Annales de l'institut Fourier

C. Gordon

Transitive riemannian isometry groups with nilpotent radicals

Annales de l'institut Fourier, tome 31, no 2 (1981), p. 193-204
http://www.numdam.org/item?id=AIF_1981_31_2_193_0
© Annales de l'institut Fourier, 1981, tous droits réservés.
L'accès aux archives de la revue « Annales de l'institut Fourier » (http://annalif.ujf-grenoble.fr/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

TRANSITIVE RIEMANNIAN ISOMETRY GROUPS WITH NILPOTENT RADICALS

by Carolyn GORDON $\left({ }^{1}\right)$

1. Introduction.

This paper addresses the problem of describing the full isometry group $\mathrm{I}(\mathrm{M})$ of a homogeneous Riemannian manifold M in terms of a given connected transitive subgroup G. This problem has been investigated by several authors in case G is compact - see in particular Oniščik [6] and Ozeki [7] - and by the present author [3] for G semisimple or at least reductive with compact radical. Less is known for solvable G, although Wilson [8] has recently established the normality of G in $I(M)$ when G is nilpotent. In this contribution, we utilize these results on compact, semisimple, and nilpotent groups to study the case in which G is any connected Lie group with nilpotent radical. We will restrict our attention to $\mathrm{I}_{0}(\mathrm{M})$, the identity component of $\mathrm{I}(\mathrm{M})$.

We reformulate the problem in a slightly more general context. For G and M as above, $I_{0}(M)$ is the product $I_{0}(M)=G L$ of G with the isotropy subgroup L at a point of M . L is compact and contains no normal subgroups of $I_{0}(M)$. We will describe all connected Lie groups of the form $A=G L, G$ connected with nilpotent radical and L compact, omitting the latter condition on L.

The main results appear in Sections 2 and 3. In Section 2 we describe the Levi factors of A , establishing that the noncompact parts of suitable Levi factors of G and A coincide. A weaker relationship is obtained between the compact parts. We then examine in Section 3 the structure of the Lie algebra of A, paying particular attention to its radical.

Section 4 extends these results in case $G \cap L$ is trivial. In terms of our original problem, this is the case of a simply transitive isometry action of G
(${ }^{1}$) Research performed as a Lady Davis Fellow at the Technion-Israël Institute of Technology, Technion Preprint series $\mathrm{n}^{\circ} \mathrm{HT}$ - 487 .
on a manifold \mathbf{M}. Finally as a consequence of the results of Sections 2 and 3, we note in Section 5 a sufficient condition on the structure of G to insure normality of G in A.

2. Description of the Levi factors.

Notation (2.1). - Given connected Lie groups A and G with G $\subset A$, choose Levi factors $G_{s s}$ and $A_{s s}$ of G and A with $G_{s s} \subset A_{s s}$ (see Jacobson [5], pp. 91-93). Denote by $\mathfrak{a}, \mathfrak{g}$, $\mathfrak{a}_{s s}$, and $\mathfrak{g}_{s s}$ the Lie algebras of $A, G, A_{s s}$, and $G_{s s}$, respectively. Write

$$
\mathfrak{a}_{s s}=\mathfrak{a}_{n c} \oplus \mathfrak{a}_{c} \quad \text { and } \quad \mathfrak{g}_{s s}=\mathfrak{g}_{n c} \oplus \mathfrak{g}_{c}
$$

$w h e r e \mathfrak{a}_{n c}$ and $g_{n c}$ are semisimple of the noncompact type, i.e., all simple ideals of $\mathfrak{a}_{n c}$ and $\mathfrak{g}_{n c}$ are noncompact, and \mathfrak{a}_{c} and \mathfrak{g}_{c} are compact. Let $\mathrm{A}_{n c}, \mathrm{~A}_{c}, \mathrm{G}_{n c}$ and $\mathrm{G}_{\boldsymbol{c}}$ be the connected subgroups of A with Lie algebras $\mathfrak{a}_{n c}, \mathfrak{a}_{c}, \mathfrak{g}_{n c}$, and \mathfrak{g}_{c}. We have Levi decompositions

$$
A=\left(A_{s s}\right)(\operatorname{rad}(\mathrm{A})) \quad \text { and } \quad G=\left(\mathrm{G}_{s s}\right)(\operatorname{rad}(\mathrm{G}))
$$

with $A_{s s}=A_{n c} A_{c}$ and $G_{s s}=G_{n c} G_{c}$.
Theorem (2.2). - Let the connected Lie group A be a product A = GL of a connected subgroup G with nilpotent radical and a compact subgroup L . Then in the notation (2.1), $\mathrm{A}_{n c}=\mathrm{G}_{n \mathrm{c}}$.

Proof. - We need only show that $\mathfrak{a}_{n c}=\mathfrak{g}_{n c}$. Let

$$
\pi_{n c}: \mathfrak{a} \rightarrow \mathfrak{a}_{n c} \quad \text { and } \quad \pi_{c}: \mathfrak{a} \rightarrow \mathfrak{a}_{c}
$$

be the homomorphic projections relative to the decomposition

$$
\mathfrak{a}=\mathfrak{a}_{n c}+\mathfrak{a}_{c}+\operatorname{rad}(\mathfrak{a})
$$

$\pi_{c}\left(g_{n c}\right)=\{0\}$ since a_{c} contains no noncompact semisimple subalgebras, so $\mathrm{g}_{n c} \subset \mathfrak{a}_{n c}$.

Let $A^{\prime}=A /\left(A_{c} \operatorname{rad}(A)\right)$ and let $\pi: A \rightarrow A^{\prime}$ be the natural projection For any subgroup H of A, we will denote $\pi(H)$ by H^{\prime}. The Lie algebra of A^{\prime} may be identified with $a_{n c}$ and the differential $(\mathrm{d} \pi)_{e}$ with $\pi_{n c}$. $\mathrm{G}_{n c}^{\prime}$ then has Lie algebra $\mathfrak{g}_{n c}$. Letting $\mathrm{N}=\operatorname{rad}(\mathbf{G})$,

$$
\begin{equation*}
\mathrm{G}^{\prime}=\mathrm{G}_{n c}^{\prime} \mathrm{G}_{c}^{\prime} \mathrm{N}^{\prime} \tag{1}
\end{equation*}
$$

with N^{\prime} nilpotent, and $A^{\prime}=G^{\prime} L^{\prime}$.

