
ANNALES DE L’INSTITUT FOURIER

JOSEPH BECKER
Solving power series equations. II. Change
of ground field
Annales de l’institut Fourier, tome 29, no 2 (1979), p. 1-23
<http://www.numdam.org/item?id=AIF_1979__29_2_1_0>

© Annales de l’institut Fourier, 1979, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1979__29_2_1_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
29, 2 (1979), 1-23.

SOLVING POWER SERIES EQUATIONS,
PART II : CHANGE OF GROUND FIELD

by Joseph BECKER (*)

In the study of algebraic geometry or local analytic geometry over a residue
field k of characteristic zero, one usually ignores the residue field, especially
if it is algebraically closed. One reduces all questions to purely algebraic
statements in commutative algebra. If one wants to pass to an extension field
F of k, we reduce the problem at hand to an appropriate exact sequence,
tensor with F over k, and apply faithful flatness. In [7], I showed this
technique is inadequate for analytic geometry, because analytic tensor
product isn't flat. In particular there are examples of injective, local, algebra
homomorphisms of convergent power series rings :

cp : A«x,^» -> A«ri,^3,r4,^»,
where A is the field of algebraic numbers, such that the natural extension of

(p : C«x,^» ^ C«r^,r3,r4,r5»,
where C is the field of complex numbers, is not injective.

In [9] we continued the investigation of the properties of local algebra
homomorphisms begun in [2, 12, 14, 18], and showed that if (p : R -> S is
an algebra homomorphism of reduced analytic rings over C which is closed
in the Krull topology, then (p is open in the Krull topology. This can be
restated as follows : If (p is injective and cp(R) n S = (p(R), then
(p : R -> S is injective, where hat denotes completion. This is a purely

algebraic statement about formal and convergent power series, e.g.

{[3conv. /T^O with /((p)=0] and [V formal g with g(n>} conv., 3 conv. / with
fW=9W]} ^ {3 formal/^O with/((p)=0},

the proof given in [9] uses topological techniques, and relies heavily on the
completeness of the complex numbers. Since the above statement is purely

(*) Supported by NSF Grant No. MCS 77-00967.



2 JOSEPH DECKER

algebraic, it is natural to ask whether it holds for series over a valued field k of
characteristic zero. As we have mentioned, we can't answer this question by
just reducing everything to a set of equations. Also, we can't just duplicate the
proof, due to our essential use of functional analysis. Instead we will show that
all the relevant topological properties of local algebra homomorphisms are
invariant under change of the residue field and hence for subfields k of C,
closed maps are open. A long chase through the proofs of sections 1, 2, and 3
of this paper yields a purely algebraic, but far more technical, proof of the fact
that closed maps are open.

1. Introduction.

We recall first the main result of [9]. Let (p : R -> S be local C algebra
homomorphism of reduced analytic rings. By the Krull topology, we mean
the metric topology given by the powers of the maximal ideal; by the simple
topology we mean the metric topology induced by the coefficients of the
power series, i.e., the topology of convergence of coefficients. By the inductive
topology, we mean the topology induced from the direct limit of the Banach
algebras B,. = { /= 'La^\L\a^ < oo}. To say that R is closed in S in a
given topology just means that R is a closed subset of S. To say that (p is
open means that the map R —> (p(R) is open where (p(R) has the relative
topology induced from S. If R injects into S, we say that R is a subspace
of S if the topology on R induced from S is the same as the natural
topology on R. We say that (p is strongly injective if the map of abelian
groups R/R -> S/S is injective. Consider the following conditions :

a) R is closed in S in the Krull topology.
b) R is closed in S in the simple topology.
c) R is closed in S in the inductive topology.
d} (p is open in the Krull topology.
e) (p is open in the simple topology.
/) (p is open in the inductive topology.

THEOREM [9, 2.8]. — a,b,c,and f are equivalent; d and e are equivalent;
a implies d; d does not imply /.

We will generalize this result to analytic rings with more general residue
field. We will employ the following technique : Start with the original
equations over k, pass from k to C, apply our results there, and deduce the
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desired result for k. More precisely if

R = /c<0,,. . .j,»/I, S = /c«x,,. . . , x,»/J,

I generated by /i,. ..,/,, J generated by g^ .. ., g , , let

R = C«(^, . .,^»/T, S = C«x,,.. .,^»/J,

where I and J are the ideals generated by the /i, g^ respectively and
(p : R -^ S be the extension of (p : R -> S. (We may think of R as the
analytic tensor product of R and C over k.) We must determine the
relation-ship of (p being open, injective, closed, strongly injective, respective-
ly.

To begin, note that if h is a formal power series over k, then h is a
convergent power series over k if and only if h is a convergent power series
when considered as a formal power series over C. Let i : k —> C be the
natural inclusion of fields. There is an additive k linear projection n : C —>• k
such that 7 1 - ? = identity on k , and n extends to a projection
C[[x]] ~^ ^EML where x = (x^,. . .,x^). Since n is constructed via a
transcendence basis of C over k, it is highly discontinuous and does not
carry C«x» to /c«x». It is elementary to check that if fe C[[x]],
^e/c[[x]], then n(f-g) = Tc(f)-g. Also if

(p;e/c[[x]], (p = ((pi , . . .,(pJ, and v|/eC[[^]],

then 7i(v(/((p)) = 7i(v|/)((p). We check that R injects to R : Suppose

^ e /c«^», f, e /c<0», h, e C«y», and ^ = ^ ̂ .
i= i

r

is zero in R. Then applying TC, we have \ ) /= ^ 7c(^Vi, Tr(^) £ ^[E^]].
But then l = l

^eHO» n(y;.)/c«^»' =(/^«^»

r

so 3??; e /c«^» so v|/ = ^ TiJi is zero in R. Similarly it is trivial to show
1=1

S injects in S and we get a commutative diagram :

(P
R —^ S

R - ^ L S



4 JOSEPH BECKER

Furthermorejf (p : R^ -> R^, and \|/ : R^ -̂  R3 are local maps of analytic
rings then v|/(p == \[/ (p.

