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If AND HOLDER ESTIMATES
FOR PSEUDODIFFERENTIAL OPERATORS :

SUFFICIENT CONDITIONS^

by Richard BEALS

1. Introduction.

Boundedness results for classical pseudodifferential operators
of order zero in If and Holder spaces are well known. They provide
one means of obtaining the interior regularity theory of elliptic ope-
rators. Such results have been extended to the quasi-homogeneous
case and applied to operators of parabolic or semi-elliptic type.

Much more general classes of pseudodifferential operators,
defined by conditions on the symbols which may not be translation
invariant nor quasi-homogeneous in the dual variables, have been
introduced in the L2 theory of partial differential operators. In
particular, Hormander [5] has recently developed a very general
theory under essentially minimal conditions ; see also Unterberger
[10]. In this generality the operators of order zero are bounded in
L2 , but usually not in IP for other p . However, Nagel and Stein
[9] have recently obtained \f and Holder results for important
classes of pseudodifferential operators associated with various hypo-
elliptic differential operators. These classes (essentially) fit into those
introduced in the L2 framework by Hormander, so it seems natural
to seek within that framework for necessary conditions and for suf-
ficient conditions in order that If or Holder boundedness hold.
We have considered necessity in [1].

In Section 2 we introduce a number of conditions on the
"metric" defining a class of pseudodifferential operators of order
zero. One of these conditions is (one form of) the necessary condi-
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tion from [ 1 ] and the others are more or less natural for classes arising
from partial differential operators. These conditions are shown to be
sufficient for IF boundedness and for boundedness in suitable
Holder spaces in Sections 3 and 4, respectively. Once certain pre-
liminary consequences of our conditions are established, the argu-
ments are close to those of Nagel and Stein. In particular, the IP
boundedness is obtained via the Coifman-Weiss version of the Calderon-
Zygmund theory [4].

In Section 5 we give two examples associated with hypoelliptic
operators, and indicate what the corresponding a priori estimates
are for these cases.

2. Sufficient conditions.

Let V be a real vector space of dimension n > 1 , let V7 be
the dual space, and let < , > be the canonical pairing between V1

and V. Let a denote the associated symplectic form on the space
W = V x V :

a (wV)=<S ,JC '> -<S ' , x> , w = 0 c , 0 , w '=0c ' ,^ ) .

Let dx be a translation invariant measure on V and d^ the
dual measure on V, normalized so that for the Fourier transform
we have

u(^) = f e - i ^ f x } u ( x ) d x , u(x) = f e^^^u^d^.

If a € C°°(W), we define an associated pseudodifferential ope-
rator according to one of the formulas

A,u(x)=ffei(^x-y}a(x^)u(y)dyd^ (2.1)

or

A^(x) == ff e1^ - y } a (-. (x + y ) , ^)u(y) dy d S ; . (2.2)

Consider a Riemannian metric on W, i.e. a continuous function
g from W to the space of positive definite quadratic forms on W.
The corresponding class of symbols of order 0 is denote S(g) ; it
consists of those a € C°°(W) such that for each k E Z+ the corres-
ponding Frechet differential satisfies
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\aw(w^,w^...,w^\<C^ng^)lf2, all w , w , , (2.3)

where ^ is the quadratic form assigned to w G W. Hormander
[5] has given very general conditions on g which guarantee that
the operators with symbols in S(g) are an algebra. The conditions
also imply that these operators are bounded in L^V). Here we
give conditions under which the operators are bounded in L^(V),
1 < p < °°, and in certain suitable spaces of Holder type.

It will be slightly more convenient to work on

Wo = V x ( V ' \ ( 0 ) ) ,

which will not affect the local smoothness properties of the operators.
For w € WQ , g^ is assumed to be a positive definite quadratic form
on W .

Let S(g) denote the set of symbols in C°° (W) which satisfy
(2.3). We assume that g splits : g^ (y , T?) = g^ (y , 0) -h g^ (0 ,7?) ,
^ G V , ipGV ' , and set

^(r?)=^(0,r?), r ? E V ' , (2.4)

<^OQ= s u p { < 7 ? , ^ > 2 <^(7?)-1: T ? G V ' , r ? ^ 0 .

Let 6(x , ^) be the volume of the unit ellipsoid for ^ . :

§(^S)= I {3^ ^(^X 1}1 - ^ [ { r ? : $^(T?)< 1}|-1. (2.5)
Our conditions are that there are positive constants c, C, a,

j8, N such that
^vC^OX^OQ, w E W , ^ G V ; (2.6)

c$^«^<C<^ if ^^(r? -^ )< l ; (2.7)

^ ̂  c^,^1 + ^x^y - ̂ N ^ (2.8)
cX-^^^X-^, if X > 1 ; (2.9)

^ ,^ (S)<C; (2.10)

c$^<^<C$^ if 5 ( ^ , ^ ) = = 6(^ ,7?) ; (2.11)

aeS(g)—^ AE^L^V)). (2.12)

Remarks on the conditions (2.6) -(2.12). -The conditions (2.6),
(2.7), (2.8), and (2.12) are consequences of Hormander's conditions
[5]. In fact (2.6) follows from the "uncertainty principle" g < g° ;
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(2.7) follows from the "slowly varying" condition on g ; (2.8)
follows from the "a-temperate" condition ; (2.12) is the basic boun-
dedness theorem in this case. As indicated in the examples in § 5,
it is useful to work with these assumptions in the present weaker
form. Only condition (2.6) appears to involve the metric g^ res-
tricted to V ; in practice, as the later examples show, there may
be a further condition implicit in (2.12).