Modding out a discrete normal subgroup if necessary, we may assume A^{\prime} has finite center. Let U^{\prime} be a maximal compact subgroup of A^{\prime} containing G_{c}^{\prime}. A conjugate of L^{\prime} lies in U^{\prime}, so

$$
\mathrm{A}^{\prime}=\mathrm{G}^{\prime} \mathrm{U}^{\prime}=\left(\mathrm{G}_{n c}^{\prime} \mathrm{N}^{\prime}\right) \mathrm{U}^{\prime}
$$

by (1). Under a left-invariant Reimannian metric, A^{\prime} / U^{\prime} is a symmetric space of non-positive sectional curvature with no Euclidean factor (see Helgason [4], pp. 241-253) on which $\mathrm{G}_{n c}^{\prime} \mathrm{N}^{\prime}$ acts transitively and effectively by isometries. We now use the characterization by Azencott and Wilson of isometry groups transitive on manifolds of non-positive sectional curvature. By [1], Proposition (2.5), given any Iwasawa subgroup S_{1}^{\prime} of $\mathrm{G}_{\boldsymbol{n} \boldsymbol{\prime}}^{\prime}$, there exists a closed subgroup S_{2}^{\prime} of N^{\prime}, normal in $G_{n c}^{\prime} N^{\prime}$, such that $S_{1}^{\prime} S_{2}^{\prime}$ is a closed simply-connected solvable subgroup of A^{\prime} acting simply transitively on $\mathrm{A}^{\prime} / \mathrm{U}^{\prime}$. The Lie algebra $\mathrm{g}_{n c}+\mathrm{s}_{2}^{\prime}$ of $\mathrm{G}_{n c}^{\prime} \mathrm{S}_{2}^{\prime}$ is a « basic isometry algebra» (see [2], pp. 27-29), so Theorem (4.6) and Proposition (5.3), part (i), of [2] together contradict the nilpotency of s_{2}^{\prime}, unless $s_{2}^{\prime}=\{0\}$. Hence S_{1}^{\prime} and consequently $G_{n c}^{\prime}$ act transitively on A^{\prime} / U^{\prime}, and $A^{\prime}=G_{n c}^{\prime} U^{\prime}$. 'Since both A^{\prime} and $G_{n c}^{\prime}$ are semisimple of the noncompact type, $A^{\prime}=G_{n c}^{\prime}\left([3]\right.$, Proposition (3.3)) and $a_{n c}=g_{n c}$.

We now describe a_{c}. For $L_{s s}$ the (unique) Levi factor of L, $h \mathrm{~L}_{s s} h^{-1} \subset \mathrm{~A}_{s s}$ for some $h \in \mathrm{~A}$. Note that $\mathrm{A}=\mathrm{G}\left(h \mathrm{~L} h^{-1}\right)$, so there is no loss of generality in assuming that $\mathrm{L}_{s s} \subset \mathrm{~A}_{s s}$.

Notation (2.3). - If u is a compact Lie algebra, the unique Levi factor $[\mathfrak{u}, \mathfrak{u}]$ of \mathfrak{u} will be denoted $\mathfrak{u}_{s s}$.

Proposition (2.4). - Let the connected Lie group A be a product $\mathrm{A}=\mathrm{GL}$ of a.connected subgroup G with nilpotent radical and a compact subgroup L with Lie algebra denoted by I. Using notation (2.1) and (2.3),

$$
\begin{equation*}
\mathfrak{a}_{c}=g_{c}+\pi_{c}\left(l_{s s}\right) \tag{2}
\end{equation*}
$$

where $\pi_{c}: \mathfrak{a} \rightarrow \mathfrak{a}_{c}$ is the projection along $\mathfrak{a}_{n c}+\operatorname{rad}(\mathfrak{a})$.
Replacing L by a conjugate so that $\mathrm{I}_{s s} \subset \mathfrak{a}_{s s}$,

$$
\begin{equation*}
\mathfrak{a}_{s s}=\mathfrak{g}_{s s}+\mathrm{l}_{s s} \tag{3}
\end{equation*}
$$

Proof. - Since $a_{c}=\pi_{c}(\mathfrak{g})+\pi_{c}(\mathfrak{l})$ and a_{c} is compact and semisimple, we have

$$
\begin{equation*}
\mathfrak{a}_{c}=\left(\pi_{c}(\mathrm{~g})\right)_{s s}+\left(\pi_{c}(\mathrm{l})\right)_{s s} \tag{4}
\end{equation*}
$$

(see Oniščik [6], Theorem (1.1)).

$$
\begin{gathered}
{\left[\mathfrak{g}_{c}, \mathfrak{a}_{n c}\right]=\{0\} \quad \text { by Theorem (2.2), so }} \\
\mathfrak{g}_{c} \subset \mathfrak{a}_{c} \quad \text { and } \quad \pi_{c}(\mathfrak{g})=\mathfrak{g}_{c}+\pi_{c}(\operatorname{rad}(\mathfrak{g})) .
\end{gathered}
$$

$\pi_{c}(\operatorname{rad}(\mathrm{~g}))$ is a solvable ideal in the compact algebra $\pi_{c}(\mathfrak{g})$, hence is central. Thus $\left(\pi_{c}(\mathfrak{g})\right)_{s s}=\mathfrak{g}_{c}$ and (4) now implies (2). (3) follows from (2) and Theorem (2.2).

We note that the work of Oniščik [6] on decompositions of compact Lie algebras may be applied to (2) to further analyze \mathfrak{a}_{c}.