We also employ a similar construction for complete rings. If

T=m>,,..,x,]]A?
is a complete ring and F an extension field of k, we let T = T ®feF be the
completed tensor product of T and F over k. This is constructed as
follows : Let F = lim F(, be the direct limit of finitely generated field
extensions F^ of k . Then T ®^ F = (lim T ®kFJ . This extends in the
obvious manner to finite modules over complete rings. We check that the
functor T -> T ®^ F is flat : i.e. let p be an ideal of T, and show p ®^ F is
an ideal of T ®^ F. Since usual tensor product is exact, the exact sequence
0 -> p -> T induces an exact sequence 0 -> p ®^ F^ -> T ®^ F^. Since direct
limit preserves exact sequences, this yields an exact sequence

0 - ^ p ® k ¥ - > r T ® k ¥ •
It is trivial to check that if (p : T^ -> T^, v|/ : T^ -^ ^3 are local maps of
complete rings over k, then (p and v|/ induce maps (p : T\ -> T^,
v[/ : T^ -^ T3, and we get a commutative diagram :

Next we note that if T = ^[[xi,.. .,xJ]/^, q = ( / i^ , . . .,^) is a complete
ring and T = T ®^ F, that T injects into T, K induces a map T -> T,
and 7c(i) = identity on T. Only the second assertion requires a proof.
Suppose v|/i, \|/2 e F[[x]] are two representatives of the same element of T,

t
then v|/,(x) - ̂ (x) - ^ cy,(x)/i,(x), a,eF[[x]], h, e ̂ c[[x]]. Applying TT

i= 1
t

we have Tiv)/^ — 7i\|/2 = ^ ^(^i)hi so 7n|/i and TCVJ/^ are the same in T.
i = i

LEMMA 1.1. — Let (p : TI -> T^ be a local map of complete rings, then (p is
injective if and only if (p is injective.
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Proof. — An elementary diagram chase.

T, T.
h^ = '̂i_
(p7T^ = TT^Cp

T, T.

Ifcp : k^y'] -> ^[x]or^[[y]] -> fc[[x]] or more generally any local k algebra
homomorphism of affine or complete rings, (p is injective if and only if (p :
C[y] -> C[x], C[[^]] -^ C[[x]] is injective. Also it is easy to check that if
(p : R -> S is a map of k analytic rings and (p : R -> S is injective, then (p is
injective. However the converse is false. This is despite the fact
([10, Satz 1.4.4, page 38] with the help of [11, 3.5.2, Theorem 1, page 227])
that R is a flat R module, and hence an exact sequence 0 -> R -> S induces
an exact sequence 0 -> R -> S ®R (R®kC). This last module is not the same
as S ®fc C-analytic tensor product is not associative. If S is a finite R module,
then S (x)fc (R ®fcC) = S 0^ C and we get an exact sequence
0 -> R -^ S -> 0. However letting R = S = Q«x, ̂ » and (p(x) = x,
(p(^) = xy, it is easily checked that

y ® E x^r^ - ^ 1 ® yx" ® r
\r=l / r = l

,1/r

is a nonzero element of the kernel of the natural map
S ®R(R ®Q C) -. (S ®R R) ®QC .

On the other hand it is obvious that if (p : R -> S is onto, then the induced
map (p : R = R ®feC -> S ®feC = S is onto.

LEMMA 1.2. — If R is an analytic ring, then R 15 isomorphic to R. Ij
(p : R - > - S , v | / : S - ^ T ar^ Joca! maps of analytic rings then there is a
commutative diagram :

,R——————————————>S——————————————t
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Proof. — Follows immediately from all the preceding properties. Let
R =/c«x»/(/.); then

R = C«x»/C/;.), R = C[[x]]/(y;.),
R = ^[M]/^ and R = C[[x]]/(/;.).

2. Descent from complete fields.

We now investigate what happens to the topological properties of (p when
changing the residue field. We find that these properties are invariant under
change of the residue field.

THEOREM 2.1. — With the same notation as section 1 and all topologies
being the Krull topology :

a) (p injective => (p injective,
b) R is a subspace of S ==> R is a subspace of S,
c) (p open => (p open,
d) R is a subspace of S ==> R is a subspace of S,
e) (p open => (p open,
f) (p strongly injective ==> (p strongly injective,
g) (p strongly injective => (p strongly injective,
h) (p closed => (p closed.

IfS is reduced, then we also have,
i) (p closed => (p closed,
j) (p closed => (p o^^n,
^c) (p injective and closed => (p strongly injective.

Proof. — We begin by reducing to the case where k is dense in C. There
are two possibilities-either k c: R or k is dense in C. If k c R, let
i = ^/— 1 and F = fe[f]. Then F is dense in C and the projection
F —^ k is continuous in the Euclidean topology on C and hence the induced
projection F[[x]J-^ F[[x]], carries F«^» to fe«x». Let
(p : R -^ S, and \|/ = (p (x) 1 : R ®^ F -> S ®^ F. It is now trivial to verify
that v(/ and (p have the same relevant properties.

Proof of 2.1a. — Trivial diagram chase.
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Proof of 2Ab. —_R is a subspace of S => R injects into S, by [6.1.12]
=> R injects into S, by lemma 1.1 ==> R injects into S, by lemma 1.2
=> R is a subspace of S, since R is a subspace of its completion and the
composition ofsubspaces is a subspace => R is a subspace of S, by [6,1.8].

Proof of 2.1c. - (p ; R -> S open implies R -> R/ker (p is onto and
R/ker (p is a subspace of S by [6,1.3]. Hence R -> (R/ker (p)~ is onto and
(R/ker (p)~ is a subspace of S by 2.1fc. By [6, 1.1 and 1.6], (p is open.

LEMMA 2.2. — R is a subspace of R.