Condition (2.9), which implies that $ decreases algebraically
on each ray, is satisfied in most examples of classes of pseudodif-
ferential operators introduced in connection with partial differential
equations (at least for | ^ | > 1 , X > 1 ; the extension to small ^
is technically convenient and does not affect the local theory).
Condition (2.11) is also satisfied in many examples of such classes.

The remaining condition, (2.10), was shown in [1] to be necessary
in the translation invariant case. Here it is the key assumption for
sufficiency, through its use in Lemma 2.1 below and in estimates
for kernels in Proposition 2.5.

The simplest example to consider here is the class S 5 , for
which g is essentially

gx^y^)= isi26 \y\2 + is r^ i r? ! 2 ,
where 0 < 5 , p < 1. Then (2.6) implies 5 < p ; (2.7), (2.8), (2.9),
(2.11) are automatic. For (2.10) we require p = 1 , and for (2.12)
we require 5 < 1 [3].

Throughout the remainder of this section we assume (2.6)-(2.11)
and derive the consequences for coverings and kernels needed to
prove If and Holder space estimates.

Note that by (2.8) and the duality between ^ and $ we obtain
(with new constants) the analogous inequalities

<^<C<^(1 +^^y-x)f ; (2.8)'
(^/^P^Cd +^,^-^))N. (2.8)"

It is convenient to introduce notions of equivalence and similarity
of positive functions / and g with the same domain. Set

f^g if cf^g^Cf
and

f-g if cmin^,/^ < g < C max {/a , f0} ,
where c, C, a, j8 are positive constants.
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LEMMA 2.1. — There is a constant C such that for any ^ E V
and any 5 > 0, the set {$ : 6(x , $) > 5} /za5 measure < C8~1 .

Pwo/ - Let 2 = { $ : 50c ,{ ) = 6} ; this is the boundary
of the set defined by the inequality. Conditions (2.10) and (2.11)
imply that 2 is contained in a fixed multiple of the unit ball as
determined by <&^ for any given $ E 2 . The result follows from
this and (2.5).

We say that a positive function / defined on R+ is slowly
varying if

c/(r)</(2r)<C/(r), r > 0 . (2.13)

COROLLARY 2.2. — If f is a slowly varying function, then

f /(8(x,$))^^ Ff^r^dt^ rfd-^di.J ^o ^o

Proof.-Lei ^ = {^ : 5(x , S) € [2^ 2 /+l)} . By Lemma 2,
^ has measure ^ 2~!. The desired equivalence follows.

Let F be a fixed ray from the origin in V'. Given x E V and
5 > 0, let

BgOO = [y : ^^(y - x) < 1} , (2.14)

where ^ G F is chosen so that 5 (x , {) = 5 . The basic properties
of the open ellipsoids Bg (x) are given in the following.

PROPOSITION 2.3. -
a) Bg (jc) has measure 8 .
b) {Bg (x) : 6 > 0} f5 a base of neighborhoods of x.
c) There is a positive constant K such that if

Bs (x) n Bg 00 ̂  0 , r/!^2 Bg (y) C BKS (x).

Proof. - Part a) is true by definition of BgQc) and S Q c , ^ ) .
Part b) follows easily from (2.9). Suppose z E B^Qc) H Bg(^), and
suppose { , 17 € F are chosen so that 5 (x , $) = 5 = 5 (y , 77). Then
^(z - x) < 1 and <^(z - y ) < 1. By (2.8) and (2.8)', (hismeans
8(z ,^) ^ 5(;c,S) = 8(/,r?). By (2.9) we have I S I ^ | T ? | . Using
(2.9) and (2.8)", we get ^ ^ w ̂  ^ w ^^ w ̂  ^ . part c) follows
easily.
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We now define a distance function

d^y)=inf{8>0: yeB,(x)} , (2.15)
so that

B,(x)= [ y : d^y)<8} . (2.16)
Let

d ( x , y ) = d ^ y ) ^ d y ( x ) , (2.17)

so that d(x , y ) = d(y , x ) .

PROPOSITION 2.4. —

a) d ( x , y ) ^ d ^ y ) ^ d y ( x ) .

b) d ( x , z ) < C ( d ( x , y ) + d ( y , z ) ) .

c) d ( x , y ) 8 ( x ^ r i -^^(>?-^).

d) d(;c,x 4- \z)d(x,x 4-z)-1 -X /o/- X > 0 .

e) d ( y , y ± z ) w d ( x , x + z) if d(x , x + z) ^ rf(x , y) .