3. Description of the radical.

Theorem (3.1). - Let the connected Lie group A be a product A = GL of a connected subgroup G and a compact subgroup L , and suppose the radical of G is nilpotent. We use notation (2.1) and denote the radicals of \mathfrak{a} and \mathfrak{g} by \mathfrak{s} and n , respectively. Then:
(a) \mathfrak{n} is the sum of ideals $\mathfrak{n}=\mathfrak{n}_{1} \oplus \mathfrak{n}_{2}$ where $\mathfrak{n}_{1}:=\mathfrak{n} \cap \mathfrak{a}_{\text {ss }}$ is central in \mathfrak{g} and $[\mathfrak{g}, \mathfrak{n}] \subset \mathfrak{n}_{2}$.
(b) \mathfrak{s} is a vector space direct sum $\mathfrak{s}=\mathfrak{u}+\mathfrak{n}_{2}^{\prime}$ of an abelian subalgebra \mathfrak{u}, compactly imbedded in \mathfrak{a}, and an ideal $\mathfrak{n}_{2}^{\prime}$ containing $[\mathfrak{g}, \mathfrak{n}]$.
(c) $[\mathfrak{a}, \mathfrak{s}] \subset \mathfrak{n}_{2}^{\prime}$ and $\left[\mathrm{g}_{s s}, \mathfrak{s}\right]=\left[\mathrm{g}_{s,}, \mathfrak{r}\right]$.
(d) There exists an isomorphism

$$
\psi: \mathfrak{g}_{s s}+\mathrm{n}_{1}+\mathrm{n}_{2}^{\prime} \rightarrow \mathfrak{g}
$$

which maps $\mathfrak{n}_{2}^{\prime}$ onto \mathfrak{n}_{2} and restricts to the identity map on $[\mathfrak{g}, \mathfrak{g}]+\mathfrak{n}_{1}$.
Remarks (3.2). - (1) n_{1} is in general non-trivial. For example, the unitary group $\mathrm{G}=\mathrm{U}(n)$ acts transitively on the sphere $\mathrm{SO}(2 n) / \mathrm{SO}(2 n-1) . \mathrm{U}(n)$ has non-trivial radical whereas $\mathrm{A}=\mathrm{SO}(2 n)$ is semisimple. Hence $n_{1}=n \neq\{0\}$.

Theorems (2.2) and (3.1) imply $\mathfrak{g}_{n c} \oplus \mathfrak{n}_{2}^{\prime}$ is an \mathfrak{a}-ideal isomorphic to $\mathfrak{g}_{n c} \oplus \mathfrak{n}_{2}$. Thus one might also ask whether \mathfrak{n}_{1} can be non-zero when $\mathfrak{g}_{c}=\{0\}$. The answer is again yes. Let H be a connected semisimple Lie group of the noncompact type containing a connected compact semisimple subgroup K. Set

$$
\begin{aligned}
& A=H \times K \\
& G=H \times N
\end{aligned}
$$

where N is a non-trivial connected abelian subgroup of K , and

$$
\mathbf{L}=\{(h, h) \in \mathbf{A}: h \in \mathbf{K}\}
$$

Then G is transitive on A / L and again $n_{1}=\mathfrak{n} \neq\{0\}$.
(2) By part (b), $\mathfrak{n}_{2}^{\prime}=\mathfrak{n}_{2}$ in case $[\mathfrak{g}, \mathfrak{n}]=\mathfrak{n}$. However, in the proof of Proposition (5.2), we will construct a class of examples in which $n_{2}^{\prime} \neq n_{2}$.

Proof of Theorem (3.1). - The center of a Lie algebra \mathfrak{h} will be denoted $z(\mathfrak{h})$. We will make frequent use of the fact that if \mathfrak{u} is a compactly imbedded subalgebra of \mathfrak{a}, then the operators $\operatorname{ad}_{\mathrm{a}} X, X \in \mathfrak{u}$, are atl skewsymmetric relative to some inner product on \mathfrak{a} and are consequently semisimple.

Let

$$
\mathrm{P}: \mathfrak{a} \rightarrow \mathfrak{a}_{s s} \quad \text { and } \quad \mathrm{Q}: \mathfrak{a} \rightarrow \mathfrak{s}
$$

be the projections relative to the Levi decomposition $\mathfrak{a}=\mathfrak{a}_{s s}+\mathfrak{s}$. $\mathrm{P}=\pi_{n c}+\pi_{c} \quad$ where as before $\pi_{n c}: \mathfrak{a} \rightarrow \mathfrak{a}_{n c}$ and $\pi_{c}: \mathfrak{a} \rightarrow \mathfrak{a}_{c}$ are the projections relative to $\mathfrak{a}=\mathfrak{a}_{n c}+\mathfrak{a}_{c}+\mathfrak{s}$. By Theorem (2.2), $\mathfrak{a}_{n c}=\mathfrak{g}_{n c}$, so $\pi_{n c}(\mathfrak{n})=\{0\}$ and $P(n)=\pi_{c}(\mathfrak{n})$. In particular, $n_{1}=\mathfrak{n} \cap \mathfrak{a}_{s s} \subset \mathfrak{a}_{c}$ and $\operatorname{ad}_{a} n_{1}$ consists of semisimple operators. Hence the elements of $\operatorname{ad}_{9} n_{1}$ are semisimple as well as nilpotent, i.e. $\mathfrak{n}_{1} \subset z(\mathfrak{g})$. Moreover

$$
\begin{equation*}
\mathrm{P}([\mathfrak{g}, \mathrm{n}])=[\mathrm{P}(\mathfrak{g}), \mathrm{P}(\mathfrak{n})]=\left[\mathrm{P}(\mathfrak{g}), \pi_{c}(\mathrm{n})\right]=\{0\} \tag{1}
\end{equation*}
$$

the last equality following from the proof of Proposition (2.4), so $n_{1} \cap[\mathfrak{g}, n]=\{0\}$. Letting n_{2} denote any complement of n_{1} in n which contains [g,n]; (a) follows.