Proof. — We recall the definition of subspace [6] :

V y e N , 3 f c e N so w(RV =3 r^Rft.

By abuse of notation we will let CT = ^TI denote the statement that

ae^R)^ ( We really should write 3^ e R so CT = V /'r^. ) Now the
\ _ \^=k /

statement that R is a subspace of R becomes :

V/, 3/c, Vr | eR , Vv|/e R [\|/=/r|=>3p e R so \|/=^p].

In fact we can just let k = j. Then

v|/ = /n => \|/ = 7i(v|/) == /7i((3) => \|/ e R n m(R)^R = m{Rf.

Alternate proof of2.2. — R is a subspace of R and R is a subspace of
R = R by the Chevalley subspace theorem so [6,1.7] R is a subspace of
R. But R c R c= R so [6, 1.8] R is a subspace of R.

Proof of 2_\d. - R is a subspace of S so R injects into S. Also R
injects into R. An elementary diagram chase shows R injects into S.

Proof of2.1e. — We first show that it suffices to consider the case where
R injects into S. Let (p : R -^ S and R() = R/ker (p, then R -> R() -> 0
and 0 -> Ro -> S are exact. It follows that R -> Rg -> 0 is exact, and we
have maps R -> Ro -> S. Clearly (p open implies the map R.o -> S is open.
The special case would imply that the map Ro -> S is open. By [6, 1.6]
applied to R —> Ro —> S, (p is open.

We now assume (p is injective and (p is open. If (p were injective, then by
[6, 1.2 and 1.1] and 6.1d we would have that R is a subspace of S so R is a
subspace of S so (p is open. Let 0 -> K^ -> R -> S be exact, with K^ -^ 0.
Applying n and lemmas 1.1 and 1.2 yields an exact sequence
O-^^R-^S , with K^O. Let R^ = R/K^ and R^ = R/K^.
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From the faithful flatness of completion applied to the sequence of finite R
modules : O - ^ K ^ - ^ R - ^ R ^ -^0, and from the faithful flatness of comple-
ted tensor product applied to the sequence 0 -> K^ -> R -^ R^ -> 0, we have
that RI = R/K^ and R^ = R/K^. From the flatness of completed tensor
product over a field applied to the sequence O — ^ K ^ — ^ R - ^ S , we have an
exact sequence 0 -> K^ -> R -^ S. Since (p is open, [6, 1.11] the exact
sequence 0 -> K^ -> R -> S completes to an exact sequence
0 -> KI -> R -> S. Chasing canonical homomorphisms as in lemma 1.2, it
follows that KI = K^. Let R3 denote

RI =R2=C[[^,...jJ]/(/,,..,/,),
where f, e A;«^». Let r = dim R3, r < n ; then r = dim R^ = dim R^
and for a generic linear combination Z^, . . .,Z^ of y ^ , . . .,y^ over k ,
A = ^c«Zi,. . .,Z,» injects into R, A c: R^ , A c= R^ , A <= R3, R^ is
finite over A = A ^ , R^ is finite over A = A^, and R3 is finite over
A = A3. Now z^ i satisfies a nonzero polynomial P^ , P^, ?3 in R ^ , R^ ,
R3 of minimal degree d ^ , d^, ^3 in z^+1 over A ^ , A^, A3 respectively. (If
the R( are domains, this polynomial is monic because A, A, A are each
normal.) Considering the finite maps A;-> A^[z,.+J, and applying the
faithful flatness of completion and completed tensor product over a field, we
find that d^ == d^, d^ = d^, (to be henceforth denoted by just d) and that
PI = P 3 . ?2 = P 3 . Let

d <f
P! = E ^4+1. P! = E ^+1. ^ ^ A , a ;eA.

1=0 i'=o
Then P^ — P^ is zero in R3 and the coefficients a^ — a^ are zero in A.
Hence a^ = a,^ e A n A = A. Hence P^ e A[z^+ J. From the commutati-
ve diagram :

R—^R/Ki

we see that R injects into R ^ . But P^ is zero in R^ so P^ is, zero in R . On
the other hand, A[z^+i] injects into R so we have each ^ = 0, and we
have a contradiction with the fact that P^ is a nonzero polynomial.

LEMMA 2.3. — R = R n R, where R and R ar^ fcot/i considered as
subsets of R.

Proof. — If R is regular, the result is clear. Otherwise, let A be a regular
analytic ring over k, and R a finite extension of A. Then R is a finite
extension of A, R is a finite extension of A, and R is a finite extension of A.
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Let / e R n R, then / satisfies a_ polynomial over A, A, A, and the
minimal degree polynomial P, P, P for / over A, A, A in R, R, R
respectively, are all monic. Since maps of analytic and complete rings both
satisfy the property that they are finite if and only if they are quasi finite, it
follows easily that the degrees of P, P, .P are the same, say = r . Now

^ = P - P = S (a,-a,)/1

1=0
is zero in R and of degree less than the minimal polynomial P. Hence each
a, - a, = 0. Since A n A = A, a,, ̂  e A. Hence / e R and / is integral
over A. Since the integral closure N of R is a finite module over R, R is
closed in N ; that is R n N = R, so / e R.

Proof oflAg. — By lemma 2.3, there is an injection of abelian groups
R/R -> R/R. By hypothesis the natural map R/R -> S/S is injective. The
result follows from the commutative diagram :

R/R ——> S/Si i
R/R S/S

LEMMA 2.4. — R + R = R, that is every formal power series over C can
be written as the sum of a formal power series over k and a convergent power
series overs C.

Proof. — k is dense in C.

Proof of 2.1 f. — We know R/R injects into S/S. Suppose v|/e R and
v|/((p)eS; want to show \ | /eR. Write \|/= \|/i 4 - v ) / ^ , v|/i e R, v ^ e R .
Clearly v|/i((p)eS, v|/2((p)eS. Since v)/i((p) == v|/((p) - \|/2((p)eS, we have
v|/i((p) e S n S = S. Now (p is strongly injective, v|/^((p) e S, and v|/i e R
implies v|/i e R. Finally v|/i, vj/^ e R so v|/ e R.

