfrak{n}'_2.$$

In particular,

(12)
$$[\mathfrak{t}+\mathfrak{g}_{\mathfrak{c}},\mathfrak{s}] \subset \mathfrak{n}$$

since $[\mathfrak{f} + \mathfrak{g}_c, \mathfrak{u}] \subset [\mathfrak{v}, \mathfrak{u}] = \{0\}$. Hence

$$[\mathfrak{p},\mathfrak{u}] = [[\mathfrak{k},\mathfrak{p}],\mathfrak{u}] = [\mathfrak{k},[\mathfrak{p},\mathfrak{u}]] \subset [\mathfrak{k},\mathfrak{s}] \subset \mathfrak{n}.$$

Thus $[g_{nc}, \mathfrak{s}] \subset \mathfrak{n} \cap \mathfrak{s}$. Since g_{nc} is semisimple and $[g_{nc}, \mathfrak{n}] \subset \mathfrak{n} \cap \mathfrak{s}$ by (1),

(13)
$$[g_{nc}, \mathfrak{s}] = [g_{nc}, \mathfrak{n} \cap \mathfrak{s}] = [g_{nc}, \mathfrak{n}].$$

Similarly, using (12), we obtain $[g_c,s] = [g_c,n]$ and the second statement of (c) follows.

By Theorem (2.2) and (13),

(14)
$$[g_{nc}, \mathfrak{a}] = g_{nc} + [g_{nc}, \mathfrak{n}].$$

Thus,

$$[\mathfrak{v},[\mathfrak{g}_{nc},\mathfrak{s}]] = [\mathfrak{v},[\mathfrak{g}_{nc},\mathfrak{n} \cap \mathfrak{s}]] \quad \text{by} \quad (13)$$

$$\subset [[\mathfrak{v},\mathfrak{g}_{nc}],\mathfrak{n} \cap \mathfrak{s}] + [\mathfrak{g}_{nc},[\mathfrak{v},\mathfrak{n}]]$$

$$\subset [\mathfrak{g}_{nc}+\mathfrak{n},\mathfrak{n} \cap \mathfrak{s}] + [\mathfrak{g}_{nc},\mathfrak{s}] \quad \text{by} \quad (14)$$

$$\subset [\mathfrak{g}_{nc},\mathfrak{s}] + [\mathfrak{n},\mathfrak{n}].$$

Define

(15)
$$\mathfrak{m} = [\mathfrak{g}_{nc},\mathfrak{s}] + [\mathfrak{n},\mathfrak{n}].$$

By (10) and the above computation, $\mathfrak m$ is an $ad_{\mathfrak a}(\mathfrak v)\text{-invariant subspace of }\mathfrak n\cap\mathfrak s.$ Therefore

(16)
$$\mathfrak{m} = [\mathfrak{v},\mathfrak{m}] + (\mathfrak{m} \cap \mathfrak{s}_0) \subset \mathfrak{n}_2'$$

200

by (4), so $[g_{nc}, \mathfrak{s}] \subset \mathfrak{n}'_2$ by (15). Since

$$\mathfrak{s} = \mathfrak{u} + \mathfrak{n}'_2$$
 and $[\mathfrak{u},\mathfrak{n}'_2] \subset \mathfrak{n}'_2$,

(9), (15), and (16) show that $[\mathfrak{n}'_2,\mathfrak{s}] \subset \mathfrak{n}'_2$. Noting that

$$\mathfrak{a} = \mathfrak{v} + \mathfrak{p} + \mathfrak{n}_2',$$

we thus have $[\mathfrak{a},\mathfrak{s}] \subset \mathfrak{n}'_2$.

Finally define ψ : $g_{ss} + n_1 + n'_2 \rightarrow g$ by

$$\psi(Y+X) = Y + X_{\mathfrak{n}}, \qquad Y \in \mathfrak{g}_{ss} + \mathfrak{n}_{1}, \qquad X \in \mathfrak{n}_{2}'.$$

 ψ maps n'_2 injectively onto n_2 and by (8) and (11), ψ is an isomorphism.

COROLLARY (3.2). – Under the hypothesis and notation of Theorem (3.1), [n,n] and $[g_{nc}+n,g_{nc}+n]$ are ideals of a.

Proof. – Both subalgebras are g-ideals. $a \subset g + v$ by (3), so the corollary follows from (10), (13) and Theorem (2.2).