Let

$$
\mathfrak{g}_{n c}=\mathfrak{f}+\mathfrak{p}
$$

be a Cartan decomposition with \mathfrak{f} compactly imbedded in \mathfrak{g}. Since the connected subgroup of $\operatorname{Int}(\mathfrak{a})$ with Lie algebra $\operatorname{ad}_{a} \mathfrak{g}_{n c}$ is a semisimple matrix group, it has finite center and hence \mathfrak{f} is compactly imbedded in a (see Helgason [4], pp. 252-253). $\mathfrak{f}+\mathfrak{a}_{c}$ lies in a maximal compactly imbedded subalgebra \mathfrak{w} of $\mathfrak{a} . ~ P(\mathfrak{w})=\mathfrak{f}+\mathfrak{a}_{c}, \mathfrak{f}+\mathfrak{a}_{c}$ being maximal compact in $\mathfrak{a}_{\mathfrak{s s}}$, so $\mathfrak{w}=\left(\mathfrak{f}+\mathfrak{a}_{\mathfrak{c}}\right)+(\mathfrak{w} \cap \mathfrak{s})$ with $(\mathfrak{w} \cap \mathfrak{s}) \subset z(\mathfrak{w})$. After replacing L by a conjugate subgroup of A, we may assume that $I \subset \mathfrak{w}$. Thus $\mathfrak{a}=\mathfrak{w}+\mathfrak{g}$ and $\mathfrak{s}=(\mathfrak{w} \cap \mathfrak{s})+\mathrm{Q}(\mathfrak{n})$. Let \mathfrak{u} be a complement of
$\mathfrak{w} \cap \mathbf{Q}(\mathfrak{n})$ in $\mathfrak{w} \cap \mathfrak{s}$ and set

$$
\begin{equation*}
\mathfrak{v}=\mathfrak{u}+\mathfrak{f}+\mathfrak{a}_{c} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\mathfrak{a}=\mathfrak{v}+\mathfrak{p}+\mathfrak{n}_{2} \quad \text { and } \quad \mathfrak{s}=\mathfrak{u}+Q\left(\mathfrak{n}_{2}\right) \tag{3}
\end{equation*}
$$

Denote by \mathfrak{s}_{0} the 0 -eigenspace in \mathfrak{s} of $\operatorname{ad}_{a} \mathfrak{v}$. Since \mathfrak{v} lies in the compactly imbedded subalgebra $\mathfrak{w}, \mathfrak{s}=\mathfrak{s}_{0}+[\mathfrak{v}, \mathfrak{s}]$.
$\mathfrak{s}_{0}=\mathfrak{u}+\left(\mathfrak{s}_{0} \cap Q\left(\mathfrak{n}_{2}\right)\right)$. Set

$$
\begin{equation*}
\mathfrak{n}_{2}^{\prime}=[\mathfrak{v}, \mathfrak{s}]+\left(\mathfrak{s}_{0} \cap Q\left(\mathfrak{n}_{2}\right)\right) \tag{4}
\end{equation*}
$$

Then $\mathfrak{s}=\mathfrak{u}+\mathfrak{n}_{2}^{\prime}$ and $\mathfrak{v} \cap \mathfrak{n}_{2}^{\prime}=\{0\}$.
$P\left(n_{2}\right) \subset \mathfrak{a}_{c} \subset \mathfrak{v}$, so (2) and (3) imply $\mathfrak{s} \subset \mathfrak{n}_{2}+\mathfrak{v}$ with $\mathfrak{n}_{2} \cap \mathfrak{v}=\{0\}$. For $X \in \mathfrak{s}$, write

$$
X=X_{v}+X_{n} \quad X_{v} \in \mathfrak{v}, \quad X_{n} \in n_{2}
$$

Claim. - For $\mathrm{X} \in \mathrm{n}_{2}^{\prime},\left[\mathrm{X}_{\mathrm{v}}, \mathfrak{s}\right]=\{0\}$.
For $H \in \mathfrak{v}, Y \in \mathfrak{n}_{2}$, write

$$
[\mathrm{H}, \mathrm{Y}]=\rho(\mathrm{H}) \mathrm{Y}-\varphi(\mathrm{Y})(\mathrm{H}), \quad \rho(\mathrm{H}) \mathrm{Y} \in \mathrm{n}_{2}, \quad \varphi(\mathrm{Y}) \mathrm{H} \in \mathfrak{v}
$$

To prove the claim, it suffices to show that $\rho\left(X_{v}\right)=0$, since then

$$
\left[X_{v}, \mathfrak{s}\right] \subset \mathfrak{v} \cap[\mathfrak{v}, \mathfrak{s}] \subset \mathfrak{v} \cap \mathfrak{n}_{2}^{\prime}=\{0\}
$$

Let \mathfrak{v}_{0} be the maximal $\left(\mathfrak{v}+\mathrm{n}_{2}\right)$ - ideal in \mathfrak{v} and

$$
\pi: \mathfrak{v}+\mathfrak{n}_{2} \rightarrow\left(\mathfrak{v}+\mathfrak{n}_{2}\right) / \mathfrak{v}_{0}
$$

the projection. $\pi\left(\mathfrak{n}_{2}\right)$ is nilpotent, $\pi(\mathfrak{v})$ contains no ideals of $\pi\left(\mathfrak{v}+\mathrm{n}_{2}\right)$ and $\pi\left(\mathrm{n}_{2}\right) \cap \pi(\mathfrak{v})=\{0\}$. Hence (Wilson [8]), $\pi\left(\mathrm{n}_{2}\right)$ is an ideal in $\pi\left(\mathfrak{v}+\mathrm{n}_{2}\right)$. i.e. for $\mathrm{Y} \in \mathrm{n}_{2}, \varphi(\mathrm{Y})(\mathfrak{v}) \subset \mathfrak{v}_{0}$ and

$$
\begin{equation*}
\rho(\varphi(\mathrm{Y}) \mathrm{H})=0, \quad \mathrm{H} \in \mathfrak{v}, \mathrm{Y} \in \mathrm{n}_{2} . \tag{5}
\end{equation*}
$$

We suppose first that $X \in \mathfrak{s}_{0} \cap Q\left(n_{2}\right)$. Since $X \in \mathfrak{s}_{0},\left[a_{c}, X\right]=\{0\}$ and for $H \in \mathfrak{a}_{c}$,

$$
0=[\mathrm{H}, \mathrm{X}]_{\mathrm{v}}=\left[\mathrm{H}, \mathrm{X}_{\mathrm{v}}\right]-\varphi\left(\mathrm{X}_{\mathrm{n}_{2}}\right) \mathrm{H}
$$

Thus by (5)

$$
\rho\left(\left[\mathrm{H}, \mathrm{X}_{\mathrm{v}}\right]\right)=\{0\}, \quad \mathrm{H} \in \mathfrak{a}_{c}
$$

But $X_{v}=-P\left(X_{n}\right) \in \mathfrak{a}_{c}$ since $X \in Q\left(n_{2}\right)$. Noting that ker $\left.\rho\right|_{\mathfrak{a}_{c}}$ is an ideal in the semisimple algebra \mathfrak{a}_{c}, it follows that $\rho\left(X_{\mathrm{v}}\right)=0$.