Proo^ — Parts a) and b) follows easily from Proposition 2.3 c).
For part c) condition (2.11) implies that we may assume { € E r.
Choose i?er such that ^ ^ ( y - x ) = l . Then d ^ ( y ) = 8 ( x , 77).
By (2.7) and (2.9),

d(x,^)5(x,$)-1 ^5(JC,r?)50c,S)-1 ~ | ^ | | 7 ? | - 1

^ ̂ x^y-^^x^y-^'1 = ̂ o^-^)-
For part d), choose $(X)er so that §0c, $(X)) = rf(jc , x 4 -Xz ) .
Then ^^(^(Xz) == 1 , and

rf(;c,;c +Xz) r f (x ,x+z) - 1 = 5(Jc,^(X))5(jc,$(l)r1

- I $ ( 1 ) 1 l«X)r1 - ̂ ^i)(Xz)^^^(Xz) = X2.

Finally, for part e) choose ^ , 17 GF so that 8(x,^)=::d(x ,y)=8(y , r] ) .
As in the proof of Proposition 2.3 c), ^ ^ ^ ̂  ^ ^ so ^Py^(z) w 1 ,
so d(y , y ± z ) ^ 8(y ,17) = d(x , y ) . This completes the proof.

Suppose now that ff<: is a bounded subset of S(^), and that
the symbol a is in 9€ H 6E)(Wo). Then the operators A^ and A2
are integral operators, with kernels given by

k , ( x , y ) = /6^-^a(jc,S)^, (2.18)
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k z ( x , y ) = { ^<^-^ a ( ^ ( x + ^ ) , ^ ) ^ . (2.19)

In the propositions below, the constants depend on the bounded
set SK , but not on the particular symbol a, and k denotes k^
or k^.

PROPOSITION 2.5. - | k(x , y) | < Cd(x , y)~1 .

Proof. — Suppose first that k = k^ , and that

supp a(x , •) C {$ : $^ - ̂ ) < 1}, w = (x , ̂ ) . (2.20)

Choose 17 E V'\(0) so that

( r ^ , x - y ) 2 =^(x -y)^W. (2.21)

Let L be the differential operator

L = (1 4- ̂ (x - y))-\\ - ̂ W-\r] • V^)2) .
Then

}M(ei<x-y^)= e1^-^^. (2.22)

We use the identity (2.22) in (2.18) and integrate by parts to replace
a by CL)^ . Note that (2.20) and (2.3) imply

I (77 • V^)7 a(x , S) I < q $Jr?)772 . (2.23)
Therefore

I k(x , y ) | < CM / (1 + ̂ ^(x - ^))-M ̂  . (2.24)

This is true for any M E N . Therefore Proposition 2.4 c) implies

I k(x , y ) | < CM / (1 + d(x , y ) S (x , ̂ F1)^ d^ . (2.25)

We use a partition of unity over sets as described in (2.20) to obtain
(2.25) without the assumption (2.20). By Corollary 2.2, the integral
on the right in (2.25) is equivalent to

F (1 + t d ( x , y))-^ dt = CM d(x , y)-1 .
"o

If k = k^ instead, we argue as above with — (x + y) in place of x ,

and note that taking X = — and z = y - x in Proposition 2.4 d)

gives
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rf(,(x +jQ,^) ^ d ( x , y ) .

PROPOSITION 2.6. —
a) // d(y , y + z) < rf(x , ̂ ), then

| (z • V? fc(^ , ̂ ) I < Cd(^ , y + z)° d(x , y)-1-0 .

b) // d(x , x + z) < d(x , >Q, ^6?/2

| (z • V^) fc(x , y) I < Cd(jc, x + z)° rf(x , j^)-1-0 .

^/•^ a is a positive constant depending only on g .

Proof. — Suppose k = k ^ . We proceed exactly as in .the preced-
ing proof, noting that differentiation z • V introduces a factor
— 7 < ^ , z ) . Now by definition of ^, assumption (2.10) and Pro-
position 2.4 c),

^z)2^^)^^)^^^)
^C'SOc^r^r fOc^+z)2 7 , (2.26)

where we may need different positive exponents 7 depending on
whether 6(x, ^)~1 d(x , x + z) is less than or greater than 1.
Assume d(y , y + z) ^ d(x , y ) ; by Proposition 2.4 e) this implies
d(x , x + z ) w d(x , y ) . In view of this and (2.26), the argument
of the preceding proof gives

\(z'Vy)k(x,y)\<C^f\tdrdt+ ^ (1 + td)-^(td)0 dt\

<C'rf-1 , d = d ( x , y ) . (2.27)

Here we have used the obvious generalization of Corollary 2.2 to
integration over an interval. When d(y , y 4- z) < d ( x , y ) , choose
X > 0 so that d ( y , y + \~1 z ) = d ( x , y ) . Then (2.27) with z
replaced by X~1 z , together with Proposition 2.4 d) with z replaced
by X~1 z , gives the desired inequality.