Proof of 2.1h. — Assume cp is closed, \|/e R and \|/((p)eS. Write
v|/= \|/i + v|/2, \|/i e R , v l / ^ e R . Clearly v|^((p)eS, \(/2((p)eS. Since
v|/i((p) = v|/((p) - v|/2((p)eS, we have \|/i((p)eS n S = S. Now (p closed,
v|/i e R and v|/i((p)£S implies there exists T| e R so r|((p) = v|/i((p). Then
T| + v|/2 e R and (r| + v|/;,)((p) = \(/((p).

Proofof2.1i. — As in the proof of 2.1^, it is easy to check that it suffices to
consider the case where (p is injective. (We omit the details.) Also from
standard considerations, we know that S reduced implies S, S, and S are
all reduced.



10 JOSEPH BECKER

Now (p closed -. (p open by [9, 2.13] -^ (p open, by 2.1^. Next (p open
andinjective ^ R is ajmbspace of S -> R is a subspace of S by6.1fc -. (p
is injective. Finally (p injective and closed => (p strongly injective by
[9, 2.12] => (p strongly injective by 2.1g => (p closed.

Proof of l.lj. - (p closed
(p open by 2.1<?.

(p closed by 2.1/i => (p open by [9,2.12]

Proof of 2.1k. - (p closed and injective => (p closed, open, and injective
by 2.1; -> cp strongly injective by [6, 1.2, 1.12, and 2.2].

THEOREM 2.5. — The following are equivalent :

(i) (p is open in the Krull topology,
(n) (p i5 open in the simple topology,

(iii) (p is open in the Krull topology,
(iv) (p is open in the simple topology.

Proof, -(iii) ̂  (iv) by [9, 2.8] ; (i) o (iii) by theorem 2.1; (i) => (ii)by
the proof of [9, 1.5]; (ii) => (i) because (p open in the simple topology implies
the completion^of (p in the simple topology is injective so by the proof of
[9, 2.7]. R -> S is injective. Hence by lemma 1.1, R -> § is injective. Hence
(p is open in the Krull topology.

THEOREM 2.6. - Assume S 15 reduced. Then \ve have the following set of
implications. This shows all the properties listed are equivalent.

(p closed Krull

®f i®
(p closed simplei®

(p closed inductive

|®
(p op^^z inductive

|®
r/c (p = dim R/ker (p

®

®

(p closed Krull
^

(p closed simplei
(p closed inductive

(p op^z inductive\
rk (p = dim R/ker (p.
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Here for the rank of (p, we can't use the usual geometric definition which
works when k is algebraically closed, but must resort to a purely algebraic
definition. Let D(S/R) be the module of differentials of S over R and

Q(S/R)=D(S/R)/n mWR),
1=1

where m is the maximal ideal of S. By the rank of (p we mean the rank of
the S module 0(S/R). It is elementary to check the following :If R and S
are analytic rings and i : R -> S the natural inclusion, then rk i ^ dim R. If
v|/: R -» S, T|: S -» T are local maps of analytic rings and
rk r| = dim S = dim T, then rk v)/ = dim R if and only if rk r|vl/ = dim R.

The proof of all the unnumbered implications has already been given in
[9] or theorem 2.1.

Proofof'(1) and (3). - Obvious since the Krull topology is weaker than the
simple topology and the simple topology is stronger than the inductive
topology.

Proofof'(2). - Suppose (p is injective and (p and (p are closed in the
Krull topology, i.e. (p(R) n S == (p(R) and (p(R) n S = (p(R). We then
show (p is closed in the simple topology, i.e. (p(R) n S = (p(R). Clearly
(p(R) n S c: (p(R) n S c <p(R) n S. Let T| eS, v | / eR , and v|/((p) = r|.
Then T| = TC(T|) = (7i;v(/)(p e (p(R). So

T| e (p(R) n S c: <p(R).

Proof of (4). - This goes exactly as in [9, theorem 2.8/-^ d} since the
completeness of the field \vas not usued there.

Note that in each of (5), (6), and (7), we have from [9, 2.8] that (p is open in
the Krull topology. By 2.1e, (p is open in the Krull topology. By the habitual
argument, it suffices to consider the case where (p is injective-then R is a
subspace of S and by a now standard argument, (p is also injective.

Proofof'(5). — Since rk (p == rk (p, this is obvious.

Proof of (6). - Let T| be in the closure of R in S in the inductive
topology, then TI is in the closure of R in S in the inductive topology.
Hence r| e S. Now r| e R n S so applying the projection n, we have
r| e R n S. Since (p is closed in the Krull topology, T| e R.

LEMMA 2.7. — R is a subspace of R in the inductive topology.
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Sketch of proof. — If R is regular, this is obvious since the Banach norms
|| — !!„ on R are just the restrictions of the corresponding Banach norms on
R. Although the inductive topology on R is not metric, we may still
consider the completion of R with respect to Cauchy nets, denoted IC(R).
The desired result if just the statement that IC(R) = R, which is of course
true for regular rings. Clearly R is complete in this topology. If
R =HO»/I, then

IC(R) = IC(C«^»)/IC(I). and IC(R) = IC[^«^»)/IC(I).

The last equality is not as clear. One needs to check that the inductive
topology on I induced from being a subset of ^«}^» is the same as the
inductive topology on I considered as a finite module over H<^». (Over
the real or complex field this follows trivially from the open mapping theorem.
For more general fields this technique is not available, but this result is still true
[13, Kapitel II, section 2.7, Satz 9, page 97].)

We have an exact sequence 0 -> I -> A;«^» -> R -> 0 and an induced
commutative diagram :

0 ̂  IC(I) ^ IC(/c«>'») -^ IC(R) - 0
i i i

0 -̂  I -. C«^» -̂  R -> 0

By induction on the homological dimension of I, we may assume 1C (I) = I
(since it's true for principal ideals) and hence the first two columns of the
diagram are isomorphisms. By a elementary diagram chase, the last column is
also an isomorphism.