Now let $\mathfrak{v}_{1}=\left\{\mathrm{Y}_{\mathrm{o}}: \mathrm{Y} \in[\mathrm{v}, \mathfrak{s}]\right\}$. Then

$$
\begin{equation*}
[\mathfrak{v}, \mathfrak{s}]=\left[\mathfrak{v}_{1}, \mathfrak{s}\right]+\left\{\mathrm{Y} \in[\mathfrak{v}, \mathfrak{s}]:\left[\mathfrak{p}_{1}, \mathrm{Y}\right]=\{0\}\right\} \tag{6}
\end{equation*}
$$

Suppose $X=[H, Y]$ for some $H \in \mathfrak{v}_{1}, Y \in \mathfrak{s}$. Then

$$
X_{v}=-\varphi\left(Y_{n}\right) H+\left[H, Y_{v}\right]
$$

$\mathfrak{v}_{1} \subset P\left(n_{2}\right)+\mathfrak{u}$ by (3), $P\left(n_{2}\right)$ is abelian by (1), and $\mathfrak{u} \subset z(\mathfrak{p})$; hence \mathfrak{p}_{1} is abelian and $\left[H, Y_{v}\right]=\{0\}$. Thus by (5), $\rho\left(X_{v}\right)=0$.

In view of (4) and (6) it remains only to check the case $X \in[\mathfrak{v}, \mathfrak{s}]$ while $\left[\mathfrak{v}_{1}, \mathfrak{s}\right]=\{0\}$. Since $[\mathfrak{v}, \mathfrak{s}]$ is contained in the nil radical of \mathfrak{a} (see Jacobson [5], p. 51), $\operatorname{ad}_{a} X$ is nilpotent. $X_{v} \in \mathfrak{v}_{1}$, so $\left[X_{v}, X\right]=\{0\}$ and consequently $\left[X_{n}, X\right]=0$. Thus if we show that $\left.\operatorname{ad}_{a} X_{n}\right|_{s}$ is nilpotent, it will follow that $\left.\operatorname{ad}_{a} X_{v}\right|_{\mathfrak{s}}\left(=\left.\operatorname{ad}_{a}\left(X-X_{n}\right)\right|_{\rho}\right)$ is nilpotent. Noting that $\left.\operatorname{ad}_{a} X_{0}\right|_{s}$ is also semisimple since $X_{v} \in \mathfrak{w}$, the claim will be established.

For $Y \in \mathfrak{s}$,

$$
\begin{equation*}
\left[\mathrm{X}_{n}, \mathrm{Y}\right]=\left[\mathrm{X}_{n}, \mathrm{Y}\right]_{\mathrm{n}_{2}}+\varphi\left(\mathrm{X}_{n}\right) \mathrm{Y}_{\mathrm{v}} \tag{7}
\end{equation*}
$$

Setting $Z=\left[X_{n}, Y\right]_{n_{2}}$, (5) and (7) inductively imply

$$
\left(\operatorname{ad}_{\mathrm{a}} \mathrm{X}_{n}\right)^{m}(\mathrm{Y})=\left(\mathrm{ad}_{\mathrm{n}_{2}} \mathrm{X}_{n}\right)^{m-1}(\mathrm{Z})+\left(\varphi\left(\mathrm{X}_{\mathrm{n}}\right)\right)^{m}\left(\mathrm{Y}_{\mathrm{v}}\right) .
$$

Since n_{2} is nilpotent, $\left(\operatorname{ad}_{n_{2}} X_{n}\right)^{k-1}=0$ for some k, so

$$
\left(\operatorname{ad}_{a} X_{n}\right)^{k}(\mathfrak{s}) \subset \mathfrak{v} \cap \operatorname{nil} \operatorname{rad}(\mathfrak{a}) .
$$

But $\mathfrak{v} \cap \operatorname{nil} \operatorname{rad}(\mathfrak{a}) \subset z(\mathfrak{a})$ since \mathfrak{v} lies in a compactly imbedded subalgebra of a, so $\left(a d_{a} X_{n}\right)_{s}^{k+1}=0$, i.e. $\left.\operatorname{ad}_{a} X_{n}\right|_{s}$ is nilpotent. As noted above, the claim follows.

The claim implies

$$
\begin{equation*}
[\mathrm{X}, \mathrm{Y}]=\left[\mathrm{X}_{\mathrm{n}}, \mathrm{Y}_{\mathrm{n}}\right], \quad \mathrm{X}, \mathrm{Y} \in \mathfrak{n}_{2}^{\prime} . \tag{8}
\end{equation*}
$$

Since $\mathfrak{s}=\mathfrak{u}+\mathfrak{n}_{2}^{\prime}$ and $\left.Q\right|_{n_{2}}$ is $1: 1,\left\{X_{n}: X \in \mathfrak{n}_{2}^{\prime}\right\}=\mathfrak{n}_{2}$. Thus (8) and part (a) together imply

$$
\begin{equation*}
\left[\mathfrak{n}_{2}^{\prime}, n_{2}^{\prime}\right]=[\mathfrak{n}, n] . \tag{9}
\end{equation*}
$$

$\left[\mathfrak{v}, \mathfrak{n}_{2}^{\prime}\right] \subset \mathfrak{n}_{2}^{\prime}$ by (4), so by (9)

$$
\begin{equation*}
[\mathfrak{p},[\mathrm{n}, \mathrm{n}]] \subset[\mathrm{n}, \mathrm{n}] . \tag{10}
\end{equation*}
$$