Next, consider ( z - V ^ ) ^ i . This differentiation leads to two
terms, one with a factor i (^, z ) and one with an ^-differentiation
of the symbol a. The latter introduces a factor ^^ ^(z) l /2 1^0
the estimates, by (2.3) and (2.6). Therefore the argument proceeds
as above. The proof for k = k^ is essentially the same.
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3. if estimates.

In this section we assume that g satisfies the conditions (2.6)-
(2.12) of Section 2. We assume also that a G S ( ^ , l ) implies that
a(x, D)* is also an operator with symbol in S ( g , 1). This is auto-
matic if we take for a(x , D) the Weyl prescription (2.2).

THEOREM 3.1. — Each operator with symbol in S(g, 1) is bound-
ed in \f , 1 < p < oo .

As in Section 2, let ff€ be a bounded set in S(g) and suppose
aG3f<: HCD(W). Let k = k^ or ^ , given by (2.16) and (2.17).
In the following estimate, the constants depend only on QC, not
on a.

LEMMA 3.2. - There are positive constants K and C such that
for any y^V and for any §> 0, ;/ d ( y , y ^ ) < 6 then

f \ k ( x , y ^ ) - k ( x , y ) \ d x < CS"1. (3.1)
d(x.y)>K6

Proof. - Let y , = y + s ( y ^ - y ) , 0 < s < 1 . Then d(y , y , ) < 8 .
By part b) of Proposition 2.4, if K is large enough then

d ( x , y f ) ^ d ( x , y ) if d(x ,y)> Kd(y ,V). (3.2)
Now

k ( x , y , ) - k ( x , y ) ^ j^ ((y, - y ) • V^) k(x , y , ) ds .

Then (2.25) and (3.2) imply

\ k ( x , y , ) - k ( x , y ) \ < CS0 rf(^ .jO-1-0 . (3.3)

Now the set {x : d ( x , y ) < e } has measure 0(e). Therefore the
integral in (3.1) is dominated by

f S^Oc,^)-1-^ ^ ^00§CT r-^0 r f r=C(K,a) .
^(^,>/)>K6 K^

The proof of Theorem 3.1 now follows from trivial modifications
in the version by Coifman and Weiss [4] of the Calderon-Zygmund
theory. We sketch the argument here for completeness.

Let the ellipsoids 85 (x) be as in section 3, with K > 0 chosen
so that (3.1) is true and also so that
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35(^)085(^)^0 implies BgGO C B^Oc) .
If / E Z , let

5, == K-7, ^ = {B,(x) : JCEV, 5 = 5,} ,
and set (B == U(B. .

If / G L (V), let /* be the maximal function corresponding
to (S:

f*(x) = sup {m( | / | ,B ) : x € B , BG(B} ,
where

m(^,B)= |B|-1 f g .
"B

LEMMA 3.3. -// /GL^V) ^d a > 0 , then {x : /*(x)>a}
has measure < Ka~1 y |/| .

Proo/ - Let / be the smallest integer such that a6. > f \f\.
Let Cy be a maximal collection of disjoint sets BE(B. with the
property

m(|/ | ,B)>a. (3.4)

After choosing ^., e,^ , . . . , € , + ^ _ i , let e,+^ be a maximal
collection of disjoint sets BG^.,.^ which are disjoint from the
previously chosen sets and satisfy (3.4). If f*(x)>a, then there
is a set B G^. such that x G B and (3.4) is true. Necessarily i> f.
Then B intersects a set B^ E(Bg , ; > £ . Therefore B C B f , where
we set

85 W ==BK^).
Thus

| { x : /*0c)>a}|<^ |B*1 = K ^ |B|
t3

<Ka-1 ̂ / |/|<Ka-1/ |/| .

COROLLARY 3.4. - Suppose /EL1 (V). Fo/- a/wo^r ei/e^ x E V,

/Or) = lim w(/ ,B) ,
IBI - -O

w/iere the limit is taken over B e <% such that x £ B.
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LEMMA 3.5. — Suppose Sl C V is closed, and its complement
Sy has finite measure. There is a family <°C(B such that

U B = ̂
€'

^^rf ^c/z ^r ^o pomr o/ V ^ in more than K4 distinct sets B G 6.

Proo/ — Choose the smallest integer / such that there is a set
BGJ? with

B**cxy, B***nn=^0. (3.5)
Here B* is defined as above, B** = (B*)*, etc. Let (^ be a maxi-
mal collection of disjoint BG<^. satisfying (3.5). Having chosen
<°y, <°y+i , . . . , ( °y+^_i , let 6, + ̂  be a maximal collection of dis-
joint BE(%y^.^, disjoint from the previously chosen sets and sa-
tisfying (3.5). Let 6 = {B* : B G e,, some i} . If x E ̂ , then
there is a § = 6, such that B = BgQc) satisfies (3.5). Then B inter-
sects some BI G <°g , £ < ;, so ^ E B^ G (° .

