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A THEOREM ON WEAK TYPE ESTIMATES
FOR RIESZ TRANSFORMS

AND MARTINGALE TRANSFORMS

by Nicolas Th. VAROPOULOS

1. Riesz transforms.

Let ^ E M(R") be a bounded Radon measure on R" and let
dfJi = fdx + dv, /G L^R") and v singular, be its Lebesgue decom-
position. Let us further denote by u(x , y) = u^(x , y) x E R" ,
y > 0 the Poisson integral of jn on the upper half space, by
u^(x , y ) , . . . , u^{x , y) the Riesz conjugate system of UQ , and
by Rfl^(x) (x e R") / = 1 , . . . , n the Riesz transforms of VL . It
is well known then that there exists C a constant depending only
on the dimension n such that

N(X)=XmL; i |R,/i(x)|2 > X 2 ] <C||^||
L /=i J

where m denotes Lebesgue measure (cf. [1] Ch. 1). In this note I
shall prove the following

THEOREM. — There exists a numerical constant k > 0 only
depending on the dimension n such that

lim N(X)>A:|M|.
\-».oo

When n = 1 a stronger version of the above theorem is due to P.
Jones (unpublished).

THEOREM (P. Jones). — When n = 1 and ^ , v and N(X) are
as above ̂ ehave:

Urn N(X)= 2 |M|.
\-».oo 7T
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A weaker version of P. Jones's theorem is due to Cereteli [2] (cf.
[2], he assumed that lim N(X) = 0). Let us denote by

\—>00

u^) = sup [\u^(x , y) | ; (x , y) G TJ?)} $ E R"

the non-tangential maximal function of u^(k = 0,1 , . . . , n) where
T^({) is the standard conical region in R^1 with vertex at $€ R"
vertical axis and opening a. Our theorem above contains then the
following theorem of R.F. Gundy [3].

THEOREM (R.F. Gundy). - Let /i E M(R") be as above and
let us suppose that m[u^ > X] = o(l/X) for k = 1, 2 , . . . , n. Then
y, the singular part of fi vanishes.

R.F. Gundy actually stated the above theorem when n = 1
but his proof can easily be adapted to any dimension.

The proof of our Theorem will need the following Lemma which
already appeared in a weaker form in [3].

LEMMA. — Let JLI , v and u = UQ be as above and Iet
u*(x) = sup \u(x , y)\.

y>0

We then have: lim X m[u* > X] > c \\v\\ where c > 0 is a nume-A.-^.oo
rical constant depending only on the dimension.

The proof is easy and for completeness I shall outline it:

Proof. - By an easy reduction we can suppose that ju = v > 0
and that supp/i is contained in the unit cube. We can then define
the diadic maximal function of ^ by

u^(x) = sup ^ -_- f dii; x e I , I closed diadic cube f .

By the positivity of fi it then follows that

u*(x) >Au^(x) (1.1)
where A > 0 is numerical depending only on the dimension.

Let now X > 0 be fixed but large enough and let us apply the
usual Calderon-Zygmund argument (cf. [1] Ch. 1) on the unit cube
with respect to /A at the level X > 0. We obtain then a disjoint
family of closed diadic cubes 1 ^ , 1 ^ , . . . (i.e. disjoint interiors) such
that
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[^ (x)>X]== 0 I,; X < — f ^<2"X, / = 1 , 2 , . . .
/=! 11,1 J!,

It follows in particular that

I M I = ^ ( ^ I , ) = ^ ( . ^ I , ) < 2nXm(.UI,) = 2"Xw[^(;c)>X].

From this and (1.1) the Lemma follows.

Proof of the Theorem. - Let jn , /, v , u = ^, ̂  , . . . be as
above and let us suppose, as we clearly may, that /A is compactly

_ i
supported and that || v\\ = 1 . Let us also fix a s.t. ——— < a < 1
(n is the dimension) and define :

F = ( l ^ o l 2 - ^ • • • ^ l^l2)^2

Fo=( | / | 2 + |R^|2 + . . . + IR^I^eL^JR71).