For $X \in \mathfrak{n}_{2}^{\prime},\left[\mathfrak{g}, X_{n}\right] \subset \mathfrak{s}$ by (1) and $[\mathfrak{g}, X] \subset \mathfrak{s}$, so $\left[X_{v}, g\right] \subset \mathfrak{s}$. But $\left[X_{v}, \mathfrak{s}\right]=\{0\}$ by the claim, and $\operatorname{ad}_{a} X_{v}$ is a semisimple operator. Hence $\left[X_{v}, \mathfrak{g}\right]=\{0\} \quad$ and

$$
\begin{equation*}
[\mathrm{Y}, \mathrm{X}]=\left[\mathrm{Y}, \mathrm{X}_{n}\right], \quad \mathrm{Y} \in \mathfrak{g}, \quad \mathrm{X} \in \mathfrak{n}_{2}^{\prime} . \tag{11}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
\left[\mathfrak{f}+\mathfrak{g}_{c}, \mathfrak{s}\right] \subset \mathfrak{n} \tag{12}
\end{equation*}
$$

since $\left[\mathfrak{f}+\mathfrak{g}_{c}, \mathfrak{u}\right] \subset[\mathfrak{v}, \mathfrak{u}]=\{0\}$. Hence

$$
[\mathfrak{p}, \mathfrak{u}]=[[\mathfrak{f}, \mathfrak{p}], \mathfrak{u}]=[\mathfrak{f},[\mathfrak{p}, \mathfrak{u}]] \subset[\mathfrak{f}, \mathfrak{s}] \subset \mathfrak{n} .
$$

Thus $\left[\mathfrak{g}_{n c}, \mathfrak{s}\right] \subset \mathfrak{n} \cap \mathfrak{s}$. Since $\mathfrak{g}_{n c}$ is semisimple and $\left[\mathfrak{g}_{n c}, \mathfrak{n}\right] \subset \mathfrak{n} \cap \mathfrak{s}$ by (1),

$$
\begin{equation*}
\left[\mathfrak{g}_{n c}, \mathfrak{s}\right]=\left[\mathfrak{g}_{n c}, \mathfrak{n} \cap \mathfrak{s}\right]=\left[\mathfrak{g}_{n c}, \mathfrak{n}\right] . \tag{13}
\end{equation*}
$$

Similarly, using (12), we obtain $\left[\mathfrak{g}_{c}, \mathfrak{s}\right]=\left[\mathfrak{g}_{c}, \mathfrak{n}\right]$ and the second statement of (c) follows.

By Theorem (2.2) and (13),

$$
\begin{equation*}
\left[\mathfrak{g}_{n c}, \mathfrak{a}\right]=\mathfrak{g}_{n c}+\left[\mathfrak{g}_{n c}, \mathfrak{n}\right] . \tag{14}
\end{equation*}
$$

Thus,

$$
\begin{aligned}
{\left[\mathfrak{v},\left[\mathfrak{g}_{n c}, \mathfrak{w}\right]\right] } & =\left[\mathfrak{v},\left[\mathfrak{g}_{n c}, \mathfrak{n} \cap \mathfrak{s}\right]\right] \quad \text { by } \quad(13) \\
& \subset\left[\left[\mathfrak{v}, \mathfrak{g}_{n c}\right], \mathfrak{n} \cap \mathfrak{s}\right]+\left[\mathfrak{g}_{n c},[\mathfrak{v}, \mathfrak{n}]\right] \\
& \subset\left[\mathfrak{g}_{n c}+\mathfrak{n}, \mathfrak{n} \cap \mathfrak{s}\right]+\left[\mathfrak{g}_{n c}, \mathfrak{s}\right] \text { by } \\
& \subset\left[\mathfrak{g}_{n c}, \mathfrak{s}\right]+[\mathfrak{n}, \mathfrak{n}]
\end{aligned}
$$

Define

$$
\begin{equation*}
\mathfrak{m}=\left[\mathfrak{g}_{n c}, \mathfrak{s}\right]+[\mathfrak{n}, \mathfrak{n}] . \tag{15}
\end{equation*}
$$

By (10) and the above computation, m is an $\operatorname{ad}_{a}(\mathfrak{p})$-invariant subspace of $\mathfrak{n} \cap \mathfrak{s}$. Therefore

$$
\begin{equation*}
\mathfrak{m}=[\mathfrak{v}, \mathfrak{m}]+\left(\mathfrak{m} \cap \mathfrak{s}_{0}\right) \subset \mathfrak{n}_{2}^{\prime} \tag{16}
\end{equation*}
$$

by (4), so $\left[\mathfrak{g}_{n c}, \mathfrak{s}\right] \subset \mathfrak{n}_{2}^{\prime}$ by (15). Since

$$
\mathfrak{s}=\mathfrak{u}+\mathfrak{n}_{2}^{\prime} \quad \text { and } \quad\left[\mathfrak{u}, \mathfrak{n}_{2}^{\prime}\right] \subset \mathfrak{n}_{2}^{\prime},
$$

(9), (15), and (16) show that $\left[n_{2}^{\prime}, \mathfrak{s}\right] \subset n_{2}^{\prime}$. Noting that

$$
\mathfrak{a}=\mathfrak{v}+\mathfrak{p}+\mathfrak{n}_{2}^{\prime}
$$

we thus have $[\mathfrak{a}, \mathfrak{s}] \subset \mathfrak{n}_{2}^{\prime}$.
Finally define $\psi: \mathfrak{g}_{s s}+\mathfrak{n}_{1}+\mathfrak{n}_{2}^{\prime} \rightarrow \mathfrak{g}$ by

$$
\psi(\mathrm{Y}+\mathrm{X})=\mathrm{Y}+\mathrm{X}_{\mathrm{n}}, \quad \mathrm{Y} \in \mathfrak{g}_{s s}+\mathrm{n}_{1}, \quad \mathrm{X} \in \mathrm{n}_{2}^{\prime}
$$

ψ maps n_{2}^{\prime} injectively onto n_{2} and by (8) and (11), ψ is an isomorphism.

Corollary (3.2). - Under the hypothesis and notation of Theorem (3.1), $[\mathfrak{n}, \mathrm{n}]$ and $\left[\mathfrak{g}_{n c}+\mathfrak{n}, \mathfrak{g}_{n c}+\mathfrak{n}\right]$ are ideals of \mathfrak{a}.

Proof. - Both subalgebras are \mathfrak{g}-ideals. $\mathfrak{a} \subset \mathfrak{g}+\mathfrak{v}$ by (3), so the corollary follows from (10), (13) and Theorem (2.2).