Suppose now that x E B? H B^ , where B, E e, and B^ G e^ .
We claim that | i - k \ < 2 . Suppose ;' < k, and let § = 5^._i .
Then Bg(x) C B,**, so Bg(x) C ̂ c . With e = 5^.4 , we have
B^) D B^** , so B^Qc) 0 n = 0 . Therefore e > 5 , which
implies k — 4 < z — 1 , or A: — z < 2.

Finally, suppose - v G H B ^ , where B^GC^^) and the B^
are distinct. Let i = inf O'(fe)} and let 8 = 5, - 2. Then each
B, C B^Qv). The B, are disjoint with volumes at least 5, ̂  = K4 5 ,
since i(k) < i 4- 2 all k . On the other hand, | BgOOl = 5 , so the
number of B^'s is at most K4 .

LEMMA 3.6. - Suppose /EL1 (V). For each a > 0, rte^
is a family (S C (B ^c/z that

| / |<a a.e. 0^2 ft = (^ BY ; (3.6)

m d / I . B X K 2 ^ , a// B E e ; (3.7)

S I B K a ^ K 5 f \f\. (3.8)
(5 l/

Proof. - Let ft == [x : /*0c) < a} and let e be the family
given by Lemma 3.5. Corollary (3.4) implies (3.6). If B G ( ° , choose
x E B ^ n n . Then
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a > m ( | / | , B * * ) > | B | | B** |-1 m(| / | , B) = K-2 m(\f\, B ) .

Finally, since there are at most K4 overlaps among the sets B E G ,
(3.8) follows from (3.7) and Lemma 3.3.

Proof of Theorem 3.1. - By duality, it is enough to prove the
result when 1 < p < 2. Suppose 3<: is a bounded set in S(g) and
suppose aE9<: H <D(W). Let A = A, or A^ be the corresponding
operator. It is enough to show

1|A^<C^||^, ^ECD(V), l < p < 2 , (3.9)

where Cp depends only on 3<i. By assumption (2.12) and the closed
graph theorem, (3.9) is true for p = 2. By the Marcinkiewicz inter-
polation theorem it is enough to show that for any a > 0 and any
/EL^V).

\ { x : IT/MI >2a}\<C,a~lf |/|. (3.10)

Let ?2 and 6 be as in Lemma 3.6 and its proof. Choose measurable
functions /g , B E Q, such that

l / B l < I / I , faW = 0 if x ^ B , ^ /B =/ on ^.(3.11)
e

Set

^0= / -1^ ^B = ^ ( /B .K) I B . ^^O-^^B

where lg is the characteristic function of the set S. Then

\go I <a a.e. ; |^| ^ K 2 ^ . (3.12)

Because of the bound on the number of overlaps, we get

1^1 <K 6 a. (3.13)
Thus

I {x: i Tg(x) | > a} | < a-2 / l^ l 2 < K6 a-1 f \g\

<Kloa-lf\f\. (3.14)

Now let /ZB = /a - gg , /z = / - ̂  = ^ /;g . ft remains to be proved
that

\ { x : IT/zCO^a^Ca-1^!/!. (3.15)

Let ^ i = ( ^ B * y . Then )^| satisfies an inequality of the form
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(3.15), so it is enough to consider the intersection of the set in (3.15)
with S l ^ . It suffices to show

4 l^l^/^l ' (3.16)
and to prove this it is enough to show

^ |T/z,KC^ |^|, B E e . (3.17)

Now j AB = 0, so letting y^ be the center of B we have

T/ZB^) = f(k(x , y ) - k(x , y^)) h^y) dy .

Thus the integral on the left in (3.17) is dominated by

f \h^y)\ f 1^,>0 - ̂ ^l^^-
^eB ^jc^B*

Thus (3.17) follows from Lemma 3.2.

4. Estimates in weighted Holder spaces.

Let g , ^, and </? be as in Section 2. We assume here (2.6)-
(2.11). If a ^ S ( g ) , we consider A = a ( ; c , D ) to be defined by
(2.1).

It is useful for some applications to allow modifications of the
distance function d(x , y ) of Section 2. Let

d i ( x , y ) = f ( x , d ( x , y ) ) . (4.1)
We assume that / is a positive continuous function on V x R+ ,
with a continuous partial derivative in the scalar variable, such that

cf(x , X) < f ( x ' , X) < C/(x , X) if d ( x ' , x) < X ; (4.2)

cf(x , X) < X ̂  (jc, X) < Cf(x , X), (4.3)
oh

where again c and C denote positive constants.
If s is positive and u is a continuous function on V, set

l ^ | , = = supl^Qc') - u ( x ) \ d ^ ( x ' ,x)~5 . (4.4)

The quotient of {u = \u\^<oo} by the constant functions is a
Banach space which we denote by A^(rf^).
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THEOREM 4.1. — There is a positive index a such that each
operator A with symbol a ^ S ( \ , g ) is bounded in A^(fi^) ;/
0<s<o.

