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FULLY NONLINEAR SECOND ORDER
ELLIPTIC EQUATIONS

WITH LARGE ZEROTH ORDER COEFFICIENT

by L. C. EVANS (*) and P.-L. LIONS (**)

1. Introduction.

This paper describes a fairly simple method for proving the classical
solvability of certain fully nonlinear second order elliptic equations,
provided the coefficient of the zeroth order term is sufficiently large. Briefly,
the idea is first to show by an a priori estimate that the C^-norm of a
solution cannot lie in a certain interval (C^, C^) of the positive real line
and, second, to eliminate by a continuation argument the possibility that
this norm ever exceeds the constant C^. (Our technique is thus
reminiscent of certain methods for proving global existence in time of
solutions to various nonlinear evolution equations with small initial data.)

We begin now the precise statements of our existence theorems by
assuming that

F : R"2 x R" x R x R" -> R

is a given smooth function satisfying the ellipticity assymption

8¥
(1.1) 9|^|2 ^ ̂ - (M,r,x)^, for all ^ = (^,... ,^) e R",

for some real number 9 > 0 and all p e R"2, q e R", r e R, x e R". We also

(*) Supported in part by the National Science Foundation under Grant No.
MCS77-01952; Alfred P. Sloan Fellow, 1979-81.

(**) Supported by C.N.R.S.
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suppose that there exists a constant M such that

(1.2) |F(0,0,0,x)| ^ M for all x

and

(1.3) |DF(;w,x)|, ID^Ow.x)! ^ M for all p^x.

Let us consider first the nonlinear partial differential equation in all of
space

(1.4) ^u - ¥(D2u,Du,u,x) = 0 in R\

Our existence theorem is

THEOREM 1. — Under the above assumptions there exists a constant XQ
such that (1.4) has a unique solution

ueC^R") (for all 0<a<l)
provided

(1.5) \^ ̂ .

The constant ^o depends only on n, 9, and M.

We prove Theorem 1 in § 3, after first obtaining in § 2 the key estimate
described above.

Our method applies also to nonlinear elliptic equations on a bounded
domain, provided a restriction ((1.7) below) is placed on F. We consider
the equation

RIM - F(D2M,Dlwc) = 0 in Q
(1.6) \

[u = 0 on 20,

where Q c R" is a bounded smooth domain. Let us now suppose, in
addition to (1.1)-(1.3), that

(1.7) F(0,0,0,x) = 0, xe9Q..

THEOREM 2. — Under these hypotheses there exists a constant ^o sucn

that (1.6) has a unique solution

MeC^Q) (for all 0<a<l)
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provided

(1.10) ^ > ^ .

The constant ^ depends only on Q, 9, and M.

Theorem 2 is proved in §4.

In § 5 we collect various comments concerning hypothesis (1.7) and also
certain extensions of our technique to related problems. The appendix (§ 6)
contains some lemmas concerning the standard L^ second order elliptic
estimates.

Finally we note that Skrypnik [6] has obtained by a completely
different method some results on fully nonlinear elliptic equations (even of
higher order) with large zeroth order coefficient. Some other recent papers
on fully nonlinear second order elliptic equations are Evans-Friedman [2],
P.-L. Lions [5], and Evans [1].

Notation.
D^=D^,. . . ,D^
^u=(D^..^.^D^.

The letter « C » denotes various constants depending only on known
quantities.

ID^OC) - D^OQI
Nlc2,w)= sup ———————— + sup ID^MI

^eR" \x - y^ ,̂
x^y

+ sup \Du(x)\ + sup \u{x)\;
x 6 R" x e R"

ll^llc2.^) ^ similarly defined. We employ the implicit summarion
convention throughout.

2. Preliminary estimates.

The goal of this section is our proof (Lemma 2.3) that for K > ^o, KQ
large enough, then exists an interval (C^C^) in which the C^-norm of
the solution of (1.4) cannot lie. First, however, we must know that the
solution and its gradient behave well for large ^; the first two lemmas
provide this information.
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LEMMA 2.1. - Suppose that v e C^R") {for some 0 < a < 1) solves
the linear elliptic equation

(2.1) ^v - a^(x)v^ + b,(x)v^ + c(x)y = /(x)

fn R", where

K-l, l̂ -l, H, I/I ̂  M
^(x)^^Qg\2 for all x^eR",
c ^ 0

^^n

(2.2) IIML-(R")^ II/HL-(R").