4. The simply transitive case.

Under the notation and hypotheses of Theorem (3.1), suppose that $\mathrm{G} \cap \mathrm{L}$ is trivial. Then G intersects any conjugate of L trivially, so the last statement of Proposition (2.4) implies $n \cap \mathfrak{a}_{s s}=\{0\}$, i.e. $\mathfrak{n}_{1}=0$ and $\mathfrak{n}=\mathrm{n}_{2} \simeq \mathfrak{n}_{2}^{\prime}$.

Theorem (4.1). - Let the connected Lie group A be a product of disjoint subgroups $\mathrm{A}=\mathrm{GL}$ with L compact and G connected with nilpotent radical. We use the notation of (2.1) and (3.1) but write \mathfrak{n}^{\prime} in place of $\mathfrak{n}_{2}^{\prime}$. Then $\mathrm{A}=\mathrm{G}^{\prime} \mathrm{L}$ where G^{\prime} is a connected normal subgroup of A with Lie algebra \mathfrak{g}^{\prime} satisfying:
(i) $\mathfrak{g}^{\prime} \cap \mathfrak{I}=\{0\}$;
(ii) $\mathfrak{g}^{\prime}=\mathfrak{g}_{n c}+\mathfrak{g}_{c}^{\prime}+\mathfrak{n}^{\prime}$ for some \mathfrak{a}_{c}-ideal $\mathfrak{g}_{c}^{\prime}$ isomorphic to \mathfrak{g}_{c};
(iii) if $\left[\mathfrak{g}_{c}, \mathfrak{n}\right]=\{0\}$, then $\mathfrak{g}^{\prime} \simeq \mathfrak{g}$.

Proof. - We will continue to use the notation developed in the proof of Theorem (3.1). In particular, recall the construction of the maximal compactly imbedded subalgebra \mathfrak{w} of \mathfrak{a}. The conclusions of (4.1) are not
affected when L is replaced by a conjugate subgroup of A, so we may assume that $\mathrm{I} \subset \mathfrak{w}$. Then $\mathrm{I}_{s s} \subset[\mathfrak{w}, \mathfrak{w}] \subset \mathfrak{a}_{s s}$. Proposition (2.4) and Theorem (2.2) imply that

$$
\mathfrak{a}_{s s}=\mathfrak{g}_{s s}+\mathrm{l}_{s s}, \quad \mathfrak{a}_{c}=\mathfrak{g}_{c}+\pi_{c}\left(\mathrm{l}_{s s}\right)
$$

and

$$
\pi_{c}\left(\mathrm{l}_{s s}\right) \subset \mathrm{l}_{s s}+\mathrm{g}_{n c}
$$

Thus $\pi_{c}\left(\mathfrak{l}_{s s}\right) \cap \mathfrak{g}_{c}=\{0\}$ since $g \cap \mathfrak{l}=\{0\}$. Let $\mathfrak{a}_{c}^{\prime}$ be the minimal $\mathfrak{a}_{c}-$ ideal containing $\mathfrak{g}_{c} \cdot \mathfrak{a}_{c}^{\prime}=\mathfrak{g}_{c}+\left(\mathfrak{a}_{c}^{\prime} \cap \pi_{c}\left(\mathfrak{l}_{s s}\right)\right)$, a vector space direct sum, so $\mathfrak{a}_{c}^{\prime}$ contains an \mathfrak{a}_{c}-ideal $\mathfrak{g}_{c}^{\prime}$ isomorphic to \mathfrak{g}_{c} such that

$$
\mathfrak{a}_{c}^{\prime}=\mathfrak{g}_{c}^{\prime}+\left(\mathfrak{a}_{c}^{\prime} \cap \pi_{c}\left(l_{s s}\right)\right)
$$

again a vector space direct sum (Ozeki [7]). Hence $\mathfrak{a}_{c}=g_{c}^{\prime}+\pi_{c}\left(l_{s s}\right)$ and

$$
\begin{equation*}
\mathfrak{a}_{s s}=\mathfrak{g}_{n c}+\mathfrak{g}_{c}^{\prime}+\mathfrak{l}_{s s} \quad \text { (vector space direct sum). } \tag{1}
\end{equation*}
$$

Letting $\mathfrak{g}^{\prime}=\mathfrak{g}_{n c}+\mathfrak{g}_{c}^{\prime}+\mathfrak{n}^{\prime}$, Theorems (2.2) and (3.1) imply that \mathfrak{g}^{\prime} is an \mathfrak{a} ideal.

We now show that $a=g^{\prime}+l$. Since $a_{s s}=g_{s s}+l_{s s}$,

$$
\mathfrak{s}=\mathrm{Q}(z(\mathrm{l}))+\mathrm{Q}(\mathfrak{n}) . \mathrm{Q}(z(\mathrm{l})) \subset \mathrm{Q}(\mathfrak{w})=\mathfrak{w} \cap \mathfrak{s} .
$$

The subalgebra \mathfrak{u} in (3.1) was defined to be any complement of $\mathfrak{w} \cap Q(n)$ in $\mathfrak{w} \cap \mathfrak{s}$. We may therefore choose \mathfrak{u} so that $\mathfrak{u} \subset \mathrm{Q}(z(\mathrm{l}))$. Then by (3.1),

$$
\mathfrak{s}=\mathfrak{u}+\mathfrak{n}^{\prime}=\mathrm{Q}(z(\mathrm{l}))+\mathfrak{n}^{\prime} \subset \mathfrak{a}_{s s}+z(\mathfrak{l})+\mathfrak{n}^{\prime}
$$

Thus by (1), $a=g^{\prime}+I$ and $A=G^{\prime} L$, where G^{\prime} is the connected normal subgroup of A with Lie algebra g^{\prime}. Since g and g^{\prime} have the same dimension, $\mathfrak{g}^{\prime} \cap \mathfrak{I}=\{0\}$.

Finally, suppose that $\left[\mathfrak{g}_{c}, n\right]=\{0\}$. Then Theorem (3.1) part (c) and the semisimplicity of \mathfrak{g}_{c} imply $\left[\mathfrak{g}_{c}, \mathfrak{s}\right]=\{0\}$. Since $\mathfrak{a}_{c}^{\prime}$ is the minimal \mathfrak{a}_{c}-ideal containing $\mathfrak{g}_{c},\left[\mathfrak{a}_{c}^{\prime}, \mathfrak{s}\right]=\{0\}$ and consequently $\left[\mathfrak{g}_{c}^{\prime}, n^{\prime}\right] \subset\left[\mathfrak{g}_{c}^{\prime}, \mathfrak{s}\right]=\{0\}$. Since $\mathfrak{g}_{n c}+\mathfrak{n}^{\prime} \simeq \mathfrak{g}_{n c}+\mathfrak{n}$ by (3.1), (iii) follows.