The principal tools in the proof of Theorem 4.1 are a splitting
of the symbol a and a corresponding refinement of the inequalities
in Proposition 2.5 and 2.6 b). To split a smoothly, we first smooth
5(x,S) . Let

Si,w(y, T?) = ̂ (y) + ^(T?) .
The inequalities (2.23) and (2.26) did not use (2.3) in full force, but
only (2.3) with g^ in place of g . Because of (2.7) and (2.8), we
may (as in [5], via a partition of unity) replace §(jc, ^) by a func-
tion which is equivalent in the sense of Section 2 and which satisfies

I 5^ (w,, ̂ 2, . . . , H )̂ I < C, 8(w) n^Oî 2 . (4.5)

Choose ^ecrd^.) such that ^ ( X ) = = 0 , X < 1 , ^ ( X ) = 1 , X > 2 .
Given a E S(g) and X > 0, set

^i,^) = ̂ ^ ^(x-l §(w))» ^2,\ = ^ - ̂ i,\ • (4.6)
Thus a^ ^ vanishes for §(w) < X and a^ ̂  vanishes for 5(w) > 2X.
Moreover, if ^ is a bounded set in S(g), then [a^ ^ : a € 9€, X > 0}
and {^s,^ ^E^^, X > 0} are bounded sets in S ( g ^ ) . In what
follows, we shall assume a^3<; H 6D(W) and derive estimates depend-
ing only on 3^.

The kernel k of the operator a(x , D) is given by

Therefore

k(x , y ) = / ̂ <^-^ ^(^ ,^) ̂  . (4.7)

f k ( x , y ) d y = a ( ^ , 0 ) = 0 . (4.8)

Similarly, derivatives of k have mean value zero with respect to y ,
and the same is true for the kernels ky ^ corresponding to the symbols
af,\. 1 = I.2-

LEMMA 4.2. - f(x , jn) /Qc, X)~1 ~ jLiX"1 .

Proof. - By (4.3),

log(/(x , ̂  /(x , X)-1) = r-^ (̂  , ̂ ) f(x , ̂ )-1 A ^ logQzX-1).
A 9X
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LEMMA 4.3. - // X = d(x , x ' ) , then for any M > 0,

I k^^(x , y ) j < CM d(x , >0-1 (1 4- \-,1 d, (x , y))-^ , (4.9)

w/z^ Xi = d^ (x , ̂ ') = /(x , X).

Proof. — By the argument given in the proof of Proposition 2.5,
the left side of (4.9) is dominated by

f (l+d(x,y)S(x^)-lr^ld^
^^(x^^lX

^/^(1+ t d ( x , y ) r ' ' ~ l d t ^ d ( x \ y r l ( ^ \ ~ l d ( x , y ) ) ^ .

Here we again have used the generalization of Corollary 2.2 to inte-
gration over a subinterval. By Lemma 4.2, we may choose N so that
the last expression is dominated by the right side of (4.9).

LEMMA 4.4. — // d(x ,x 4- z) w X , there are positive C and
a such that

\ ( z - V ^ k , ^ ( x , z ) \ < C d ( x , y ) - 1 (1 + d,(x , y ) X71)-o,(4.10)
where \ = f(x , X) .

Proof. — By the argument given in the proof of Proposition 2.6,
the left side of (4.10) is dominated by

f (1 + d(x , y ) §0c, ̂ F1)^ X^ SQc, $)-" ̂
^^(x^X

^ f (1 + td(x,y))~^\oi t ^ d t .

When d(x , y ) < X , this last expression is ^ X~1 < d(x , y)~1.
When d(x , y ) > X , it is equivalent to

d(x , y)-1 X0 rfQc, ̂ -a < d(x , ̂ )-1 X^ d,(x , j.)-0 ,
by Lemma 4.2.

LEMMA 4.5. — If h is a function of slow variation on R+ , then

fh(d,(x , y)) d(x , y)-1 dy ^ F h(t) t-1 d t . (4.11)«/ i/o

Proo/ - The measure of the set {y : d(x , y ) E (2 7 , 27''1)} is
^ 2 7 . Therefore the left side of (4.11) is equivalent to



254 R.BEALS

F h(f(x,\))\-ld\
"0

^ /" h(f(x,\))f(,x,\)-l^•(x,\)d\. (4.12)
0 dA.

Here we have used (4.3). The integrals on the right in (4.11) and
(4.12) are the same.

Proof of Theorem 4.1. — Let a and k be as above, and suppose
|^<oo. Given X > 0 , let A^ and A^ be the operators cor-
responding to the symbols <2i ^ and a ^ ^ . Let

^ == Ai^, u^ = A^^^ .