Proof. — The auxiliary function

w^x) = ^(x)^-6^2 (e>0)

solves the p.d.e.

^-w8 - a^-w^. + ^w6 + cw8
l-J I j l X,

= ^-e|x|2 _ .̂[2ex .̂ + 2ex,^. + 28§^ - 4£2x^•]6?-elxl2

- fc.^ex^]^-^!2.

Since IH^X)! -^ 0 as |x| -^ oo, Iw8] attains its maximum at a finite point in
R". Applying the maximum principle at this point and recalling the
inequalities

^elx^-^i2, e|x|^-^i2 ^ C,
we discover

IMlî ) ̂  ||/HL-(R") + C^/G(\\DV\\^^ + |M|L°W).

Now send e -> 0 to obtain (2.2). Q

LEMMA 2.2. - Assume that u e C^R") (0<a<l) solves (1.4). 77u?n
t/i^re exists a constant CQ such that

(2.3) IMwi^(R")^Co.

The constant CQ is independent of ^., provided 'k is large enough.
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Proof. — We may as well assume
o¥

(2.4) — (p,q,r,x) ^ 0 for all p, q, r, x,

since otherwise we can rewrite (1.4) in the form

Vu - F^D^Di^x) = 0 in R"

for F'(^,r,x) = ¥(p,q,r,x) - Mr, V == X - M.

Now M solves the equation

I" f1 BF , ~|
^ 1 .p^2^^,^)^^

LJo ^ ^ i j J j

—{tD\tDu,tu,x)dt\u,.
LJo a^- J l

r r1 ̂  . 1- ———— ̂ u^Du^x) dt \u

= F(0,0,0,x) in R".

Hypotheses (1.1)-(1.3) and (2.4) permit us to invoke Lemma 2.1 and obtain
the bound

ML-(R")^C.

Next let us differentiate (1.4) with respect to x^==l,2,.. .,n); then we
note that v ^= u^ solves the linear p.d.e.

(2.5) ^v--. (D\Du,u,x)v - — (D\Du^x)v^.
BP^ ^ Sq,

8¥ , 8¥ ,
- — (D\Du,u,x)v = — (D^Du^x).

or ox^

We once more apply Lemma 2.1 to find

||?IDM||LOO^^ C.

Next is our main estimate :

LEMMA 2.3. - Fix some 0 < a < 1. Then there exists ^o > 0 and
constants 0 < C^ < C^, such that if u solves (1.4),

^ ^ ?lo,
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and
IMIc^RH) ^ €2,

then M^n^C,.

Proof. — Choose |3 so small and p so large that

(2.6) 0 < P < a = l - n •
P

We recall from (2.5) that v = u^ (k= 1,2,.. .,n) solves the linear elliptic
equation

(2.7) —— (D\Du^x)v + — (D\Du^x)v,.
op^ I J oqi l

-+- — (D\Du,u,x)v = 'kv - —(D^Du^x},
9r 9x^

the right hand side of which — according to Lemma 2.2 and assumption
(1.3) - is bounded on R", independently of ^.

Denote by B^ and B^ any two concentric closed balls, of radius 1
and 2 respectively. We apply the standard elliptic interior Lp estimates to
(2.7) and obtain (see Lemma 6.1 in the appendix):

IKJIw2.̂ ) = IHIw2.P(Bi)

^ C(||M||̂ + 1)( ̂  - 8

\ ^k
^ C(||u||̂ + 1)( ^ - ̂ -F( ) ̂  + ll^l^))

^C(||M||^)+ 1) (^=l,2,...,n),

for certain constants C and N (the precise size of N, in particular, is
irrelevant).

Then Morrey's theorem and (2.6) imply

Nlc2,a(Bi) ^ C(||M||̂ ,P )̂ +1) .

The constant C does not depend on the location of the balls B^ c: B^ in
R". This estimate therefore implies

NIc^R") < C(||M||?2,P(Rn) +1) .



FULLY NONLINEAR SECOND ORDER ELLIPTIC EQUATIONS 181

We recall* next interpolation inequality

IMIc2.P(R") ^ C||M||^2,£(Rn)[|M[[[cO(Rn).

(for some 0 < p < 1; cf. Friedman [3]); this gives us the estimate

(2.10) ||M|lc2.w ^ C(||u||̂ ||t,||[̂  +1)

. C(|M|^w + 1)
^ —————————

^N

by (2.3). So far the constants C, N, p depend only on known quantities and
do not depend on ^.