4. The simply transitive case.

Under the notation and hypotheses of Theorem (3.1), suppose that $G \cap L$ is trivial. Then G intersects any conjugate of L trivially, so the last statement of Proposition (2.4) implies $\mathfrak{n} \cap \mathfrak{a}_{ss} = \{0\}$, i.e. $\mathfrak{n}_1 = 0$ and $\mathfrak{n} = \mathfrak{n}_2 \simeq \mathfrak{n}'_2$.

THEOREM (4.1). – Let the connected Lie group A be a product of disjoint subgroups A = GL with L compact and G connected with nilpotent radical. We use the notation of (2.1) and (3.1) but write n' in place of n'₂. Then A = G'L where G' is a connected normal subgroup of A with Lie algebra g' satisfying :

(i)
$$\mathfrak{g}' \cap \mathfrak{l} = \{0\}$$

(ii) $g' = g_{nc} + g'_c + n'$ for some a_c -ideal g'_c isomorphic to g_c ; (iii) if $[g_c,n] = \{0\}$, then $g' \simeq g$.

Proof. — We will continue to use the notation developed in the proof of Theorem (3.1). In particular, recall the construction of the maximal compactly imbedded subalgebra w of a. The conclusions of (4.1) are not

affected when L is replaced by a conjugate subgroup of A, so we may assume that $l \subset w$. Then $l_{ss} \subset [w,w] \subset a_{ss}$. Proposition (2.4) and Theorem (2.2) imply that

$$a_{ss} = g_{ss} + I_{ss}, \qquad a_c = g_c + \pi_c(I_{ss}),$$

and

$$\pi_c(\mathfrak{l}_{ss}) \subset \mathfrak{l}_{ss} + \mathfrak{g}_{nc}.$$

Thus $\pi_c(l_{ss}) \cap g_c = \{0\}$ since $g \cap l = \{0\}$. Let a'_c be the minimal a_c -ideal containing g_c . $a'_c = g_c + (a'_c \cap \pi_c(l_{ss}))$, a vector space direct sum, so a'_c contains an a_c -ideal g'_c isomorphic to g_c such that

$$\mathfrak{a}'_{c} = \mathfrak{g}'_{c} + (\mathfrak{a}'_{c} \cap \pi_{c}(\mathfrak{l}_{ss})),$$

again a vector space direct sum (Ozeki [7]). Hence $a_c = g'_c + \pi_c(l_{ss})$ and

(1)
$$a_{ss} = g_{nc} + g'_c + l_{ss}$$
 (vector space direct sum).

Letting $g' = g_{nc} + g'_c + n'$, Theorems (2.2) and (3.1) imply that g' is an a-ideal.

We now show that a = g' + I. Since $a_{ss} = g_{ss} + I_{ss}$,

$$\mathfrak{s} = \mathbf{Q}(\mathbf{z}(\mathbf{l})) + \mathbf{Q}(\mathfrak{n}), \quad \mathbf{Q}(\mathbf{z}(\mathbf{l})) \subset \mathbf{Q}(\mathfrak{w}) = \mathfrak{w} \cap \mathfrak{s}.$$

The subalgebra \mathfrak{u} in (3.1) was defined to be any complement of $\mathfrak{w} \cap Q(\mathfrak{n})$ in $\mathfrak{w} \cap \mathfrak{s}$. We may therefore choose \mathfrak{u} so that $\mathfrak{u} \subset Q(z(\mathfrak{l}))$. Then by (3.1),

$$\mathfrak{s} = \mathfrak{u} + \mathfrak{n}' = \mathbf{Q}(z(\mathfrak{l})) + \mathfrak{n}' \subset \mathfrak{a}_{\mathfrak{ss}} + z(\mathfrak{l}) + \mathfrak{n}'.$$

Thus by (1), a = g' + I and A = G'L, where G' is the connected normal subgroup of A with Lie algebra g'. Since g and g' have the same dimension, $g' \cap I = \{0\}$.

Finally, suppose that $[g_c, n] = \{0\}$. Then Theorem (3.1) part (c) and the semisimplicity of g_c imply $[g_c, s] = \{0\}$. Since a'_c is the minimal a_c -ideal containing g_c , $[a'_c, s] = \{0\}$ and consequently $[g'_c, n'] \subset [g'_c, s] = \{0\}$. Since $g_{nc} + n' \simeq g_{nc} + n$ by (3.1), (iii) follows.