We clearly have lim F(x, y) = F^Oc) for a.a. x E R" and
IFoW = 0(1x1-^) as x—^oo. Wealsohave

F < $ = P J . F Q (1.2)
where P.I. denotes the Poisson integral of the function F() . The
above inequality follows by harmonic majorization if we observe
that:

(a) F is a subharmonic function in R^1 (cf. [1] Ch. VII)
(b) F satisfies the following boundedness conditions :

sup |F(;c,jQ| < + o o V^o > 0
xGR";^>^

sup | F(x , y ) | < 4- oo for some A > 0
\x\>A,y>0

sup f \F(x,y)\qdx <<^ VAX) l < q < l / a .
y>0 ^IjcKA

We clearly have also:

liin X^Fo > X] == Uin N(X) < c |M| = c (p = I/a) (1.3)
\-».oo u \->oo

where c is numerical only depending on the dimension.

Let us now denote by MF() the Hardy-Littlewood maximal
function of FQ (cf. [1] Ch. I) and for every X > 0 let us consider
the decomposition:
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^0 = ̂ \ 4" P = ^oX(FQ<\/2l + ^oX(F^>\/2] •

We clearly have then [MFp > X] C [MF^ > X/2] which impUes by
the weak-L1 inequality that

m[MFo > X] < -£ \\P\ X > 0 (1.4)
A

where c only depends on the dimension. To estimate ||F^||^ let
us denote by m(\) = w[Fo > X] we then have:

\\F\ =X/2m(X/2)+ F m(t)dt
^X/2

/»a\/2 /»00

==X/2m(X/2)+ ^ m(t)dt-^ \ m(t)dt
^X/l ^aX/2

< fL w(X/2) + f00 m(r)rfr
2 ^aA./2

for all 0 > 1 because m(t) is a decreasing function. This by (1.3)
implies that for X large enough we have:

IIF^ < ^(X/2) + ̂ -(t)^ ( p = l / a )

which together with (1.4) gives that
r al~p /\\p / x \ i

^[MFo>X]<c|^-p+a(^) m^)\

for all 0 > 1 , where C again only depends on the dimension. The
conclusion is that:

lim X^IMF. > X ] ^cf-^1-^ + a lim N(X)|
\^^ [ p - 1 ^- J

and if we suppose that A = lim N(X) < 1 and set a = \~llp we
obtain that

lim X^MF. > X] < -cp- (lim ^X))1"1^ (1.5)
\->oo P — 1 \-^°o

(1.2) now implies that:

(u*(x)T =(sup|^(x,^) |) a <sup F(^ ,^)< sup $(x,^)<MFo(jc).
^>o y>o y>o

This together with (1.5) gives:
Hm. \m[[u* > X] < -cp— (lim N(X))1-1^
\-°o p — 1 A.-^
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which together with the Lemma finally implies that:
JmLN(X) > A > 0
\-XOO

where A is a numerical constant only depending on the dimension.
This proves our theorem.

The above theorem should be compared with the well known
m

theorem of Loomis (cf. [4]) that asserts that if JLI == ^ c^.eM(R),
7=1 / ^

- ^ i » • • • , ̂ m E R , c ^ , . . . , c^ > 0 then the Hilbert transform ?(x)
of JLI satisfies

Ml7;WI>X]== 2- H^ll V X > 0 .
7T

It is from this fact, by approximating arbitrary positive singular
measures by discrete measures as above, that P. Jones was able to
prove his more precise theorem.

The above method if followed through will yield the following
version of Loomis's theorem for higher dimensions:

THEOREM. — Let v be a positive singular bounded measure of
R" we then have:

k\\v\\<\m\^ |R,^(x)[>x1 <c|M|; V X > 0
L/'-i J

where c , k > 0 only depend on the dimension.