Now choose
C, = 2C,
C^ = Ci + 1.

Since we have assumed

IMIc2."(R») < €3 ,

(2.10) implies
p/pN(l-p) , i \

(2.11) Nlc2,w ^ -L___l_^ ^ 2C = C,
^p"

for X ^ ^o, XQ large enough. Q

3. Proof of Theorem 1.

We suppose now that 0 < a < 1, Xo, 0 < Ci < C^ are the constants
from Lemma 2.3. We will prove that (1.4) has a solution MeC^^R")
whenever ^ ^ ^; and a standard bootstrap argument then implies
u e C^R") for all 0 < y < 1.

For 0 ^ t ^ 1 consider the problems

(3.1), ^ - F,(DV,DuW,x) = 0 in R",
where

(3.2) F^D^Dw^x) = (l-r)© Aw + ^(D^Dw,^).

Define
T = {te[0,l]| (3.1), lias a solution u\ llMllc^Rn^Cj.
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Obviously 0 e T, and u° = 0. Notice also that standard theory
implies the uniqueness of the solutions u1 of (3.1)( with

IMIC^(R")^ Ci.

It is also evident that T is closed : if { t j c: T, t, -> to, then, since
ll^llc3'0^") ls bounded, we have

u^ -. u^ in C^R")
and

ll^°llc2^R") ^ liminf||M^2,a^ ^ C^.
i-^oo

Finally we assert that T is relatively open in [0,1]. Once this is
proved we can conclude l e T ; that is, (1.4) has a solution. Consider
therefore the mapping

G(t,u) : [0,1] x C^R") -> CW
defined by

G(t,u) = \u - F^U.DM.M.X).

Clearly G is continuous. Its Frechet derivative in u at any point (t,u) is
an isomorphism according to standard theory for linear elliptic equations
with Holder continuous coefficients :

[ 8¥
G^(t,u)v == \v - (1 - Q0 Av - t ——(D^Du^v^

8pij ' -'

+ — (D\Du,u,x)v^. + — (D\Du,u,x)v •
oq, l 8r J

Note also that the mapping

(t,u) -> G^u)
is continuous.

Now select any to e T n (0,1). By the implicit function theorem, there
exists some e > 0 and a continuous function v : (?o-e,^o+£) -> C^^R") so
that

G(t,u(0) = G(^o,Mto) = 0.
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Clearly
v(t) = u1

solves (3.1)c Since H^HC^R") ^ C^, we have IIM^HC^RH) < C^ for
\t—tQ\ < e',8' small enough. Then Lemma 2.3 implies

Ili/llc^n) ^ Ci;
that is, (tQ—s^tQ-^-^) c= T.

Theorem 1 is proved. D

4. Proof of Theorem 2.

In proving Theorem 2 we may mimic with obvious modifications the
calculations in § 3; the only real difficulty is to modify Lemmas 2.2 and 2.3
to the case that, 0 replaces R" : here the extra hypothesis (1.7) is crucial to
our argument.

LEMMA 4.1.- Assume that u e C3'"^) (0<a<l) solves (1.6). Then there
exists a constant Co such that

(4.1) MW^(Q)^CO.

Co is independent of \ so long as X is large enough.

Proof. — As in the proof of Lemma 2.2, we may assume

8¥
-Ow,x) ^ 0 for all p ,^ , r ,x .

or

The estimate
IMlL-(Q) ^ C

is then immediate from the maximum principle.

We must next prove

(4.2) X\Du\^ ̂  C

for some constant C. To see this first choose any point x* € 90.. As 30 is
smooth and therefore satisfies the uniform exterior sphere condition, we
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may assume, upon a change of coordinates if necessary, that

x* =(0,0,...,R),
B(0,R) n 80. == {x*}

for some fixed R > 0.

Consider now the auxiliary function

w 'w-^-^)-
where ^, p > 0 are to be selected. We have

^ ^ . .
^•^M^2

and
= ̂  ̂  P ̂ j _ P(P+2^^^ ^v^r2 ixr4 / '

so that

F(D2u,Du,u,x) = ——(tD\tDv,tv,x)dt\v^.
LJo 8pij J IJ

+ — (tD^t Dv,tv,x) dt \v^
LJo ^i J l

+ —{tD\tDv,tv,x)dt \v + F(0,0,0,x)
LJo 8r J

^ F(0,0,0,x),

for p large enough. On the other hand since F(0,0,0,x) = 0 on 30, we
have

|F(0,0,0,x)| ^ M|x-x**|
where

x** e 3Q belongs to the segment Ox,
Ix**] ^ R.