The technique employed here is similar to that used in [9, theorem 2.7]. A
more thorough explanation can be found there.

Proof of(7). — We have a commutative diagram with (p, (p injective.

R ^ S

(P
R —^ S

Now (p is open [9, 3J] ==> R is a subspace of S => R is subspace of S, by 2.7
and [9, 3.v] ==> R is a subspace of S by [9, 3.vi].

Part 8. — This proof is long and tedious and is deferred to section 3.
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3. The Final Step.

This section is devoted to proving part 8 of theorem 2.6. Although the
result holds even when S has nilpotents, for the sake of simplicity we will
consider only the case where S is a domain.

In this section we will consider analytic rings R and S whose residue
fields /CR, ^5 respectively are not necessarily equal. By the statement
(p : R —> S is a local algebra homomorphism, we also mean that
<P(MR) c: Ms, (p^Cp) <= ^s an^ E^s : ^p] < °°- The general theory of such
mappings is carried out in [2, section 1] and to the best of my knowledge,
everything comes out exactly as in the usual case. This generalization is not-
considered for its own sake, but because of the change of residue field which
occurs in lemma 3.2.

Since we already have that (p open in inductive topology is equivalent to
rk (p = dim R/ker (p, it is sufficient to show that (p closed in inductive
topology implies that (p is open in inductive topology or
rk (p = dim R/ker (p. The proof will be divided into 3 sections :

(i) Reduction to the case where (p is injective, S is regular, and
dim S = rk (p.

(ii) Proof that if ^ is a sequence in R and (p(^) converges in the
inductive topology on S, then f^ converges in the simple topology on R.

iii) Assuming dim R > dim S, the construction of a sequence f^ in R
which violates the above conditions.

In part (i) we use the rank condition as our conclusion.

Observation 3.1. — If v|/ : R -> T and T| : T -> S are local maps of
analytic rings (which do not necessarily all have the same residue field), \(/ and
T| are closed in the inductive topology, and T| is injective and open in the
inductive topology, then r|(\)/) is closed in the inductive topology. Note that
this does not seem at all obvious if we drop the hypothesis that T| is open, and
we do not yet have that closed implied open.

LEMMA 3.2. — Reduction of part 8 to the special case where (p is injective
and S is regular.

Proof. — Clearly (p : R -> S is closed iff the induced map R/ker (p -> S is
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closed. Also rk (p equals the rank of the induced map. So we may assume (p
is injective.

Now consider the scheme B over S formed by blowing up the maximal
ideal of R and N be the scheme formed from B by taking the normalization
(integral closure in full ring of quotients) of each affme piece of B. Clearly in
any affme piece B is a finite algebra over S. That N is a finite B module
follows from the following facts : [16, section 36]. A ring A is pseudogeome-
tric if A is Noetherian and if for every prime ideal p of A and ring E,
A/p <= E, with the quotient field of E a finite extension of the quotient field
of A/p, and E integral over A/p, we have that E is a finite A/p module. In
characteristic zero, analytic rings are pseudogeometric. If A is pseudogeome-
tric, then every localization of a finite algebra over A is pseudogeometric.

Let

i , . . .,x^)S, B=S[x2/Xi,. . .,x,./xJ, I = ( x i , . . . , x , , )B=XiB,M(S)=(x

and IN be the extension of I to N. Now I is principal, and a proper ideal
so htl = 1. Similarly the height of IN in N is one. Let J be the jacobian
ideal of N. By the Serre criteria for normality, ht J ^ 2. Since ht IN = 1,
J ^ IN, and J' == J/IN is not zero in N' = N/IN. Clearly B' = B/I is an
affme ring. Now N is a finite B module so N' is a finite B' module. A finite
extension of an affine ring is affme so N' is is an affine ring. Hence there exists
a maximal ideal M' of N' with J' ^ M'. (This is easily seen by tensoring
N' with the algebraic closure of k over the residue field F of T, finding a
maximal ideal MQ of N' (Spk with J' (S)pk <^ M() via the Hilbert Nullstel-
lensatz and letting M' = M() n N'). Let M be the contraction of M' toN.
By the jacobian criterian T = N^ is regular. Since N^ is a spot over S,
there is [2, 1.11] a smallest analytic ring T* containing T with T = T*.
This ring T* is just the analytic ring gotten by blowing up and normalizing
in the category of analytic rings. Since T is a finite algebra over S, the
residue field of T is finite over the residue field of S. Since T and T* has
the same completion, they have the same residue field. It can be shown from
[6, section 3], theorem 2.1 and the previous parts of theorem 2.6, that the
quadratic transform i : S -> T* is injective and open and closed in the
inductive topology. By 3.1 the composition a : R -> S -> T* is closed
in the inductive topology. By the special case, rk a = dim R. Since
rk i = dim S = dim T, it follows that rk (p = dim R.

Remark. — Obviously one would also like to reduce to the case where R
is regular via a finite map A -^ R where A is regular. However we don't
know the composition A -> R -> S is closed in the inductive topology as 3.1
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is not applicable. We will get around this difficulty in another way in
proposition 3.7.

Remark 3.3. — The maximal ideal M above is not necessarily a k
rational point. More precisely let

R = /c«X,,.. .,X,»/I = /c«x,,.. .,^»,
B =^«x,,...,x,»[z2,...,zJ,

where z, = xjx^ for i ^ 2, and B' = k\_z^,.. .,zJ. Then the maximal
ideal M n B is generated by x^ and M' n B', but M' n B' is not
necessarily of the form (z^—a^...,z^—a^ for some a ^ e k . B' is just the
initial ideal of I dehomogenized with respect to x^ so is likely to be an
example of the type below. If the maximal ideal M n B is not a k rational
point the residue field of B^ ^ a wn^ ^e ^gg61" ^an k.