Indeed by an easy reduction argument that involves dilatation
of the space, throwing away a negligible (i.e. mass less than e) piece
and multiplying by a constant we see that it is enough to show that
there exists some positive constant a > 0 depending only on the
dimension such that has every positive singular measure v of mass
1 supported by the unit cube in R" we have:

\m\ ^ |R,^(JC)| >x1 > a .
[ /̂ i J

Now, if we follow the previous argument with care, we see that
for such a measure there exist two positive constants OQ , b^ that
only depend on the dimension such that:

[ n ~\

Xm ^ \R,v(x)\> \\ >a^>0, V X > & o > 0 .
/ = i J
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Examining the behavior of RfV(x) as x —^ oo we also see that
there exist two other positive constants a^, b^ such that:

r " i
\m\ ̂  |R ,^ (x) |>X \>a, >0 VO < X < b,.

L / = i J
The interval 6^ < X < b^ if not empty can be dealt with trivially.
This completes the proof.

2. Martingale transforms.

In this section I shall be brief. The reader should look at
Gundy's paper [3] and also at [5] where analogous problems are
treated and also at [6] where Martingale transforms are examined
in more details.

Let (^, S , SM , P) be a probability space with a filtration
^ C S^ C ... C 8 and let us assume that for every n > 1 we can
find r^ , r^,..., /•01) (for some fixed p) real functions bounded
by c some fixed constant that are measurable w.r.t. S^ and relatively
orthonormal (i.e. s.t. E .̂̂  r^/l^n-i) == 8/A:) with relative mean
zero (i.e. E^^Y/S,,.!) = 0) and also that they span the martingales
over (?'„)„>! in the sense that every martingale X on the above
space (w.r.t. the filtration) can be written as:

X, = d, + d, + ... + d, ; ̂  == X, - X,_, (2.1)
with:

^=^,(")+...+^\^)
where the a^_^ ( /= l , . . . , p ) are Sn-i measurable and are then
uniquely determined.

The above situation arises in many natural martingales e.g.
diadic martingales have this property and the r^ are just the Rada-
macher sequence.

Let now M = (w«)f/=i be a complex matrix with constant
coefficients; given a martingale as in (2.1) we shall then define its
transform by M which will be a new martingale MX = Y that is
defined by:

( M X ) , = Y , = 6 , + 6 , 4 - . . . 4 - 6 ,



RIESZ TRANSFORMS AND MARTINGALE TRANSFORMS 263

with:

where
^-^^^...^b^r;

^-i ̂ ^ ^ = l , 2 , . . , p
7=1

cf. [6] for more details. We have then

THEOREM. - Let M ^ , M^ , . . . , M^ be matrices that do not
have a common real eigenvector. An arbitrary l^-bounded martingale
as in ( 2 . 1 ) is then uniformly integrable (i.e. satisfies X^ = E(X//S^)
n = 1, 2 , . . . for some X E L1^)) if and only if its k transforms

M,X=Y ( / ) / = ! , 2 , . . . , ^ satisfy P[| lim Y^l > X] = o(^) 05
^ • n-*.oo M v X /

A ——^ oo . /v

The proof of the above theorem is entirely analogous to the
one we gave for the Riesz transforms. The key point is of course
that we can use the Chao-Taibleson-Janson subharmonicity Lemma
(cf. [6]). We also have

THEOREM. —Let M ^ , M^ , . . . , M^ be k matrices whose ideal
generates the identity i.e. such that there exist matrices P^ , P^,..., Pj^
such that P^M^ + P^M^ + ... 4- P^M^ = I. Then an T^-bounded
martingale as in ( 2 . 1 ) is uniformly integrable if the k "maximal
transforms" M?X = sup |(M,X)J 7 = 1, 2 , . . . , k satisfy:

P [ M ; X > X ] = o ( ^ ) .

This is the analogue of R.F. Gundy's theorem and the proof is ana-
logous.

Proof (Outline). - The fact that P[M?X > X] = o(X-1) and
the Good-X inequalities imply (just as in the theorems of Gundy in
[3]) that: P[sup|(P,M,X)J > X] = o(X-1). This and our hypo-

n ' '
thesis clearly implies that: P[sup |XJ > X] = o(X~1) . This gives
the uniform integrability of X by [3] [5]. (In fact the proof of the
Lemma in § 1 if properly interpreted proves just that.)
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