But note also that

^(x) ^ Uv(x)-v{x^}) = pfr—,-—)
\[x | |x| /

= — ( — — 1 1 where x** = ax, ———— ^ a ^ 1
Ix^Vo^ ) dia(Q)

^ HC(l-a)|x| = HC|x-x**|
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for some constant C > 0. Hence

(4.5) ^(x) ^ F(0,0,0,x) x e 0

if H is large enough. According to (4.4) and (4.5) we have

^v-u)-[¥(D2v,Dv,v,x)-¥(D2u,Du,u,x)] ^ 0 in Q.

The maximum principle therefore implies

u ^ v inD.

Since u(x*) === v(x*) = = 0 , we have

BM(X*) 8v(x*) C———— . ̂ , ————— ^, — —— • ^ . ^
8n 8n 'k

A similar argument provides an upper bound. This proves (4.2).

The intertor bound on DM is easy now. We differentiate (1.6) with
respect to Xj, ( fc==l,2, . . .,n) :

(8V 8¥ 8F \
^xk~[^uxkxix^^uxkx^^u^

Should ± u^ attains its maximum at some point XQ e Q,, we have

± X^(xo) ^ ± F^D^x^D^x^u^o),^) ^ M;

and should the maximum occur on 30, we recall (4.2).

LEMMA 4.2. — Fix some 0 < a < 1. Then there exists ^ > 0 and
constants 0 < C^ < C^ such that if u solves (1.6),

and

then

?i^^

NIc^n) ^ €2,

ll^llc^ft) ^ Ci.

Proof. — As in the proof of Lemma 2.3 choose P and p so that

0 < P < a = l - n •
P
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According to Lemma 4.1 and Lemma 6.2 in the appendix we have

l|y|lw3,P(n) ^ C(||«||^+l)

for some constants C and N. This estimate and a calculation almost
precisely like that in the proof of Lemma 2.3 imply the result. D

5. Comments and extensions.

a) Hypothesis (1.7).

A review of § 3 and § 4 makes it clear that the estimate Lemma 4.2
provides is crucial for our technique; for if the right hand side of (2.7)
becomes unbounded with large ^ we cannot then select ^ large enough
to obtain (2.11). Lemma 4.2 in turn depends on the assumption (1.7) (i.e.
« F(0,0,0,x) == 0 on 90.») as the following example shows : Consider the
problem

Cku - u" = 1 on (0,1)
[ u ( 0 ) = = M ( l ) = 0 .

Then

^.^j^£±yj^_\^
^L \^^^J \^_e-^) \

so that

W(0) - C^/\ for large ' k .

In this case Lemma 4.1 fails, as do its obvious modifications (e.g. replacing
the L°° with U norms).

b) Neumann boundary conditions.

Consider the p.d.e.

Ku - ¥(D\Du,u,x) == 0 in

— = 0 on 50,
9n

when Q is now assumed to be a smooth bounded, convex domain in R"
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« 8 »
and —— denotes the outward normal derivative. We claim that (5.1)

admits a unique solution assuming that X is large enough and F satisfies
hypotheses (1.1)-(1.3); assumption (1.7) is not needed here.

Indeed it suffices to obtain the bound

(5.2) MWI^(O)<C,

for C independent of X, X, large enough. According to Hopfs maximum
principle \u\ must attain its maximum at some point of Q, where as before

ML^O)^ C.

Next a straightforward calculation shows us that

v = \Du\2

solves

^ ., 8¥( ) 8F( ) 9¥( )
(5.3) 2Xi; - ——— v - ——— i; - 2 ——— v

9pij j 8q, ' 8r
^F( ) BF( ) .

'-axT^-2^--^^ m °-

If v attains its maximum in 0, the maximum principle gives the desired
estimate

(5.3) IMLoo^C.

On the other hand Lemma 1.1 in P.-L. Lions [6] implies

8v
— < 0 on 8n
8n

(the convexity of Q. is used here). The Hopf maximum principle therefore
eliminates the possibility that v attains its maximum only on 5Q.