We have used implicitly the following Hilfsatz in the above discussion. Let
R^ c= R^ be rings with R^ integral over R^ and M be a maximal ideal in
R^ . Then R^ n M is a maximal ideal in R ^ .

Proof. — D = RI/RI n M c: R^/M = F so D is domain and F is a
field and F is integral over D. If x e D and

/iy W ^\- + ^ - i - + • • • + ^ i - + ^ o = 0 , ^.eD,w w w
then — 1 == x(^_i + a ^ _ 2 + . . . +^oX"~1) so — is in D. Hence D is a
field. x

Remark. — By restricting to an irreductible component of B^ n B an(^tne

corresponding component of N, and making a judicious choice of the
maximal ideal M, we may assume that the residue fields of N^ and B ^ ^ B
are equal. This is easily seen from the lemma below (since the residue fields of
BM ^ B an(^ BM' n B a^ clearly equal) which says that outside a set ofcodim
one, the map Spec N' —> Spec B' is unramified.

LEMMA 3.4. — Let A and C be reduced affine rings over a field k and
A c: C be a finite integral extension. Then there is an ideal I c A with
ht I ^ 1 such that for every maximal ideal M of A with I </: M and maximal

ideal M of C with M n A == M, we have MC^ = MC^ (i.e. the extension

AM c= CM i5 unramified}.
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Proof. — Recall that if N is a finite R module that Supp N is the set of
prime ideals p in R such that Np ^ 0, orequivalently,thesetofprimesin
R which contain the annihilator of N, where Ann N = {r e R : rN = 0}.

LetQ(C/A) be the module of differentials of C over A . Then 0(C/A) is
a finite C module and Ann Q(C/A) is an ideal in C. Let I be its
contraction to A. Let M be any maximal ideal in A with I </: M and M
any maximal ideal of C with M n A = M. Clearly MC c= M and
Ann Q(C/A) </: M, so Q(C/A)^ = 0. We have an exact sequence :

0 -^ C ®A^(AA) -> Q(CA) -^ ^(C/A) -^ 0.

Localizing at M and utilizing the functorial properties of the module of
differentials yields :

0 -. CM®A^(AMA) -> ^(CMA) - 0.

The residue field F of C^ is a finite (possibility trivial) extension of k so
Q(F//c) = 0. It follows that O(CM/F) = ^{C^/k) = 0. Now if x^ . . . , x,
are in the maximal ideal of the localization of an affine ring, then x^ . . . , Xj
generate that maximal ideal if and only if dx^, . . ., dxj generate the module
of differentials of that local ring over its residue field. Hence the last exact
sequence implies that MA^ generates MC^.

It remains to show ht I ^ 1. If k is algebraically closed then the
inclusion A c C, induces a finite map Spec C -> Spec A, and any regular
point of Spec C where the map has maximal jacobian rank will be a point
not in I so ht I ^ 1. We now reduce to the above case. Let H be an
algebraic closure of k. Then

Q (C ®^/A ®^) = Q(C/A) ®k ̂ . Ann (Q(C/A)) ®^ = Ann (0(C/A) ®^ ~R},

A ®^ ̂  c: C ®fe fe is a finite extension, tensoring with ~k over k preserves
height, A ®fc fe and B (x)^ are reduced. Hence the general case follows.

Remark 3.5. - Assume [F : k~} = d < oo and T| e F is a primitive
element for the field extension. Any element of F can be written uniquely as a

d-l

sum ^ fl,r|1, where a , e k . Applying this process to the coefficients of a
1=0

power series yields a k linear additive map a : F[[zi,.. ,,zJ]
-> k [[?i,. . .,^J], where the ^ are the r^. for 0 ^ i ^ d - 1,
1 ^ y ' ^ n . Now a does not in general, carry F«z» to ^«?».
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In lemma 3.2, we constructed a map v|/ : S -> T* = F«z)). For
technical reasons arising in proposition 3.7, we desire this map to go into
/c«r» instead. We can't just apply a ; however we will show that in fact
because of the special construction of the map S -> T*, we can assume
v(/(S) <= A:«r». By 3.4, there is no change of residue field in passing from B
to N, so it suffices to show the image of S in B^^g l i e s ina k analytic ring.
The maximal ideal M = M n B can be constructed as follows :
B' = B/I = k\_z^. . .,zJ, Zi = x^/Xi, is an affme ring over k, choose a
maximal ideal IVIo of B' ®^ == B', M() = (z^—a^B, a ^ e H , and let
M' = MQ n B' and M be the contraction of M' to B. Then F = k{a^ is
a finite extension of k , F is the residue field of B^, and z ^ ,
z^ — ^2, . . . , z^ — a^ generate the maximal ideal of B^. To show
\|/(S) c= A;«t» it is sufficient to show each v(/(^.) e ̂ «r». But
^ = z^. = z^(z^ — a,) + fl^Zi ; since this is a polynomial over F it obviously
gives rise to a convergent power series over k.

Remark 3.6. — It remains to check that the topological conditions of part
8 of theorem 2.6 are preserved when passing from F«z» to H<?» in
remark 3.5. Since a norm of a(g) in A:«r» is not less than the
corresponding norm of g in F«z», it is trivial to check that S closed in
the inductive topology on F«z» implies that S closed in the inductive
topology on ^«r». Also the ranks of both maps S -> F«z» and
S -> H<^» are the same and equal to dim S so the rank of the map
R -> S -> F«z» is unchanged by this change of residue field.

DEFINITION. — Let ¥ be a valued field and Z = (Z^,. . .,ZJ be
indeterminents over F. A local map H : F«Z» -> F«Z» is called a
monomial map if H is of the form (Z^M^Z^,. . .,M^ZJ where each Mj is a
nonzero monomial in only the variables Z^, . . ., Zj_ ^ . A routine computation
similar to [6, Remark 4] shows that H is injective, open in the Krull topology,
and strongly injective. Also it is easy to check H is open and closed in the
inductive topology. Also rk H = n.