5. A condition for normality of the transitive subgroup.

Theorem (5.1). - Let M be a connected homogeneous Riemannian manifold and $\mathrm{I}_{0}(\mathrm{M})$ the connected component of the identity in the group of
all isometries of M . Suppose that G is a connected transitive subgroup of A with Lie algebra \mathfrak{g} satisfying $[\mathfrak{g}, \mathrm{g}]=\mathfrak{g}$ and that some (hence every) Levi factor of G is of the noncompact type. Then G is normal in A.

Proof. - The condition $[\mathfrak{g}, \mathfrak{g}]=\mathfrak{g}$ implies that the radical \mathfrak{n} of \mathfrak{g} is nilpotent and that $\mathfrak{g}=\left[\mathfrak{g}_{n c}+\mathfrak{n}, \mathfrak{g}_{n c}+\mathfrak{n}\right]$, where $\mathfrak{g}_{n c}$ denotes a Levi factor of g . Thus Corollary (3.2) applies.

The following proposition is a partial converse to Theorem (5.1).

Proposition (5.2). - Suppose that G is a connected simply-connected Lie group with Lie algebra \mathfrak{g} satisfying $[\mathfrak{g}, \mathfrak{g}] \neq \mathfrak{g}$ and that G is not solvable. Then there exists a Riemannian manifold \mathbf{M} such that G acts simply transitively by isometries on \mathbf{M} but is not normal in $\mathrm{I}_{0}(\mathrm{M})$.

Proof. - Let \mathfrak{f} be a maximal compactly imbedded subalgebra of a Levi factor of \mathfrak{g} and \mathfrak{g}_{1} a codimension one ideal of \mathfrak{g} containing [$\mathfrak{g}, \mathfrak{g}$]. There exists a homomorphism $\lambda_{1}: \mathfrak{g} \rightarrow \mathfrak{f}$ with kernel g_{1}. Denoting by K the connected subgroup of G with Lie algebra \mathfrak{f}, the simple-connectivity of G implies the existence of a homomorphism $\lambda: \mathrm{G} \rightarrow \mathrm{K}$ with $(d \lambda)_{e}=\lambda_{1}$. Denote the center of G by G_{z} and set

$$
\mathrm{D}=\left\{(h, h) \in \mathbf{G} \times \mathbf{K}: h \in \mathbf{G}_{z} \cap \mathbf{K}\right\}
$$

Let

$$
A=(G \times K) / D
$$

with canonical projection $\pi: \mathrm{G} \times \mathrm{K} \rightarrow \mathrm{A}$ and set

$$
\mathbf{L}=\{\pi((h, h)): h \in \mathbf{K}\}
$$

$L \simeq K /\left(G_{z} \cap K\right)$, hence is compact, and L contains no normal subgroups of $\mathrm{A} . \mathrm{M}:=\mathrm{A} / \mathrm{L}$ may be given a left-invariant Riemannian metric, and A is then identified with a subgroup of $I_{0}(M)$. Define an imbedding $\quad \eta: \mathrm{G} \rightarrow \mathrm{A}$ by $\eta(g)=\pi((g, \lambda(g)) . \quad \lambda(\mathrm{K})=\{e\} \quad$ since $\mathfrak{f} \subset[\mathfrak{g}, \mathfrak{g}] \subset \mathfrak{g}$, so $\eta(G) \cap \mathrm{L}$ is trivial. Under this imbedding G is a simply transitive subgroup of $I_{0}(M)$. However G is not normal in the subgroup A of $I_{0}(M)$.

Suppose the group G in (5.2) has nilpotent radical so that $A=G L$ satisfies the hypotheses of Theorem (3.1). In the notation of (3.1), $\mathfrak{a} \simeq \mathfrak{g} \oplus \mathfrak{f}$, where \mathfrak{f} is the Lie algebra of K . However, \mathfrak{g} is imbedded in
\mathfrak{a} as $\left\{\left(X, \lambda_{1}(X)\right): X \in \mathfrak{g}\right\} .\left.\quad \lambda_{1}\right|_{\mathfrak{n}}$ is non-trivial since $\mathfrak{g}=\mathfrak{g}_{s s}+\mathfrak{n}$ with $\mathfrak{g}_{s s} \subset[\mathfrak{g}, \mathfrak{g}] \subset \operatorname{ker} \lambda_{1}$. Hence \mathfrak{n} is not an \mathfrak{a}-ideal. But $\mathfrak{n}=\mathfrak{n}_{2}$ since $\mathrm{G} \cap \mathrm{L}=\{e\}$, so n_{2} is not equal to the \mathfrak{a}-ideal n_{2}^{\prime}. (See remark (3.2).)

BIBLIOGRAPHY

[1] R. Azencott and E. N. Wilson, Homogeneous manifolds with negative curvature, Part I, Trans. Amer. Math. Soc., 215 (1976), 323-362.
[2] R. Azencott and E. N. Wilson, Homogeneous manifolds with negative curvature, Part II, Mem. Amer. Math. Soc., 8 (1976).
[3] C. Gordon, Riemannian isometry groups containing transitive reductive subgroups, Math. Ann., 248 (1980), 185-192.
[4] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Academic Press, New York, 1978.
[5] N. Jacobson, Lie algebras, Wiley Interscience, New York, 1962.
[6] A. L. Oniščik, Inclusion relations among transitive compact transformation groups, Amer. Math. Soc. Transl., 50 (1966), 5-58.
[7] H. Ozeki, On a transitive transformation group of a compact group manifold, Osaka J. Math., 14 (1977), 519-531.
[8] E. N. Wilson, Isometry groups on homogeneous nilmanifolds, to appear in Geometriae Dedicata.

Manuscrit reçu le 15 septembre 1980.
Carolyn Gordon,
Lehigh University
Department of Mathematics
Christmas-Saucon Hall 14
Bethlehem, Pa. 18015 (USA).