Given x , x' G V, let X = rf(;c, ^c'). It suffices to show

1^)1 + \^xf)\<C\u\,d^x,x')s (4.13)

l ^^^ -^MKCI^ I^ i^ .xT , (4.14)

where as usual C depends only on the bounded set 3C . Note that
by (4.2), d^ (x , jc') ^ c?i (^', x). Therefore it is enough to deal with
either term on the left in (4.13). Now since k^ ^ satisfies (4.8),

H\OO = f k ^ ^ ( x , y ) u ( y ) d y = f k^^(x , y ) (u(y) - u{x))dy .

By 4.9,

1^)1 .
<(CMJ ( l + d , ( x , x t r l d , ( x , y ) ) - M d , ( x , y ) s d y ) \ u \ ^ (4.15)

By Lemma 4.5, the integral in (4.15) is equivalent to

f ( l - } - d ^ ( x , x f r l t r M t s ~ l d t = c , d , ( x , x y ,

if M > s . This proves (4.13).
To prove (4.14), we write

/»i
v ( x ' ) -v(x) = / v{x,x\r)dr,

, JQwhere
v(x , x\ r) = f ((x' - x) ' V^) k(x,, y) u (y) dy ,

x,= x + r(xf - x) . (4.16)
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Now the derivative of k occurring here also has mean value zero
with respect to y . Therefore we may replace u(y) by u(y)—u(Xy)
in (4.16). Note that for 0 < ^ < 1 / 2 , d(x^x9) ̂  d(x , x ) , so
d ( x , , x , + (JC'-JC))^G?(X,JC') ; when 1/2 < r< 1, d(x,,x)w d ( x ' ,x),
so d(Xy ,x^ - ( x ' - x)) w d(x , x ) ; here we are using Proposition
2.5 d) and e). It follows from these remarks and (4.10) that

\ v ( x , x ' , r ) \

<cfd(x^yr1 (1 -^d^x^y)^)-0 d,(x^y)sdy x \u\^ (4.17)

where X^ = d ^ ( x , x ' ) . By Lemma 4.5, the integral in (4.17) is
equivalent to

/^(l+X^r)-^-1^^

provided 0 < s < a . This proves (4.14),and completes the proof
of Theorem 4.1.

A result analogous to Theorem 4.1 is true for the space of
functions with norm

\u\^ = sup I i /OOl + | ^ | ^

if we require of the symbol a G S(g) that it vanish for § (x , ^) > §o> 0
(which is to say, for suitably small ^). In fact the argument used to
prove (4.13) shows that with this restriction,

\Au(x)\<C,8^\u\,.

5. Examples.

Here we consider two examples of metrics associated to certain
hypoelliptic operators, and indicate the corresponding If and
Schauder estimates.

The first example is connected with an operator A with symbol
aEC^R^1 x R^),

a ( x ^ ) = ^ ^ x } k p ^ ( x ^ ) ,

where p^ is a second order partial differential operator which
is non-negative and is elliptic with respect to the variables
x9 = (x^ ,^3 , . . . , x ^ ) . There is an a priori estimate valid for A ,
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IID^H + \\xy Au\\ + Ml2e<CK(l|A^|| + I I ^H, (5.1)

u^(D^, where the norms are L2 and H^-norms, A denotes the
laplacian, and e = (k + I)"1 . Corresponding to this estimate is
the function

P(^)= ISJ + IxJ^I + | ^ [ 6 . (5.2)
The function p satisfies (locally in x) the estimates

IV.PKC^.d^p-^), (5.3)

| V ^ | < C = C p ' p - 1 (5.4)
which suggests the metric

g°.^y^) = l^l2^-2^ \y\1 + ̂ -2 |^|2 + |$r2 |7/|2. (5.5)
This metric satisfies the conditions of [5] ; therefore the operators
with symbols in S(g°) are bounded in L2 . In the region where
p w x\ |$| + | ^ j 6 , the partial gradient with respect to ^' satisfies
the more precise estimate

I V ^ p - K C p - { \ x , \ k p - l + p - k - l } ,
which suggest the larger metric
g^(y,fn)=\^/kp-^k\y\2

+p-27?2p-2(|^J fc +p-^)2 |7/|2. (5.6)

This metric is not "slowly warying", so the results of [5] do not apply
directly. However S ( g ) C S ( g ° ) , and the asymptotic expansion for
composition [8] implies that the corresponding operators are a sub-
algebra of the algebra of operators with symbols in S(g°). The metric
g given by (5.6) satisfies (locally in x) the conditions of section 2
In fact, p2^ > | ^ | , so

^y)>p2\y\2>\^lkp-llk \y\1 =g^(y,o),
proving (2.6). Condition (2.7) is a consequence of (5.4), while (2.9)
and (2.10) are easily checked, and the local version of (2.12) follows
from the inclusion S(g) C S(^). To check (2.8), -suppose that for
some z G V\(0), <^00 = X2 <^(z), where X > 2 . This implies
that either