LEMMA 3.7. — Reduction of part 8 to the special case where rk (p = dim S.

Proof. - Suppose Y = (Y^ , . . .,Y,); x = ( x ^ . . .,x^),
(p : A;«Y» -> A;«x», and rank (p < n. Then Eakin and Harris [14,
section 4] have proven there exists an isomorphism
Hi : ^c«Y» -> ^«Y», and a map H^ : /c«x» -^ ^c«x» which is
the composition of monominal maps such that

v|/ = H2((p)H, : fc«Y» ^ fc«x,,. . .,^.,» i.e.
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you can transform off one of the variables. From 3.1, it follows that \[/ is
closed in the inductive topology on k((x^.. .,x^» induces the inductive
topology on fc«Xi,. . .,^_,», v|/ is also closed as a map into
fe«Xi,. . . ,x^_i». Also r k ^ = r k ^ > since rkH =. n.

PROPOSITION 3.7. - Assume dim R = r > n = dim S = rk (p, S fs regu-
lar, ( p : R - » S i 5 cfo5^ i« the inductive topology. Then there exists a sequence
hj e R such that (p(^.) -» 0 in the inductive topology on S, but h • -^ 0 I'M r/i(?
simple topology on R.

Proof. - Suppose (p : ̂  -> ̂  is injective and r > n. By generalizing
[14, lemma 4.2] the construction used in Gabrielov's example, we have that
there exists a sequence of polynomials /, e k[\^. . .,YJ of degree v so that

(i) max {\b\: b is a coefficient of/,} = 1

(ii) lim ||/,((pi,.. .,(p,)||,w = 0 for some t > 0.
v-»x

k 1
Let p. = I - f. .(YI. • . . X)Y'r and P = lim P,, where

i=0 °f ! fc-"oo

£v = ll/v((p)IL. For each i, f,., (Yi,. . .,Y,)Y^ is of degree 2(f !) and order
^ f !; thus P is well defined. Moreover, P is divergent because for each i,
/, has a coefficient 1, which cannot be cancelled by a coefficient from any
other position, and for any k with i ! ̂  k ^ 2(f !), (1/e, ,)1^ -^ oo as
i -> oo. Hence the sequence P^ of polynomials converges in no Banach
norm in ^. However,

I|P((P)IL ^ Z ^ll^(cp)IU|cMi' ^ ^ ]|(pj|i- < oo,
i= 0 e!^ ! i = 0

provided r is chosen so [|(pi|[, < 1. It follows that P^((p) converges in the
inductive topology on (9^.

Now R is a finite extension of a regular ring A = ^«Yi,...Y,» c= R .
Let (p also denote the restriction of (p to ^, and let P .̂ denote the image
of the above polynomials in R. Since (p(P^.) converges to (p(P) in the
inductive topology and R is closed in S, (p(P)e(p(R). That is there exists
g e R , g = lim^.,^. polynomial of degree 7, with (p(^) = (p(P). Since g
is convergent, .̂ -^ g in the inductive topology, and so (p(^.) -^ (p(^) in the
inductive topology. Letting h = g - P, h,^ = .̂ - P^., we have (p(^.) ̂  0
in the inductive topology on S and .̂ -> h in the simple topology on R.
But h ̂  0 since g e R , and P t R (because P e A - A and A n R = A).
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LEMMA 3.7. — Let R be an analytic domain. Then for every I > 0, there is a
countable set {pj^i of prime ideals in R, with each dim R/p, = /, and a

function n : N -^ N, wfr/i lim n(/) = oo, and so that q /.. c w7, H^?r<?
J'-» 00 v"7

J

^j = n P^ an^ m fs ̂  maximal ideal of R.
i= i

Proof. — By a trivial backwards induction on /, it suffices to consider the
case where / = dim R — 1.

Now let R be finite extension of a regular ring A = ^«Yi,.. .,Y^».
Then R is a finite extension of A. Take any countable distinct set of

oc

hyperplanes H, in k' and I, be the ideal of H, in A. Clearly H I, = (0)
i= 1

oo

and n ^ = (°)- Ncw I,R is not usually prime, but there exist a finite
i = i

number of primes p , in R so that the contraction to A of each of them is just
I,. Let {pi} be the set of all such resulting primes. Since

/ x \ / x \
( H P i ] ^ A = rU nA=(0 )
\i=l / \i=l /

x

and R is a domain, we have that f^ p.. = (0). Since p, is a height one prime,
i= i

pi is also a height one prime; hence p, n A is a height one prime. But
p, = p , nJR, I, = pi n A, and I, = pi n A, so I, c ^ n A. Since I,
and pi n A are both height one primes, they are equal. Since R is a domain,

oc

the previous line of reasoning show that Q p, = (0). Hence
1 = 1

x x j x

n QJ= n npi= n?. -w.
j = 1 j = 1 i = 1 i = l

By the Chevalley subspace theorem y/El/i so q^ c= m3. Then

^ = ^ n R c m7 n R == m7.

LEMMA 3.8. — L^r R ^ an analytic domain and f^ be a sequence in R.
Then f^ -> 0 ^ the simple topology on R if and only if the images of f^ in R/p
converge to zero in the simple topology, for every prime p of R with
dim R/p = 1 .
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Proof. — Let p ^ , .̂ be as in previous lemma. Now /,, -^ 0 in R iff \/k,
/^O inR/w^. Hence [Vf, /^Oin R/pJ ==> [V./'./^Oin R/q^] because

R/^- -̂  ® R/P.
1=1

is an injection of finite R modules => [V/^-^OinR/w^] because
.̂ c= w1 => /,, ̂  0 in R.

Part 8 of theorem 2.6 will follow immediately from propositions 3.4 and
3.9.

PROPOSITION 3.9. — Assume (p : R -> S is injective and closed in the
inductive topology. If S is the inductive limit of the algebras B^, hj is a
sequence in R , \vith (p({^,}j°=i) contained in a fixed B^ and (p(^) —> 0 I'M
B,., ?/i^2 hj -> 0 fn r/i^ simple topology on R.