This proves the estimate (5.2) and — as noted - the remainder of the
existence proof for (5.1) follows as in Lemma 2.3 and § 3. Q



188 L. C. EVANS AND P.-L. LIONS

6. Appendix : the dependence of I/ estimates upon
the second-order coefficients.

In §2 we made reference to the following estimate concerning the
dependence of the standard L^ elliptic estimates on the C^-norm of the
second order coefficients :

LEMMA 6.1. —Let BI and B^ be two concentric closed balls in R", of
radius 1 and Irrespectively. Assume that veC2>a(B^) solves the linear
equation

(6.1) - a,j(x)v^ + b,(x)v^ + c(x)v = f

in B^, "where

(6.2)

and

f|^,|Jfc,|,|c| ^ M
W^^^ei^l2 for all x^eR"

a.j e 0^2) for some 0 < P < 1.

Then for each 1 < p < oo there exist constants C and N, depending only
on M, 9, p, and n such that

(6.3) Nlw2,P(Bp ^ C(||^,||^B2)+l)(||/|lLP(B2)+ll^llLP(B2)+l)-

Proof. — The bound (6.3) is a standard consequence of linear L^
theory, except for the stated dependence on the C^-norm of the a^.

Briefly then, let us first note that a solution v of

(Lv = f in B(R)
\ v = 0 near 8B(R)

(L denoting the operator in (6.1) and B(R) some ball of radius R) satisfies
the bound

(6.4) IID^ILwRr^Cai/II^Bc^+ll^llw^^^

provided

(6.5) Rplk,llcP(B(R))=£/,
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for some small, but fixed constant e'. (Proof: a standard perturbation of
coefficients (cf. Ladyzewskaja and UraFceva [4, p. 190-193]) reduces (6.4) to
the known estimate for A.)

F " -|
Now BI can be covered by K = C [|a,^p-H balls B^ of radius

R
— » R satisfying (6.5). We choose cutoff functions ^ so that

( ^ = 1 on B,
(6.6) (^ = 0 near 82B^ (2B^ = ball concentric with B^

and with radius R)

ro^, iD2^^0
K K

and set

/ k \ - i
(6.7) n , = ^ ^ ^

\ < f = i /

to obtain a partition of unity on B^ . Define

(6.8) Ck = T|̂  on 2B^.

We have

(6.9) L^ = TV - a^[2v^^vr}^ + b^^ = ̂ .

Then (6.4) implies

K (^^

(6.10) IID^II^)^ £ ltD^II^B^^-^lll/IlL^) +ll^l lwl,P(B3J.
k = l K '

Similarly

CK
||^|lw^(B3/2) ^ -p2- I ll/llLP(B2)+ IÎ IL )̂.R2

The last two estimates, (6.5), and the definition of K give us (6.3). D



190 L.C. EVANS AND P.-L. LIONS

For the proof of Lemma 4.2 we need

LEMMA 6.2. — Suppose that u e C3'̂ ) for some 0 < y < 1 solves

(6.11) (¥(D\Du,u,x) = f(x) in Q
[u = o on an

for some / e W^O). Then for each 1 < p < oo and 0 < P < 1 there
exist constants C and N, depending only on M, 9, p, and ft, such that

(6.12) IMIw^(ft) ^ C(||M||?2,P(n)+l)||/||wi,p(n).

Proof. — Differentiating (6.11) we note that ' v = u^ (the derivative of u
in an arbitrary direction ^) satisfies

o¥ , 9¥
——(D^Du^v + —{D\Du,u,x)v,.
°Pij j Sq,

+ — (D\Du,u,x)v = ^ - .-(D^Diwc);

the right hand side of this expression belongs to L^Q). Now cover fS

with K = C
BF( )

8pij

R
&P(U)+1 ^^ Bfc of radius —» for R defined by

3F( )
R^

II 8pij llc^)
e' from (6.5); we may assume that those balls Bj^ which intersect 3ft are
in fact centered at a point belonging to 30.

Define ^, r^, ^ by (6.6)-(6.8).

Now if Bfc c Q for any given k = 1,2, . . . , k we recall estimate (6.4)
for v = Ufc. If Bfc n 3Q ^ 0, we transform coordinates to the case that
oQ, n Bfc <= {x^=0}, reflect ^ across the x,, plane (assuming ^ = 0 on
{x^==0}), and again apply (6.4). This method yields a bound on ||M^||w2,P(B )
for ^ = Xi, . . . , x ^ _ i . The remaining derivative i^ ^ ^ we estimate using
equation (6.13) for v = u^ .

Collecting together these bounds we obtain

HD^HW^O) ^ C(II^II^(O)+I)(IID/HLP(Q)+ I|D,F||^)+ l|M|lw2^)).

Applying a standard interpolation inequality completes the proof. Q
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