5. A condition for normality of the transitive subgroup.

THEOREM (5.1). – Let M be a connected homogeneous Riemannian manifold and $I_0(M)$ the connected component of the identity in the group of

all isometries of M. Suppose that G is a connected transitive subgroup of A with Lie algebra g satisfying [g,g] = g and that some (hence every) Levi factor of G is of the noncompact type. Then G is normal in A.

Proof. – The condition [g,g] = g implies that the radical n of g is nilpotent and that $g = [g_{nc} + n,g_{nc} + n]$, where g_{nc} denotes a Levi factor of g. Thus Corollary (3.2) applies.

The following proposition is a partial converse to Theorem (5.1).

PROPOSITION (5.2). — Suppose that G is a connected simply-connected Lie group with Lie algebra g satisfying $[g,g] \neq g$ and that G is not solvable. Then there exists a Riemannian manifold M such that G acts simply transitively by isometries on M but is not normal in $I_0(M)$.

Proof. – Let f be a maximal compactly imbedded subalgebra of a Levi factor of g and g_1 a codimension one ideal of g containing [g,g]. There exists a homomorphism $\lambda_1 : g \to f$ with kernel g_1 . Denoting by K the connected subgroup of G with Lie algebra f, the simple-connectivity of G implies the existence of a homomorphism $\lambda : G \to K$ with $(d\lambda)_e = \lambda_1$. Denote the center of G by G_z and set

$$\mathbf{D} = \{(h,h) \in \mathbf{G} \times \mathbf{K} : h \in \mathbf{G}, \cap \mathbf{K}\}.$$

Let

$$\mathbf{A} = (\mathbf{G} \times \mathbf{K}) / \mathbf{D}$$

with canonical projection $\pi: G \times K \to A$ and set

$$L = \{\pi((h,h)) : h \in K\}.$$

 $L \simeq K/(G_z \cap K)$, hence is compact, and L contains no normal subgroups of A. M := A/L may be given a left-invariant Riemannian metric, and A is then identified with a subgroup of $I_0(M)$. Define an imbedding $\eta : G \to A$ by $\eta(g) = \pi((g,\lambda(g)))$. $\lambda(K) = \{e\}$ since $\mathfrak{t} \subset [\mathfrak{g},\mathfrak{g}] \subset \mathfrak{g}$, so $\eta(G) \cap L$ is trivial. Under this imbedding G is a simply transitive subgroup of $I_0(M)$. However G is not normal in the subgroup A of $I_0(M)$.

Suppose the group G in (5.2) has nilpotent radical so that A = GL satisfies the hypotheses of Theorem (3.1). In the notation of (3.1), $a \simeq g \oplus f$, where f is the Lie algebra of K. However, g is imbedded in

CAROLYN GORDON

a as $\{(X,\lambda_1(X)): X \in g\}$. $\lambda_1|_{\mathfrak{n}}$ is non-trivial since $g = g_{ss} + \mathfrak{n}$ with $g_{ss} \subset [g,g] \subset \ker \lambda_1$. Hence \mathfrak{n} is not an a-ideal. But $\mathfrak{n} = \mathfrak{n}_2$ since $G \cap L = \{e\}$, so \mathfrak{n}_2 is not equal to the a-ideal \mathfrak{n}'_2 . (See remark (3.2).)

BIBLIOGRAPHY

- [1] R. AZENCOTT and E. N. WILSON, Homogeneous manifolds with negative curvature, Part I, Trans. Amer. Math. Soc., 215 (1976), 323-362.
- [2] R. AZENCOTT and E. N. WILSON, Homogeneous manifolds with negative curvature, Part II, Mem. Amer. Math. Soc., 8 (1976).
- [3] C. GORDON, Riemannian isometry groups containing transitive reductive subgroups, *Math. Ann.*, 248 (1980), 185-192.
- [4] S. HELGASON, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1978.
- [5] N. JACOBSON, Lie algebras, Wiley Interscience, New York, 1962.
- [6] A. L. ONIŠČIK, Inclusion relations among transitive compact transformation groups, Amer. Math. Soc. Transl., 50 (1966), 5-58.
- [7] H. OZEKI, On a transitive transformation group of a compact group manifold, Osaka J. Math., 14 (1977), 519-531.
- [8] E. N. WILSON, Isometry groups on homogeneous nilmanifolds, to appear in Geometriae Dedicata.

Manuscrit reçu le 15 septembre 1980.

Carolyn Gordon,

Lehigh University Department of Mathematics Christmas-Saucon Hall 14 Bethlehem, Pa. 18015 (USA).