Remark. — We use the hypothesis that each (p(^.)eB^, rather than just
saying (p(^) -^ 0 in the inductive topology on S because without the
compactness of the inclusions B( -> B^, 5 < t , this condition does not seem
to follow automatically from the fact that (p(^) converges.

Proof of prop. — Let B denote one of the algebras B^, with r small
enough so that each (p(^) e B and each (p(^) e B where y ^ , . . ., ^generate
the maximal ideal of R. Let v(/ : B n cp(R) -» R denote the inverse of
(p|R ncp'^B). We give B n (p(R) the topology from the norm | |—|| on
B, and R the simple topology, and show v|/ is continuous.

By lemma 3.8 it suffices to prove that for every prime p in R with
dim R/p = 1, the composition B n (p(R) -> R -> R/p is continuous, whe-
re R / p has the simple topology. Let N be the integral closure of R/p in its
field of quotients. Since dim R/p = 1, N is normal and of dim one so
regular. Hence there is a finite field extension F of k so that N = F<(<^)).
Clearly it also suffices to show the composition, also denoted by v|/,
B n (p(R) -> R -> R/p -> F«r» is continuous.

00

Any h e F«Q> has a representation ^ h^t" with h ^ e ¥ . For some
n=0

Yi , the image y^ of y^ in F«r» is a nonzero nonunit. Without loss of
generality, we may assume 11^11 < 1. Let /denote (p(^) and ^ C^t" be

n^p
the expansion of v(/(/) = ^, where p > 0 is the order of v|/(/). Let

W = 1 c,,t",^i^/cp
where C^ e F and C^p ^ 0 • Clearly / lies in the maximal ideal of S.
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We will now prove the following statement by induction on / (the desired
result is the totality of all these statements) :

For every integer / , there exists a real number Mi so that for every

(*) ^ e R n ( p ( B ) , |v |̂ ^ M^||.

Since (p does not change the constant term of a power series, and \\g\\ ^ the
absolute value of its constant term, we may pick Mo = 1, and the / = 0
stage of the induction is done. Assume the induction hypothesis for
j = 0, . . . , / — 1, and its negation for j = I ; we will reach a contradiction.
We have : VO ^ j ^ / - 1, 3M^. so

Vg e B n (p(R), |(p(^,| ^ M,||g|| and VM,, 3g e B n (p(R)

with |(pte),| > M^||.

Now pick inductively g, e B n cp(R) so that \\g\\ < 1 and |v|/(^.)j| is
00

arbitrarily large (exact formula to be given later). Then a = ^ ^./l

converges in the Krull topology on S so a is also a formal power series over
^. Since ||/|| < 1, the sum also converges in the norm on B ; hence
a e B. Finally the partial sums all lie in (p(R) and converge in B and hence
in the inductive topology on S; since cp(R) is closed in S, we have

n

ae(p(R). Similarly for any n ^ 0, ^ gi+nf1 converges to an element of
B n(p(R). „ , l = l

/ 00 \ 00

I now claim that v|/( ^ g^ ) = ^ ^(^feW/T as formal power series in
\A='l / k = l

t . To see this, recall that two elements of F [[r]] are equal if and only if their
coefficients are all equal and note that

^fz ^/)= Z ̂ )W + wnf Z ^/k-") = RI + ^2,
\Jc=l / k = l \ k = n + l /

and

Z vK^v^/)' = Z vK^w/)' + ̂ (/r Z ^(^)^(/)'~"= s, + s,.
k=l k=l k=n+l

The first n coefficients of R^ and of S^ are all zero so the n th order
expansion of R^ + R^ equals the n th order expansion of R ^ , and the n t h
order expansion of S^ 4-S^ equals the n t h order expansion of S ^ . Also
RI = S i , so the n t h order expansion of R^ equals the n t h order
expansion of S^ . Hence the n t h order expansion of R^ + R^ equals the
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n t h order expansion of Si + S^, for all n. Hence

RI + R, = Si + S^ and f; WK/)"
k= 1

is a convergent power series in t .

Let [r] denote the greatest integer less than or equal to r and let
00

h = [(m - 0/p]. Let \|/(^) = ^ A^1, v|/(^), = A^,, and compute

^) = Z ̂ )W = Z Z A,,r1 V C^r"
k = l f c = l \ i=0 /\^p

oo / m m-pk \

= Z t- Z Z A,,C ,̂.,
w = l \ fc=l j=0 /

— / i - l m - p f c m- ph-1 —

Z Z A^,C^,_,+ ^ A,,C,,,,,,_;
f.m\ k=l j=0 j=Q= s ^

+ A«C,,,,_, + E I A,,C,,,,_;
y = o < c = f i + i _

Recall that |A |̂ = |i|/(̂ .| ^ M,.||̂ || < M, for 0 < 7 ^ / - 1 and k ^ j .
Hence for m > l(p + 1), we have

jh ~ 1 m — pfc

1^(^-A,,C^_/| ^ E E A,,Q,,,_, + ^ ^ M,|C
l k = l j=0 j=0 k=h

It is possible to inductively pick for m = kp + /, h = k, the (p(^ so that

[ h-l m-pk l - l m ~|

^-F1 Z E A,,C,,,_, + ^ Z M,|C,,,_,| + m-1<P(^1 ^ |C,,,,_/|
k = l j = 0 j=o k=h Jl k = l j = 0

because C^ ^ 0, the first sum runs from k = 1, . . .,h - 1 so depends on
previously picked A^/s and the second sum runs from j = 0, . . . , / - 1, so
also depends on previously picked data. Making these choices, we have
|\l/(a)J ^ m"". The radius of convergence of the power series Z^z" is
lim inf|^|-1", so we have a contradiction with the fact that \)/(o) is
convergent. Line (*) is now proven.

Q.E.D.
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