P(y^)>\p(x^) or (5.7)
i^p^r'+poc,^-1

> X(| y , ̂  p(y , $)-1 + p(y , ̂ -k-1) . (5.8)
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Taking the k -th root in (5.7) leads to

\^lk\y, -x,\>c\l/kp(x^)lfk , (5.9)
or

x<^,^ -x.O)^^^ -^)^. (5.10)

Suppose, on the other hand, that (5.8) is true. Then either
P ( y , ^ ) > ̂ P ( x , ^), which leads to an inequality like (5.10), or
else

\x, ̂  p(x , $)-1 > cX(| y , ̂  p(y , ̂ )-1 + p(y , ̂ -k-1)

>\y^p(x^)-1 +cXp(;c,^-1,
if X is large enough. Then

X^ < c, p(x , S)-1^ |^i - y , | < ci <^(^ - x).

Thus (2.8) is satisfied. Finally, condition (2.11) is clear, since $^ e
depends on $ only through the function p(x , ̂ ) , so §(JC, ^) = 5(x , T?)
is equivalent to p(x , ^) = p(x , T?) .

It follows from this that an operator with symbol in S(g) maps
L^ to Lfo^ if 1 <p <oo. Using this, it is possible to construct a
scale of weighted L^ spaces associated to the operator A and derive
corresponding estimates. We cite here only the If version of (5.1) :

II D\ u\\^ + [|̂  A'u\^ + \\u\\^ < CK(II Au \\^ + |[^), (5 .11)

^ G C D ^ , where e = (k 4- I)"1 again, and || ||^^ denotes the
norm in the Bessel potential space L^ of Calderon [2].

The function § (x , ^) associated with the metric g is given (up
to a multiplicative constant) by

p-^d^+p-^, p = p ( x ^ ) .

Thus p ( x , ^)~1 = /(-v, 5(x, ^)), for suitable /. It is convenient
to use this function to define a distance function d^ and the asso-
ciated spaces of Holder type. Thus d^ (x , y) ̂  77 if

^c.^-^)- 1. P(x^)-1 = T ? . (5.12)
By considering separately the cases | jc j>7? and | j c J< r? , one finds
d ^ ( x , y ) ^ 1^1 - x^\

i
4 - m i n { | ^ ' - ^ | / c + l , {x^ \y -x^}. (5.13)
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Thus for Xi ^ 0 and y close to x , the metric is euclidean with
distorting factor \ x ^ ^ k , while for x^ = 0 the metric is parabolic.
The corresponding Holder spaces are (locally) preserved by operators
with symbols in S ( g ) . The functions in such a space A,(^) are
locally in the ordinary Holder space 0s away from the h^perplane
x^ = 0 (0 <s < 1), but are smoother in the normal than in the
tangential variable on this hyperplane.

The second example is associated to the operator B with symbol
A G C - C R ^ 1 x R^),

b (x , ^) = x\ p^ (x , S') + p , (x , ̂ ) + i^ + ̂  (x , ^)

where the p .̂ are classical symbols of order / and where
P2(x^)>c\^\ for | ̂  | large, with c > 0 . When ^ = 1 , this
is essentially Kannafs example of a hypoelliptic operator without
hypoelliptic adjoint [6] ; see also [7], [8]. It is not difficult to obtain
the L2 estimate

I I D ^ H 4- \\x\^u\\ + IMI,<CK(| |B^| | 4- I I ^ H ) , (5.14)

u E(X)K , where e = (k -r I)-1. We set

^ ^ , S ) 2 = ^ + ( 1 ^ 1 4 + ^ ) ^ 4 - | S 1 2 e , (5.15)
so

q^ l ^ i I + \x,\kl^\^\ 4- \^\e .

Examination of derivatives of q leads as above to metrics

g^Y^^^q-^y} + |;/|2 + q-^\ + IS!-2 !T? ' | 2 , (5,16)

g.^Y.ri) = l?!47^-4/^2 + \y\2^ q-^\

+<?-2(lJ ; l^ /2+^- f c)2 |r?'|2. (5.17)

Again, g° satisfies the conditions of [5], locally, and operators with
symbols in S(g°) map L2 to L2^. As above, ^ satisfies conditions
(2.6)-(2.12), and the results of the present paper apply. The If
analogue of the estimate (5.14) is

I ID^I^ + \\x\^u\\^ + l l ^ l l p ^ < C K ( l | B ^ | | + I I ^ H ) , (5.18)

u GO)^ , e = (k + 1)~1. The natural distance function in this case is
d ^ x ^ y ) ^ \ y , -x,!172

+min{|^-^| l/AC+l,|^|- f c/2[^'_^'|}. (5,19)
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Thus functions in the corresponding Holder spaces are required to
be smoother in the x'-directions than in the x^-direction away from
the hyperplane x^ = 0, but smoother (equally smooth, if k = 1)
in the x^ -direction on the critical hyperplane.
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